吞噬細胞

维基百科,自由的百科全书
跳转至: 导航搜索

長桿形的細菌,其中一個已經被一個稍大的球狀白血球部分吞噬。白血球因爲其體內尚未消化的細菌體而變形
一張中型粒細胞吞噬炭疽桿菌(橘黃色)的掃描電鏡照片

吞噬細胞(Phagocytes)为一类通过吞噬诸如细菌、坏死凋亡的细胞这样的有害外来粒子来保护机体的细胞。其英文名「Phagocytes」的前一部分来自希腊语「phagein」(意为食用、吞食),后一部分「-cyte」为生物学中表示细胞(cell)的词缀,来自于希腊语「kutos」(意为「中空容器」)[1]。吞噬细胞在对抗感染以及後續的免疫过程中不可或缺[2]吞噬细胞在整个动物界中都相当重要[3],且在脊椎动物体内高度发达[4]。一公升的人类血液约含六十亿个吞噬细胞[5]。1882年,埃黎耶·埃黎赫·梅契尼可夫在研究海星幼虫时发现了吞噬细胞[6]。他因这一成就获得了1908年的诺贝尔生理医学奖[7]许多物种体内都有吞噬细胞。一些阿米巴的行为亦与巨噬细胞(吞噬细胞的一种)相似,说明吞噬细胞在生命进化的早期阶段就出现了[8]

人和其他动物的吞噬细胞可由他们在吞噬过程中的效果分为专职(professional)吞噬细胞和非专职(non-professional)吞噬细胞[9]。许多类型的白血球都是专职吞噬细胞(如嗜中性粒細胞單核細胞巨噬細胞肥大細胞樹突狀細胞等)[10]。专职吞噬细胞和非专职吞噬细胞的主要区别在于专职吞噬细胞表面有一种叫受体的分子。受体可以探测细菌这样的在一般情况下不会在体内出现的有害物质[11]。吞噬细胞在对抗感染的过程中发挥很大的作用。吞噬细胞亦能够清除坏死或凋亡的细胞,使生物的各组织保持健康状态[12]

在感染过程中,化学信号使吞噬细胞前往病原体侵入机体处。这些化学物质可能来自于细菌,也可能来自其它已经出现的吞噬细胞。吞噬细胞通过趋化作用进行移动。当吞噬细胞与细菌接触后,吞噬细胞表面的受体将会与细菌结合。这样的结合将介导吞噬细胞将细菌吞噬[13]。一些吞噬细胞隨後通过活性氧類(ROS)以及一氧化氮杀死被它吞噬的细菌[14]。在吞噬完成后,巨噬细胞以及树突状细胞亦可参与抗原呈递过程。在该过程中,吞噬细胞将被它吞噬的物质的一部分转运到它的表面。随后,这些物质会被展示给其它的免疫细胞。一些吞噬细胞会移动到生物体的淋巴结处,并将上述物质呈递给一种白血球,淋巴细胞。该过程对建立免疫相当重要[15]。不过,许多病原体都进化出了逃避吞噬细胞攻击的机制[2]

歷史[编辑]

一個大鬍子老人拿着一根試管。他坐在一張窗邊的椅子上。桌上堆滿了小瓶子和試管
埃黎耶·埃黎赫·梅契尼可夫在他的實驗室裏

俄羅斯動物學家埃黎耶·埃黎赫·梅契尼可夫(1845–1916)爲第一個發現了吞噬細胞這種參與肌體對抗微生物感染的特化細胞的人。1882年,他在研究海星幼虫体内的能动(自由移动)细胞时,相信这类细胞对动物的免疫防御相当重要。为了验证他的猜想,他将一段取自柑橘树的小木刺插入了海星体内。几个小时后,他注意到,能动细胞聚集在了木刺周围[16]。梅契尼可夫之后去了维也纳,和卡爾·弗里德里希·威廉·克勞斯英语Carl Friedrich Wilhelm Claus(Carl Friedrich Wilhelm Claus)分享他的想法。卡尔提议,将梅契尼可夫发现的细胞命名为吞噬细胞(「phagocyte」)[17]。吞噬细胞(phagocyte)这个名字来源于希腊语单词「phagein」(吃,吞食)和「kutos」(中空容器)[1]

一年之后,梅契尼可夫对一种淡水甲壳动物水蚤进行了研究。水蚤是一种微小的、通体透明的动物,可在显微镜下对其进行观察。梅契尼可夫发现攻击水蚤的真菌都被水蚤的吞噬细胞消灭。随后,他又对哺乳动物的白血球进行观察,发现吞噬细胞通过一种被他称为吞噬(phagocytosis)的过程吞食消灭掉炭疽桿菌Bacillus anthracis,一种细菌)[18]。梅契尼可夫随后提出,吞噬细胞为机体针对入侵生物的防御体系的重要组成部分。

1903年,阿尔姆罗思·赖特英语Almroth Wright发现,特殊的抗体(他称之为调理素英语Opsonin(opsonin)。调理素(Opsonin)这个单词来自希腊语单词「opson」(意为调味品))可增强吞噬过程[19]。梅契尼可夫因为他对吞噬细胞和吞噬的研究,在1908年和保罗·埃尔利希共享了诺贝尔生理医学奖[7]

尽管人们在20世纪早些时候逐渐意识到这些发现的重要性,但吞噬细胞与免疫系统其他元件之间错综复杂的关系直到1980年代才被阐明[20]

吞噬作用[编辑]

吞噬过程分三步:第一步,未与相关信号分子结合的吞噬细胞表面受体不会引发吞噬作用;第二步,受体与相关信号分子结合后,聚成簇状;第三步,吞噬作用引发,微粒被吞噬细胞吞入胞内

吞噬(Phagocytosis)指细胞吞食细菌、寄生虫死亡细胞等颗粒,以及细胞残骸、外来的碎屑的过程[21]。该过程涉及一系列的连续的分子过程[22]。吞噬在异物(这里以细菌为例)与吞噬细胞表面一种名为「受体」(receptors)的分子结合后发生。吞噬细胞随后运动到细菌周围,并将之吞食。人中性粒細胞对细菌进行吞噬平均要花9分钟[23]。被吞噬细胞吞入胞内的细菌会被裹在吞噬小体内。在一分钟内,吞噬小体即会与一个溶酶体或一个顆粒英语Granule (cell biology)融合,形成一个吞噬溶酶體英语phagolysosome。细菌随后会暴露在超量的杀灭性物质之中[24],並於幾分鐘後死亡[23]。树突状细胞以及巨噬细胞的吞噬速度相对较慢,吞噬在这些细胞中可能会花掉数个小时。巨噬细胞是巨大而且有些「乱糟糟」的吞噬者。它们会吞噬许多的物质,偶尔还会将一些未消化的物质释放回组织之中。未消化的碎片起到一个信号的作用,它们能从血液中征募更多的吞噬细胞[25]。吞噬细胞相当「贪婪」。科学家曾经用铁屑来饲喂巨噬细胞,之后,他们用小磁铁从其他细胞中吸出了这些铁屑[26]

A cartoon: The macrophage is depicted as a distorted solid circle. On the surface of the circle is a small y-shaped figure that is connected to a solid rectangle that depicts a bacterium.
巨噬细胞有特殊的受体,参与能增强吞噬作用的过程(图中各物件未按照实际比例绘制)

一个吞噬细胞表面有许多类型的用于与相关物质结合的受体[2]。这些受体包括调理素英语Opsonin受体、清道夫受体英语Scavenger receptorToll樣受體。调理素受体增强了对被抗体免疫球蛋白G英语Immunoglobulin G(IgG)或补体包覆细菌的吞噬作用。补体是一个复杂的系列蛋白质的名称。补体存在于血液当中,能破坏细胞或将它们标记为摧毁对象[27]。清道夫受体能与细菌表面的许多分子结合。Toll样受体,因为它们与已经过充分研究的果蝇体内的由Toll基因编码的受体十分相似而得名。不过,Toll样受体的专一性更强。(相关分子)与Toll样受体结合能使得吞噬作用增强,还能使吞噬细胞施放一系列能引发炎症反应的激素[2]

杀灭方法[编辑]

A cartoon that depicts the engulfment of a single bacterium, its passage through a cell where it is digested and released as debris.
吞噬作用以及杀灭相关细菌细胞过程的简图

杀灭微生物是吞噬细胞的一项重要功能[28]。吞噬细胞可在细胞内杀灭微生物(胞外杀灭),也可在细胞外杀灭微生物(胞内杀灭)。

氧依赖性胞内杀灭[编辑]

当一个吞噬细胞吞食细菌(或其他物质)时,它的耗氧量会增加。这一耗氧量的增加称为呼吸爆發英语Respiratory burst(Respiratory burst),以产生能杀灭微生物的活性含氧分子[29]。含氧化合物对侵入者和细胞本身都是有毒性的,因此,这些分子只在细胞中的某些隔室内存在。这种通过活性含氧分子杀灭入侵的微生物的方法被称为氧依赖性胞内杀灭(oxygen-dependent intracellular killing),可细分为两类[14]

在第一种类型的杀灭中,氧依赖性产物是超氧化物[2],一种富氧的、具有杀菌活性的物质[30]。在超氧化物歧化酶的作用下,超氧化物转化为过氧化氢单线态氧英语singlet oxygen。超氧化物还会和过氧化氢反应,生成羟基自由基。羟基自由基对杀灭入侵的微生物有辅助作用[2]

在第二种类型的杀灭中,来自中性粒细胞颗粒的髓過氧化物酶会参与反应[31]。当颗粒与吞噬体融合后,髓过氧化物酶释放,进入吞噬溶酶体中。该酶会利用过氧化氢以及生产次氯酸盐。次氯酸盐在生活中可用于漂白剂的制作。次氯酸盐对细菌的毒性尤强[2]。髓过氧化物酶包含色素血红素,这是中型粒细胞的许多分泌物,如和感染痰液呈绿色的原因[32]

非氧依赖性胞内杀灭[编辑]

Pus under a microscope, there are many white blood cells with lobed nuclei. Inside some of the cells there are hundreds of bacteria that have been engulfed.
革兰氏染色的显微镜图像。图中淋球菌Neisseria gonorrhoeae)被吞噬细胞吞入了胞内。该图清楚地显示出两者的相对大小

吞噬细胞也可以通过非氧依赖性的方法(oxygen-independent methods)杀死微生物,不过这类方法不如氧依赖性的方法有效。非氧依赖性胞内杀灭方法一共有四种主要的类型。第一种方法使用带电蛋白破坏细菌的质膜;第二种方法是使用溶酶体,溶酶体中的酶能够破坏细菌的细胞壁;第三种方法是使用乳铁蛋白。乳铁蛋白存在于嗜中性粒細胞的颗粒中,它能从细菌胞内移去对其生存不可或缺的铁元素[33];第四种方法使用蛋白酶和水解酶,它们能够消化被杀死的细菌的蛋白质[34]

细胞外杀灭[编辑]

干擾素-γ,曾经被称为巨噬细胞活化因子,能够诱导巨噬细胞产生一氧化氮。干擾素-γ可由CD4+ T细胞CD8+ T细胞自然殺傷細胞(NK细胞)、B细胞自然杀手T细胞英语NKT cell(NKT细胞)、單核細胞、巨噬細胞,或樹突狀細胞产生[35]。一氧化氮在从巨噬细胞中释放后,可以靠其毒性杀灭巨噬细胞周围的微生物[2]。另外,活化的巨噬细胞能产生并分泌肿瘤坏死因子英语Tumor necrosis factor superfamily。这种细胞因子是一类信号分子[36],它们能够杀死癌细胞以及被病毒感染的细胞,还能对其它免疫系统的细胞的活化起到辅助作用[37]

慢性肉芽腫病等疾病中,吞噬细胞的效率降低,使得细菌反复性感染成为困扰患者的难题[38]。慢性肉芽肿病即由患者氧依赖性杀灭途径的一些要件受到的异常干扰造成。另外一些罕见的先天性疾病,比如Chédiak-東綜合徵英语Chediak-Higashi syndrome(Chediak-Higashi syndrome),也和宿主杀死入侵的微生物的能力低下有关[39]

病毒[编辑]

病毒只能在细胞内复制,它们通过许多参与免疫的受体进入(宿主)细胞内。一旦进入细胞,病毒就会使用宿主细胞的生物合成机器来合成它们自己所需的物质,强迫宿主细胞生产数百份与侵入病毒相同的拷贝。尽管吞噬细胞和其它的先天免疫系统的组成单位能在有限的范围内抑制病毒(的扩散),但一旦病毒进入了细胞,适应性免疫应答,特别是淋巴细胞就变得对防御更加重要的 [40]。在病毒感染的区域,淋巴细胞的数目常常远超过其它组成免疫系统的细胞,这一现象在病毒性脑膜炎中很常见[41]。在淋巴细胞杀死被病毒感染的细胞后,吞噬细胞会将其残骸从肌体中清楚[42]

在细胞凋亡中的角色[编辑]

吞噬细胞清除凋亡细胞的碎片

在动物体内,细胞会不断地死亡。细胞分裂和细胞死亡维持着成年个体体内细胞数目的相对恒定[12]。细胞有两种截然不同的死亡方式:坏死(necrosis)和凋亡(apoptosis)。和通常由疾病或外伤造成的细胞坏死不同,细胞凋亡,或称为「细胞程序性死亡」是一个健康细胞正常功能的一部分。机体每天都必须要除去数十万已死亡或正在走向死亡的细胞。吞噬细胞在这一处理过程中扮演了重要角色[43]

正在执行细胞凋亡的最后一个阶段并走向死亡的细胞[44]表面会出现磷脂絲胺酸等分子以吸引吞噬细胞[45]。磷脂酰丝氨酸在正常情况下仅存在于质膜靠细胞质一侧的表面上,但在细胞凋亡过程中,磷脂酰丝氨酸会被一种叫做「磷脂促翻转酶英语Scramblase」(scramblase)的假想蛋白搬运到质膜的外侧[46]。磷脂酰丝氨酸这类分子对细胞进行标记,以使得它能被巨噬细胞等拥有相应受体的细胞吞噬[47]。通过吞噬细胞实现的对走向死亡的细胞的清除十分有序,不会引发炎症反应,是吞噬细胞的重要功能之一[48]

与其他细胞的相互作用[编辑]

吞噬细胞通常不和任何特定的器官结合,而是在肌体内移动,并与其他组成免疫系统的吞噬细胞和非吞噬细胞发生相互作用。吞噬细胞通过产生一种名为「细胞因子」的化学物质和其他细胞进行信号交流。细胞因子能招募其他的吞噬细胞到感染区域,也可以刺激处于休眠状态的淋巴细胞[49]。吞噬细胞是动物(包括人类)生来即拥有的先天免疫系统的一个组成部分。先天免疫的效率很高,但是却是非专一性的,即先天免疫不会区分不同种类的入侵物质。另外一方面,有颌脊椎动物的後天免疫系統,获得性免疫的基础,则具有高度的专一性,能够对抗几乎所有种类的入侵物质[50]。後天免疫系統是以淋巴细胞为基础而不是以吞噬细胞为基础。淋巴细胞能够分泌一种保护性的蛋白质,名为「抗体」(antibody)。抗体能标记入侵物质,以便进行后续的清除程序。另外,抗体还能阻止病毒感染细胞[51]。吞噬细胞,尤其是树突状细胞以及巨噬细胞,能够通过抗原(antigen)呈递这一重要进程刺激吞噬细胞产生抗体[52]

抗原呈递[编辑]

MHC1分子呈递外来多肽的简图

抗原呈递是吞噬细胞将被它吞食的物质的一部分搬运到细胞表面,并将它们呈递给组成免疫系统的其他细胞的过程[53]。有两种「专职的」抗原呈递细胞:巨噬细胞和树突状细胞[54]。在吞食异物后,外来蛋白(即抗原,antigen)会在巨噬细胞或树突状细胞胞内被水解为段。随后,这些肽段会与细胞的主要組織相容性複合體(major histocompatibility complex,简称MHC,化学本质为糖蛋白)结合。随后,携带着肽段的MHC会被转运至吞噬细胞的表面,并被「呈递」给淋巴细胞[15]。成熟的巨噬细胞并不会离开感染区域太远,不过,树突状细胞能移动到含有数百万的淋巴细胞的淋巴结[55]。这一过程中,树突状细胞通过使淋巴细胞产生针对其所携带抗体的应答(这种应答和淋巴细胞直接在感染区域接触抗原后产生的应答是等效的), 增强免疫反应的强度[56]。除此以外,树突状细胞还可以杀灭或镇定识别肌体组分的淋巴细胞——这对阻止自体免疫反应的发生至关重要。这一过程称为「(免疫)耐受」[57]

免疫耐受[编辑]

树突状细胞能促进免疫耐受(immunological tolerance)的产生[58]。免疫耐受使得肌体的免疫系统不会攻击肌体自身。第一类免疫耐受是发生于胸腺中的中枢耐受英语Central tolerance(central tolerance)。其核心是诱导(通过其受体)与自身抗原(由树突状细胞通过MHC分子呈递)结合得过于紧密的T细胞死亡。第二类免疫耐受是外周耐受英语peripheral tolerance(peripheral tolerance)。因为许多原因(其中主要原因是一些胸腺中自身抗原表达的缺乏),一些自激活的T细胞会脱出胸腺中。另外一种T细胞,T调控细胞(调节性T细胞)可以下调外周自激活T细胞(的水平)[59]。一旦免疫耐受失效,肌体就会患上自身免疫病[60]

专职吞噬细胞[编辑]

一张展示干细胞和成熟白血球關係的卡通图。一种干细胞可以分化出八种不同的白血球
吞噬细胞分化自骨髓中的幹細胞

人类以及其他有颌类脊椎动物都有专职及非专职的吞噬细胞群体。这一分法是根据细胞参与吞噬过程的效率分出的[9]。专职吞噬细胞包括单核细胞巨噬细胞嗜中性粒细胞、组织树突状细胞,以及肥大细胞[10]。一公升人类血液含有大约60亿个吞噬细胞[5]

Activation[编辑]

非专职吞噬细胞[编辑]

走向死亡的细胞以及侵入肌体的生物能被「专职」吞噬细胞以外的细胞吞食[95]。这类细胞包括上皮细胞内皮细胞成纤维细胞,以及间充质(干)细胞英语Mesenchymal stem cell。这类细胞称为非专职吞噬细胞(non-professional phagocytes),以强调这类细胞和专职吞噬细胞不同,吞噬不是它们的主要功能[96]。举个例子来说,成纤维细胞在疤痕的重塑过程中,能够吞噬胶原。此外,这类细胞还能摄取外来颗粒[97]

非专职吞噬细胞能吞噬的颗粒种类比专职吞噬细胞要少。这是因为它们缺乏高效的吞噬受体,尤其是调理素英语opsonin(受体)。调理素是由免疫系统产生的,能与入侵物质结合的抗体或补体[11]。另外,大多数的非专职吞噬细胞都不能产生参与吞噬的活性含氧分子[98]

非专职吞噬细胞[94]
主要位置 类型
血液、淋巴以及淋巴结 淋巴细胞
血液、淋巴以及淋巴结 自然杀手细胞(NK细胞)
大顆粒淋巴細胞(LGL细胞)
皮肤 上皮细胞
血管 内皮细胞
结缔组织 成纤维细胞
血液 红血球

病原体的逃避和抵抗[编辑]

进化起源[编辑]

吞噬作用在生物界中十分普遍,而且可能在进化的早期[123],即单细胞真核生物阶段就出现了[124]阿米巴是一类单细胞原生动物。植物从进化树上分出後不久,出现了阿米巴。阿米巴是後生動物的祖先。阿米巴与吞噬细胞共有许多特殊功能[124]。比如,盘基网柄菌Dictyostelium discoideum)是一种生活在土壤和草料中的阿米巴,它们以细菌为食。和动物的吞噬细胞一样,它通过柱形受体,经由吞噬过程吞食细菌。除此以外,它与吞噬细胞还有很多共同的生物学功能[125]。盘基网柄菌具有社会性。在饥饿时,它们会聚集在一起,生成一团假合胞(pseudoplasmodium)或蛞蝓形的物质(slug)英语Dictyostelid。这个多细胞集群能够形成一团有孢子子實體,来对抗环境危险。在子实体生成前,盘基网柄菌细胞会在几天里以一团蛞蝓形的物质迁移。与致病细菌或毒素接触可能会造成产孢受阻,使物种生存受到威胁。不过,一些在细胞集群中巡弋的阿米巴细胞会吞噬相关的细菌或吸收毒素,并在完成上述过程中死亡。它们与细胞集群中的其它阿米巴细胞在遗传学上完全相同。它们的自我牺牲保护了其它的阿米巴细菌不受细菌的侵害,这和高等脊椎动物的免疫系统中的吞噬细胞的自我牺牲行为相似。这一社会性阿米巴的原始免疫现象说明,一种进化上保守的细胞吞噬机制可能在阿米巴进化成更高等的生物前就被广泛用于防御[126]。然而,一个哺乳动物吞噬细胞的共同祖先还未被发现。吞噬细胞在整个动物界中都有分布[3],从海绵动物到昆虫,再到低等和高等脊椎动物体内,都有吞噬细胞[127][128]。阿米巴区别自我和非我的能力非常重要,是许多阿米巴的免疫系统的根源[8]

參考[编辑]

  1. ^ 1.0 1.1 Little, C., Fowler H.W., Coulson J. The Shorter Oxford English Dictionary. Oxford University Press (Guild Publishing). 1983: 1566–67. 
  2. ^ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Delves等 2006,第2–10页
  3. ^ 3.0 3.1 Delves等 2006,第250页
  4. ^ Delves等 2006,第251页
  5. ^ 5.0 5.1 5.2 5.3 Hoffbrand,Pettit & Moss(2005),第331页
  6. ^ Ilya Mechnikov, retrieved on November 28, 2008. From Nobel Lectures, Physiology or Medicine 1901–1921, Elsevier Publishing Company, Amsterdam, 1967. 页面存档备份,存于互联网档案馆
  7. ^ 7.0 7.1 Schmalstieg, FC; AS Goldman. Ilya Ilich Metchnikoff (1845–1915) and Paul Ehrlich (1854–1915): the centennial of the 1908 Nobel Prize in Physiology or Medicine. Journal of medical biography. 2008, 16 (2): 96–103 [2014-12-19]. doi:10.1258/jmb.2008.008006. PMID 18463079. 
  8. ^ 8.0 8.1 Janeway, Chapter: Evolution of the innate immune system. retrieved on March 20, 2009
  9. ^ 9.0 9.1 Ernst & Stendahl 2006,第186页
  10. ^ 10.0 10.1 Robinson & Babcock 1998,第187页 and Ernst & Stendahl 2006,第7–10页
  11. ^ 11.0 11.1 Ernst & Stendahl 2006,第10页
  12. ^ 12.0 12.1 Thompson, CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995, 267 (5203): 1456–62. doi:10.1126/science.7878464. PMID 7878464. 
  13. ^ 13.0 13.1 13.2 Janeway, Chapter: Induced innate responses to infection.
  14. ^ 14.0 14.1 Fang FC. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. October 2004, 2 (10): 820–32. doi:10.1038/nrmicro1004. PMID 15378046. 
  15. ^ 15.0 15.1 Delves等 2006,第172–84页
  16. ^ Delves等 2006,第3页
  17. ^ Aterman K. Medals, memoirs—and Metchnikoff. J. Leukoc. Biol. 1 April 1998, 63 (4): 515–17 [2014-12-19]. PMID 9544583. 
  18. ^ Ilya Mechnikov. The Nobel Foundation. [2014-12-19]. 
  19. ^ Delves等 2006,第263页
  20. ^ Robinson & Babcock 1998,第vii页
  21. ^ Ernst & Stendahl 2006,第4页
  22. ^ Ernst & Stendahl 2006,第78页
  23. ^ 23.0 23.1 Hampton MB, Vissers MC, Winterbourn CC; Vissers; Winterbourn. A single assay for measuring the rates of phagocytosis and bacterial killing by neutrophils. J. Leukoc. Biol. February 1994, 55 (2): 147–52 [2014-12-19]. PMID 8301210. 
  24. ^ Delves等 2006,第6–7页
  25. ^ Sompayrac 2008,第3页
  26. ^ Sompayrac 2008,第2页
  27. ^ Sompayrac 2008,第13–16页
  28. ^ Dale DC, Boxer L, Liles WC; Boxer; Liles. The phagocytes: neutrophils and monocytes. Blood. August 2008, 112 (4): 935–45 [2014-12-19]. doi:10.1182/blood-2007-12-077917. PMID 18684880. 
  29. ^ Dahlgren, C; A Karlsson. Respiratory burst in human neutrophils. Journal of Immunological Methods. December 17, 1999, 232 (1–2): 3–14. doi:10.1016/S0022-1759(99)00146-5. PMID 10618505. 
  30. ^ Shatwell, KP; AW Segal. NADPH oxidase. The international journal of biochemistry and cell biology. 1996, 28 (11): 1191–95. doi:10.1016/S1357-2725(96)00084-2. PMID 9022278. 
  31. ^ Klebanoff SJ. Myeloperoxidase. Proc. Assoc. Am. Physicians. 1999, 111 (5): 383–89. PMID 10519157. 
  32. ^ Meyer KC. Neutrophils, myeloperoxidase, and bronchiectasis in cystic fibrosis: green is not good. J. Lab. Clin. Med. September 2004, 144 (3): 124–26 [2014-12-19]. doi:10.1016/j.lab.2004.05.014. PMID 15478278. 
  33. ^ Hoffbrand,Pettit & Moss(2005),第118页
  34. ^ Delves等 2006,第6–10页
  35. ^ Schroder K, Hertzog PJ, Ravasi T, Hume DA; Hertzog; Ravasi; Hume. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol. February 2004, 75 (2): 163–89 [2014-12-19]. doi:10.1189/jlb.0603252. PMID 14525967. 
  36. ^ Delves等 2006,第188页
  37. ^ 37.0 37.1 Sompayrac 2008,第17页
  38. ^ Lipu HN, Ahmed TA, Ali S, Ahmed D, Waqar MA; Ahmed; Ali; Ahmed; Waqar. Chronic granulomatous disease. J Pak Med Assoc. September 2008, 58 (9): 516–18. PMID 18846805. 
  39. ^ Kaplan J, De Domenico I, Ward DM; De Domenico; Ward. Chediak-Higashi syndrome. Curr. Opin. Hematol. January 2008, 15 (1): 22–29 [2014-12-19]. doi:10.1097/MOH.0b013e3282f2bcce. PMID 18043242. 
  40. ^ Sompayrac 2008,第7页
  41. ^ de Almeida SM, Nogueira MB, Raboni SM, Vidal LR; Nogueira; Raboni; Vidal. Laboratorial diagnosis of lymphocytic meningitis. Braz J Infect Dis. October 2007, 11 (5): 489–95 [2014-12-19]. doi:10.1590/s1413-86702007000500010. PMID 17962876. 
  42. ^ Sompayrac 2008,第22页
  43. ^ Sompayrac 2008,第63页
  44. ^ Apoptosis. Merriam-Webster Online Dictionary. [2014-12-19]. 
  45. ^ Li MO, Sarkisian MR, Mehal WZ, Rakic P, Flavell RA; Sarkisian; Mehal; Rakic; Flavell. Phosphatidylserine receptor is required for clearance of apoptotic cells. Science. November 2003, 302 (5650): 1560–63 [2014-12-19]. doi:10.1126/science.1087621. PMID 14645847.  (Free registration required for online access)
  46. ^ Wang X. Cell corpse engulfment mediated by C. elegans phosphatidylserine receptor through CED-5 and CED-12. Science. 2003, 302 (5650): 1563–1566. doi:10.1126/science.1087641. PMID 14645848.  (Free registration required for online access)
  47. ^ Savill J, Gregory C, Haslett C. Eat me or die. Science. 2003, 302 (5650): 1516–17. doi:10.1126/science.1092533. PMID 14645835. 
  48. ^ Zhou Z, Yu X; Yu. Phagosome maturation during the removal of apoptotic cells: receptors lead the way. Trends Cell Biol. October 2008, 18 (10): 474–85. doi:10.1016/j.tcb.2008.08.002. PMC 3125982. PMID 18774293. 
  49. ^ Sompayrac 2008,第44页
  50. ^ Sompayrac 2008,第4页
  51. ^ Sompayrac 2008,第24–35页
  52. ^ Delves等 2006,第171–184页
  53. ^ Delves等 2006,第456页
  54. ^ Timothy Lee. Antigen Presenting Cells (APC). Immunology for 1st Year Medical Students. Dalhousie University. 2004 [2014-12-19]. (原始内容存档于2008-01-12). 
  55. ^ Delves等 2006,第161页
  56. ^ Sompayrac 2008,第8页
  57. ^ Delves等 2006,第237–242页
  58. ^ Lange C, Dürr M, Doster H, Melms A, Bischof F; Dürr; Doster; Melms; Bischof. Dendritic cell-regulatory T-cell interactions control self-directed immunity. Immunol. Cell Biol. 2007, 85 (8): 575–81. doi:10.1038/sj.icb.7100088. PMID 17592494. 
  59. ^ Steinman, Ralph M. Dendritic Cells and Immune Tolerance. The Rockefeller University. 2004 [2014-12-19]. 
  60. ^ Romagnani, S. Immunological tolerance and autoimmunity. Internal and emergency medicine. 2006, 1 (3): 187–96. doi:10.1007/BF02934736. PMID 17120464. 
  61. ^ Sompayrac 2008,第16–17页
  62. ^ Sompayrac 2008,第18–19页
  63. ^ Delves等 2006,第6页
  64. ^ Zen K, Parkos CA; Parkos. Leukocyte-epithelial interactions. Curr. Opin. Cell Biol. October 2003, 15 (5): 557–64 [2014-12-19]. doi:10.1016/S0955-0674(03)00103-0. PMID 14519390. 
  65. ^ Sompayrac 2008,第79页
  66. ^ Hoffbrand,Pettit & Moss(2005),第117页
  67. ^ Delves等 2006,第1–6页
  68. ^ Sompayrac 2008,第45页
  69. ^ Takahashi K, Naito M, Takeya M; Naito; Takeya. Development and heterogeneity of macrophages and their related cells through their differentiation pathways. Pathol. Int. July 1996, 46 (7): 473–85. doi:10.1111/j.1440-1827.1996.tb03641.x. PMID 8870002. 
  70. ^ Krombach F, Münzing S, Allmeling AM, Gerlach JT, Behr J, Dörger M; Münzing; Allmeling; Gerlach; Behr; Dörger. Cell size of alveolar macrophages: an interspecies comparison. Environ. Health Perspect. September 1997,. 105 Suppl 5 (Suppl 5): 1261–63. doi:10.2307/3433544. JSTOR 3433544. PMC 1470168. PMID 9400735. 
  71. ^ 71.0 71.1 71.2 71.3 71.4 Delves等 2006,第31–36页
  72. ^ Ernst & Stendahl 2006,第8页
  73. ^ Delves等 2006,第156页
  74. ^ Delves等 2006,第187页
  75. ^ Stvrtinová, Viera; Ján Jakubovský and Ivan Hulín. Neutrophils, central cells in acute inflammation. Inflammation and Fever from Pathophysiology: Principles of Disease. Computing Centre, Slovak Academy of Sciences: Academic Electronic Press. 1995 [2014-12-19]. ISBN 80-967366-1-2. 
  76. ^ Delves等 2006,第4页
  77. ^ 77.0 77.1 Sompayrac 2008,第18页
  78. ^ Linderkamp O, Ruef P, Brenner B, Gulbins E, Lang F; Ruef; Brenner; Gulbins; Lang. Passive deformability of mature, immature, and active neutrophils in healthy and septicemic neonates. Pediatr. Res. December 1998, 44 (6): 946–50 [2014-12-19]. doi:10.1203/00006450-199812000-00021. PMID 9853933. 
  79. ^ Paoletti,Notario & Ricevuti(1997),第62页
  80. ^ Soehnlein O, Kenne E, Rotzius P, Eriksson EE, Lindbom L; Kenne; Rotzius; Eriksson; Lindbom. Neutrophil secretion products regulate anti-bacterial activity in monocytes and macrophages. Clin. Exp. Immunol. January 2008, 151 (1): 139–45 [2014-12-19]. doi:10.1111/j.1365-2249.2007.03532.x. PMC 2276935. PMID 17991288. 
  81. ^ Soehnlein O, Kai-Larsen Y, Frithiof R, 等. Neutrophil primary granule proteins HBP and HNP1-3 boost bacterial phagocytosis by human and murine macrophages. J. Clin. Invest. October 2008, 118 (10): 3491–502. doi:10.1172/JCI35740. PMC 2532980. PMID 18787642. 
  82. ^ Steinman RM, Cohn ZA; Cohn. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 1973, 137 (5): 1142–62. doi:10.1084/jem.137.5.1142. PMC 2139237. PMID 4573839. 
  83. ^ 83.0 83.1 Steinman, Ralph. Dendritic Cells. The Rockefeller University. [2014-12-19]. 
  84. ^ Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S; Valladeau; Zitvogel; Théry; Amigorena. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 2002, 20: 621–67 [2014-12-19]. doi:10.1146/annurev.immunol.20.100301.064828. PMID 11861614. 
  85. ^ Hoffbrand,Pettit & Moss(2005),第134页
  86. ^ Sallusto F, Lanzavecchia A; Lanzavecchia. The instructive role of dendritic cells on T-cell responses. Arthritis Res. 2002,. 4 Suppl 3 (Suppl 3): S127–32. doi:10.1186/ar567. PMC 3240143. PMID 12110131. 
  87. ^ Sompayrac 2008,第42–46页
  88. ^ Novak N, Bieber T, Peng WM; Bieber; Peng. The immunoglobulin E-Toll-like receptor network. International Archives of Allergy and Immunology. 2010, 151 (1): 1–7 [2014-12-19]. doi:10.1159/000232565. PMID 19672091. 
  89. ^ Kalesnikoff J, Galli SJ; Galli. New developments in mast cell biology. Nature Immunology. November 2008, 9 (11): 1215–23. doi:10.1038/ni.f.216. PMC 2856637. PMID 18936782. 
  90. ^ 90.0 90.1 Malaviya R, Abraham SN; Abraham. Mast cell modulation of immune responses to bacteria. Immunol. Rev. February 2001, 179: 16–24 [2014-12-19]. doi:10.1034/j.1600-065X.2001.790102.x. PMID 11292019. 
  91. ^ Connell I, Agace W, Klemm P, Schembri M, Mărild S, Svanborg C; Agace; Klemm; Schembri; Mărild; Svanborg. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc. Natl. Acad. Sci. U.S.A. September 1996, 93 (18): 9827–32 [2014-12-19]. doi:10.1073/pnas.93.18.9827. PMC 38514. PMID 8790416. 
  92. ^ Malaviya R, Twesten NJ, Ross EA, Abraham SN, Pfeifer JD; Twesten; Ross; Abraham; Pfeifer. Mast cells process bacterial Ags through a phagocytic route for class I MHC presentation to T cells. J. Immunol. February 1996, 156 (4): 1490–96 [2014-12-19]. PMID 8568252. 
  93. ^ Taylor ML, Metcalfe DD; Metcalfe. Mast cells in allergy and host defense. Allergy Asthma Proc. 2001, 22 (3): 115–19 [2014-12-19]. doi:10.2500/108854101778148764. PMID 11424870. 
  94. ^ 94.0 94.1 Paoletti,Notario & Ricevuti(1997),第427页
  95. ^ Birge RB, Ucker DS; Ucker. Innate apoptotic immunity: the calming touch of death. Cell Death Differ. July 2008, 15 (7): 1096–1102. doi:10.1038/cdd.2008.58. PMID 18451871. 
  96. ^ Couzinet S, Cejas E, Schittny J, Deplazes P, Weber R, Zimmerli S; Cejas; Schittny; Deplazes; Weber; Zimmerli. Phagocytic uptake of Encephalitozoon cuniculi by nonprofessional phagocytes. Infect. Immun. December 2000, 68 (12): 6939–45 [2014-12-19]. doi:10.1128/IAI.68.12.6939-6945.2000. PMC 97802. PMID 11083817. 
  97. ^ Segal G, Lee W, Arora PD, McKee M, Downey G, McCulloch CA; Lee; Arora; McKee; Downey; McCulloch. Involvement of actin filaments and integrins in the binding step in collagen phagocytosis by human fibroblasts. Journal of Cell Science. January 2001, 114 (Pt 1): 119–129. PMID 11112696. 
  98. ^ Rabinovitch M. Professional and non-professional phagocytes: an introduction. Trends Cell Biol. March 1995, 5 (3): 85–87 [2014-12-19]. doi:10.1016/S0962-8924(00)88955-2. PMID 14732160. 
  99. ^ 99.0 99.1 99.2 99.3 99.4 Todar, Kenneth. Mechanisms of Bacterial Pathogenicity: Bacterial Defense Against Phagocytes. 2008. [2014-12-19]. 
  100. ^ Alexander J, Satoskar AR, Russell DG; Satoskar; Russell. Leishmania species: models of intracellular parasitism. J. Cell. Sci. September 1999, 112 (18): 2993–3002 [2014-12-19]. PMID 10462516. 
  101. ^ Celli J, Finlay BB; Finlay. Bacterial avoidance of phagocytosis. Trends Microbiol. May 2002, 10 (5): 232–37. doi:10.1016/S0966-842X(02)02343-0. PMID 11973157. 
  102. ^ Valenick LV, Hsia HC, Schwarzbauer JE; Hsia; Schwarzbauer. Fibronectin fragmentation promotes alpha4beta1 integrin-mediated contraction of a fibrin-fibronectin provisional matrix. Experimental Cell Research. September 2005, 309 (1): 48–55. doi:10.1016/j.yexcr.2005.05.024. PMID 15992798. 
  103. ^ Burns SM, Hull SI; Hull. Loss of resistance to ingestion and phagocytic killing by O(-) and K(-) mutants of a uropathogenic Escherichia coli O75:K5 strain. Infect. Immun. August 1999, 67 (8): 3757–62 [2014-12-19]. PMC 96650. PMID 10417134. 
  104. ^ Vuong C, Kocianova S, Voyich JM, 等. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J. Biol. Chem. December 2004, 279 (52): 54881–86 [2014-12-19]. doi:10.1074/jbc.M411374200. PMID 15501828. 
  105. ^ Melin M, Jarva H, Siira L, Meri S, Käyhty H, Väkeväinen M; Jarva; Siira; Meri; Käyhty; Väkeväinen. Streptococcus pneumoniae capsular serotype 19F is more resistant to C3 deposition and less sensitive to opsonophagocytosis than serotype 6B. Infect. Immun. February 2009, 77 (2): 676–84 [2014-12-19]. doi:10.1128/IAI.01186-08. PMC 2632042. PMID 19047408. 
  106. ^ 106.0 106.1 Foster TJ. Immune evasion by staphylococci. Nat. Rev. Microbiol. December 2005, 3 (12): 948–58. doi:10.1038/nrmicro1289. PMID 16322743. 
  107. ^ Sansonetti P. Phagocytosis of bacterial pathogens: implications in the host response. Semin. Immunol. December 2001, 13 (6): 381–90. doi:10.1006/smim.2001.0335. PMID 11708894. 
  108. ^ Dersch P, Isberg RR; Isberg. A region of the Yersinia pseudotuberculosis invasin protein enhances integrin-mediated uptake into mammalian cells and promotes self-association. EMBO J. March 1999, 18 (5): 1199–1213. doi:10.1093/emboj/18.5.1199. PMC 1171211. PMID 10064587. 
  109. ^ Antoine JC, Prina E, Lang T, Courret N; Prina; Lang; Courret. The biogenesis and properties of the parasitophorous vacuoles that harbour Leishmania in murine macrophages. Trends Microbiol. October 1998, 6 (10): 392–401. doi:10.1016/S0966-842X(98)01324-9. PMID 9807783. 
  110. ^ Das D, Saha SS, Bishayi B; Saha; Bishayi. Intracellular survival of Staphylococcus aureus: correlating production of catalase and superoxide dismutase with levels of inflammatory cytokines. Inflamm. Res. July 2008, 57 (7): 340–49. doi:10.1007/s00011-007-7206-z. PMID 18607538. 
  111. ^ Hara H, Kawamura I, Nomura T, Tominaga T, Tsuchiya K, Mitsuyama M; Kawamura; Nomura; Tominaga; Tsuchiya; Mitsuyama. Cytolysin-dependent escape of the bacterium from the phagosome is required but not sufficient for induction of the Th1 immune response against Listeria monocytogenes infection: distinct role of Listeriolysin O determined by cytolysin gene replacement. Infect. Immun. August 2007, 75 (8): 3791–3801 [2014-12-19]. doi:10.1128/IAI.01779-06. PMC 1951982. PMID 17517863. 
  112. ^ Datta V, Myskowski SM, Kwinn LA, Chiem DN, Varki N, Kansal RG, Kotb M, Nizet V; Myskowski; Kwinn; Chiem; Varki; Kansal; Kotb; Nizet. Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Mol. Microbiol. May 2005, 56 (3): 681–95. doi:10.1111/j.1365-2958.2005.04583.x. PMID 15819624. 
  113. ^ Iwatsuki K, Yamasaki O, Morizane S, Oono T; Yamasaki; Morizane; Oono. Staphylococcal cutaneous infections: invasion, evasion and aggression. J. Dermatol. Sci. June 2006, 42 (3): 203–14. doi:10.1016/j.jdermsci.2006.03.011. PMID 16679003. 
  114. ^ Denkers EY, Butcher BA; Butcher. Sabotage and exploitation in macrophages parasitized by intracellular protozoans. Trends Parasitol. January 2005, 21 (1): 35–41 [2014-12-19]. doi:10.1016/j.pt.2004.10.004. PMID 15639739. 
  115. ^ Gregory DJ, Olivier M; Olivier. Subversion of host cell signalling by the protozoan parasite Leishmania. Parasitology. 2005,. 130 Suppl: S27–35 [2014-12-19]. doi:10.1017/S0031182005008139. PMID 16281989. 
  116. ^ Paoletti pp. 426–30
  117. ^ Heinzelmann M, Mercer-Jones MA, Passmore JC; Mercer-Jones; Passmore. Neutrophils and renal failure. Am. J. Kidney Dis. August 1999, 34 (2): 384–99. doi:10.1016/S0272-6386(99)70375-6. PMID 10430993. 
  118. ^ Lee WL, Downey GP; Downey. Neutrophil activation and acute lung injury. Curr Opin Crit Care. February 2001, 7 (1): 1–7. doi:10.1097/00075198-200102000-00001. PMID 11373504. 
  119. ^ 119.0 119.1 Moraes TJ, Zurawska JH, Downey GP; Zurawska; Downey. Neutrophil granule contents in the pathogenesis of lung injury. Curr. Opin. Hematol. January 2006, 13 (1): 21–27. doi:10.1097/01.moh.0000190113.31027.d5. PMID 16319683. 
  120. ^ Abraham E. Neutrophils and acute lung injury. Crit. Care Med. April 2003, 31 (4 Suppl): S195–99. doi:10.1097/01.CCM.0000057843.47705.E8. PMID 12682440. 
  121. ^ Ricevuti G. Host tissue damage by phagocytes. Ann. N. Y. Acad. Sci. December 1997, 832: 426–48 [2014-12-19]. doi:10.1111/j.1749-6632.1997.tb46269.x. PMID 9704069. 
  122. ^ Charley B, Riffault S, Van Reeth K; Riffault; Van Reeth. Porcine innate and adaptative immune responses to influenza and coronavirus infections. Ann. N. Y. Acad. Sci. October 2006, 1081: 130–36 [2014-12-19]. doi:10.1196/annals.1373.014. PMID 17135502. 
  123. ^ Sompayrac 2008,第1页
  124. ^ 124.0 124.1 Cosson P, Soldati T; Soldati. Eat, kill or die: when amoeba meets bacteria. Curr. Opin. Microbiol. June 2008, 11 (3): 271–76 [2014-12-19]. doi:10.1016/j.mib.2008.05.005. PMID 18550419. 
  125. ^ Bozzaro S, Bucci C, Steinert M; Bucci; Steinert. Phagocytosis and host-pathogen interactions in Dictyostelium with a look at macrophages. Int Rev Cell Mol Biol. International Review of Cell and Molecular Biology. 2008, 271: 253–300 [2014-12-19]. doi:10.1016/S1937-6448(08)01206-9. ISBN 9780123747280. PMID 19081545. 
  126. ^ Chen G, Zhuchenko O, Kuspa A; Zhuchenko; Kuspa. Immune-like phagocyte activity in the social amoeba. Science. August 2007, 317 (5838): 678–81 [2014-12-19]. doi:10.1126/science.1143991. PMC 3291017. PMID 17673666. 
  127. ^ Delves等 2006,第251–252页
  128. ^ Hanington PC, Tam J, Katzenback BA, Hitchen SJ, Barreda DR, Belosevic M; Tam; Katzenback; Hitchen; Barreda; Belosevic. Development of macrophages of cyprinid fish. Dev. Comp. Immunol. April 2009, 33 (4): 411–29 [2014-12-19]. doi:10.1016/j.dci.2008.11.004. PMID 19063916. 
Bibliography
  • Delves, P. J.; Martin, S. J.; Burton, D. R.; Roit, I. M. Roitt's Essential Immunology 11th. Malden, MA: Blackwell Publishing. 2006. ISBN 1-4051-3603-0. 
  • Ernst, J. D.; Stendahl, O. (编). Phagocytosis of Bacteria and Bacterial Pathogenicity. New York: Cambridge University Press. 2006. ISBN 0-521-84569-6.  Website
  • Hoffbrand, A. V.; Pettit, J. E.; Moss, P. A. H. Essential Haematology 4th. London: Blackwell Science. 2005. ISBN 0-632-05153-1. 
  • Paoletti, R.; Notario, A.; Ricevuti, G. (编). Phagocytes: Biology, Physiology, Pathology, and Pharmacotherapeutics. New York: The New York Academy of Sciences. 1997. ISBN 1-57331-102-2. 
  • Robinson, J. P.; Babcock, G. F. (编). Phagocyte Function — A guide for research and clinical evaluation. New York: Wiley–Liss. 1998. ISBN 0-471-12364-1. 
  • Sompayrac, L. How the Immune System Works 3rd. Malden, MA: Blackwell Publishing. 2008. ISBN 978-1-4051-6221-0. 

外部連結[编辑]

Template:Blood