隱藏式馬可夫模型
此條目需要補充更多來源。 (2015年7月3日) |
機器學習與資料探勘 |
---|
隱藏式馬可夫模型(英語:Hidden Markov Model;縮寫:HMM),或稱作隱性馬可夫模型,是統計模型,用來描述一個含有隱含未知參數的馬可夫過程。其難點是從可觀察的參數中確定該過程的隱含參數。然後利用這些參數來作進一步的分析,例如圖型識別。
在正常的馬可夫模型中,狀態對於觀察者來說是直接可見的。這樣狀態的轉換概率便是全部的參數。而在隱藏式馬可夫模型中,狀態並不是直接可見的,但受狀態影響的某些變數則是可見的。每一個狀態在可能輸出的符號上都有一概率分佈。因此輸出符號的序列能夠透露出狀態序列的一些資訊。
隱藏式馬可夫模型在熱力學、統計力學、物理學、化學、經濟學、金融學、訊號處理、資訊論、圖型識別(如語音辨識、[1]手寫辨識、手勢辨識、[2]詞性標記、樂譜跟隨[3])、局部放電[4]及生物資訊科學等領域都有應用。[5][6]
定義
[編輯]令、為離散時間隨機過程, 。則是隱藏式馬可夫模型的條件是:
- 是馬可夫過程,其行為不可直接觀測(「隱」);
- ,且對每個博雷爾集。
令、為連續時間隨機過程。則是隱藏式馬可夫模型的條件是:
- 是馬可夫過程,其行為不可直接觀測(「隱」);
- ,
- 、每個博雷爾集且每族博雷爾集
術語
[編輯]過程狀態(或)稱作隱狀態,(或)稱作條件概率或輸出概率。
馬可夫模型的演化
[編輯]下邊的圖示強調了HMM的狀態變遷。有時,明確的表示出模型的演化也是有用的,我們用 x(t1) 與 x(t2) 來表達不同時刻 t1 和 t2 的狀態。
圖中箭頭方向則表示不同資訊間的關聯性,因此可以得知和有關,而又和有關。
而每個只和有關,其中我們稱為隱藏變數(hidden variable),是觀察者無法得知的變數。
隱性馬可夫模型常被用來解決有未知條件的數學問題。
假設隱藏狀態的值對應到的空間有個元素,也就是說在時間時,隱藏狀態會有種可能。
同樣的,也會有種可能的值,所以從到間的關係會有種可能。
除了間的關係外,每組間也有對應的關係。
若觀察到的有種可能的值,則從到的輸出模型複雜度為。如果是一個維的向量,則從到的輸出模型複雜度為。
在這個圖中,每一個時間塊(x(t), y(t))都可以向前或向後延伸。通常,時間的起點被設置為t=0 或 t=1.
馬可夫模型的概率
[編輯]假設觀察到的結果為
隱藏條件為
長度為,則馬可夫模型的概率可以表達為:
由這個概率模型來看,可以得知馬可夫模型將該時間點前後的資訊都納入考量。
使用隱藏式馬可夫模型
[編輯]HMM有三個典型(canonical)問題:
- 預測(filter):已知模型參數和某一特定輸出序列,求最後時刻各個隱含狀態的概率分佈,即求 。通常使用前向演算法解決。
- 平滑(smoothing):已知模型參數和某一特定輸出序列,求中間時刻各個隱含狀態的概率分佈,即求 。通常使用前向-後向演算法解決。
- 解碼(most likely explanation):已知模型參數,尋找最可能的能產生某一特定輸出序列的隱含狀態的序列,即求 。通常使用Viterbi演算法解決。
此外,已知輸出序列,尋找最可能的狀態轉移以及輸出概率.通常使用Baum-Welch演算法以及Viterbi algorithm解決。另外,最近的一些方法使用聯結樹演算法來解決這三個問題。 [來源請求]
具體實例
[編輯]假設你有一個住得很遠的朋友,他每天跟你打電話告訴你他那天做了什麼。你的朋友僅僅對三種活動感興趣:公園散步,購物以及清理房間。他選擇做什麼事情只憑天氣。你對於他所住的地方的天氣情況並不了解,但是你知道總的趨勢。在他告訴你每天所做的事情基礎上,你想要猜測他所在地的天氣情況。
你認為天氣的執行就像一個馬可夫鏈。其有兩個狀態「雨」和「晴」,但是你無法直接觀察它們,也就是說,它們對於你是隱藏的。每天,你的朋友有一定的概率進行下列活動:「散步」、「購物」、「清理」。因為你朋友告訴你他的活動,所以這些活動就是你的觀察數據。這整個系統就是一個隱藏式馬可夫模型(HMM)。
你知道這個地區的總的天氣趨勢,並且平時知道你朋友會做的事情。也就是說這個隱藏式馬可夫模型的參數是已知的。你可以用程式語言(Python)寫下來:
states = ('Rainy', 'Sunny')
observations = ('walk', 'shop', 'clean')
start_probability = {'Rainy': 0.6, 'Sunny': 0.4}
transition_probability = {
'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},
'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6},
}
emission_probability = {
'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},
'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1},
}
在這些代碼中,start_probability
代表了你對於你朋友第一次給你打電話時的天氣情況的不確定性(你知道的只是那個地方平均起來下雨多些)。在這裏,這個特定的概率分佈並非平衡的,平衡概率應該接近(在給定變遷概率的情況下){'Rainy': 0.571, 'Sunny': 0.429}
。
transition_probability
表示基於馬可夫鏈模型的天氣變遷,在這個例子中,如果今天下雨,那麼明天天晴的概率只有30%。代碼emission_probability
表示了你朋友每天做某件事的概率。如果下雨,有50% 的概率他在清理房間;如果天晴,則有60%的概率他在外頭散步。
這個例子在維特比演算法頁上有更多的解釋。
結構架構
[編輯]下圖展示了實例化HMM的一般結構。橢圓形代表隨機變量,可採用多個數值中的任意一種。隨機變量是t時刻的隱狀態(圖示模型中);隨機變量y(t)是t時刻的觀測值();箭頭表示條件依賴關係。
圖中可清楚看出,給定隱變數在時間t的條件概率分佈只取決於隱變數的值,之前的則沒有影響,這就是所謂馬可夫性質。觀測變數同理,只取決於隱變數的值。
在本文所述標準HMM中,隱變數的狀態空間是離散的,而觀測值本身則可以離散(一般來自分類分佈)也可以連續(一般來自正態分佈)。HMM參數有兩類:轉移概率與輸出概率,前者控制時刻的隱狀態下,如何選擇t時刻的隱狀態。
隱狀態空間一般假設包含N個可能值,以分類分佈為模型。這意味着,對隱變數在t時刻可能所處的N種狀態中的每種,都有到時刻可能的N種狀態的轉移概率,共有個轉移概率。注意從任意給定狀態轉移的轉移概率之和須為1。於是,轉移概率構成了N階方陣,稱作馬可夫矩陣。由於任何轉移概率都可在已知其他概率的情形下確定,因此共有個轉移參數。
此外,對N種可能狀態中的每種,都有一組輸出概率,在給定隱狀態下控制着觀測變數的分佈。這組概率的大小取決於觀測變數的性質,例如,若觀測變數是離散的,有M種值、遵循分類分佈,則有個獨立參數,所有隱狀態下共有個輸出概率參數。若觀測向量是M維向量,遵循任意多元正態分佈,則將有M個參數控制均值,個參數控制協方差矩陣,共有個輸出參數。(這時,除非M很小,否則限制觀測向量各元素間協方差的性質可能更有用,例如假設各元素相互獨立,或假設除固定多相鄰元素外,其他元素相互獨立。)
學習
[編輯]HMM的參數學習任務是指在給定輸出序列或一組序列的情形下,找到一組最佳的狀態轉換和轉移概率。任務通常是根據一組輸出序列,得到HMM參數的最大似然估計值。目前還沒有精確解這問題的可行演算法,可用鮑姆-韋爾奇演算法或Baldi–Chauvin演算法高效地推導出局部最大似然。鮑姆-韋爾奇演算法是最大期望值演算法的特例。
若將HMM用於時間序列預測,則更複雜的貝葉斯推理方法(如馬可夫鏈蒙地卡羅採樣法,MCMC採樣法)已被證明在準確性和穩定性上都優於尋找單一的最大似然模型。[7]由於MCMC帶來了巨大的計算負擔,在計算可延伸性也很重要時,也可採用貝葉斯推理的變分近似方法,如[8]。事實上,近似變分推理的計算效率可與期望值最大化相比,而精確度僅略遜於精確的MCMC型貝葉斯推理。
隱藏式馬可夫模型的應用
[編輯]- 語音辨識、中文斷詞/分詞或光學字元辨識
- 機器翻譯
- 生物資訊科學 和 基因組學
- 基因組序列中蛋白質編碼區域的預測
- 對於相互關聯的DNA或蛋白質族的建模
- 從基本結構中預測第二結構元素
- 通訊中的譯碼過程
- 地圖匹配演算法
- 還有更多...
隱藏式馬可夫模型在語音處理上的應用
[編輯]因為馬可夫模型有下列特色:
- 時間點的隱藏條件和時間點的隱藏條件有關。因為人類語音擁有前後的關聯,可以從語義與發音兩點來看:
- 單字的發音擁有前後關聯:例如"They are"常常發音成"They're",或是"Did you"會因為"you"的發音受"did"的影響,常常發音成"did ju",而且語音辨識中用句子的發音來進行分析,因此需要考慮到每個音節的前後關係,才能夠有較高的準確率。
- 句子中的單字有前後關係:從英文文法來看,主詞後面常常接助動詞或是動詞,動詞後面接的會是受詞或介係詞。而或是從單一單字的使用方法來看,對應的動詞會有固定使用的介係詞或對應名詞。因此分析語音頻息時需要為了提升每個單字的準確率,也需要分析前後的單字。
- 馬可夫模型將輸入訊息視為一單位一單位,接着進行分析,與人類語音模型的特性相似。語音系統辨識的單位為一個單位時間內的聲音。利用梅爾倒頻譜等語音處理方法,轉換成一個發音單位,為離散型的資訊。而馬可夫模型使用的隱藏條件也是一個個被封包的,因此使用馬可夫模型來處理聲音頻號比較合適。
歷史
[編輯]隱藏式馬可夫模型最初是在20世紀60年代後半期Leonard E. Baum和其它一些作者在一系列的統計學論文中描述的。HMM最初的應用之一是開始於20世紀70年代中期的語音辨識。[9]
在1980年代後半期,HMM開始應用到生物序列尤其是DNA的分析中。此後,在生物資訊科學領域HMM逐漸成為一項不可或缺的技術。[10]
參見
[編輯]註解
[編輯]- ^ Google Scholar. [2023-10-27]. (原始內容存檔於2022-09-30).
- ^ Thad Starner, Alex Pentland. Real-Time American Sign Language Visual Recognition From Video Using Hidden Markov Models (頁面存檔備份,存於互聯網檔案館). Master's Thesis, MIT, Feb 1995, Program in Media Arts
- ^ B. Pardo and W. Birmingham. Modeling Form for On-line Following of Musical Performances 互聯網檔案館的存檔,存檔日期2012-02-06.. AAAI-05 Proc., July 2005.
- ^ Satish L, Gururaj BI (April 2003). "Use of hidden Markov models for partial discharge pattern classification (頁面存檔備份,存於互聯網檔案館)". IEEE Transactions on Dielectrics and Electrical Insulation.
- ^ Li, N; Stephens, M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data.. Genetics. December 2003, 165 (4): 2213–33. PMC 1462870 . PMID 14704198. doi:10.1093/genetics/165.4.2213.
- ^ Ernst, Jason; Kellis, Manolis. ChromHMM: automating chromatin-state discovery and characterization. Nature Methods. March 2012, 9 (3): 215–216. PMC 3577932 . PMID 22373907. doi:10.1038/nmeth.1906.
- ^ Sipos, I. Róbert. Parallel stratified MCMC sampling of AR-HMMs for stochastic time series prediction. In: Proceedings, 4th Stochastic Modeling Techniques and Data Analysis International Conference with Demographics Workshop (SMTDA2016), pp. 295-306. Valletta, 2016. PDF
- ^ Chatzis, Sotirios P.; Kosmopoulos, Dimitrios I. A variational Bayesian methodology for hidden Markov models utilizing Student's-t mixtures (PDF). Pattern Recognition. 2011, 44 (2): 295–306 [2018-03-11]. Bibcode:2011PatRe..44..295C. CiteSeerX 10.1.1.629.6275 . doi:10.1016/j.patcog.2010.09.001. (原始內容 (PDF)存檔於2011-04-01).
- ^ Rabiner, p. 258
- ^ Durbin
參考書目
[編輯]- Lawrence R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 77 (2), p. 257–286, February 1989.
- Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme Mitchison. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, 1999. ISBN 0521629713.
- Kristie Seymore, Andrew McCallum, and Roni Rosenfeld. Learning Hidden Markov Model Structure for Information Extraction. AAAI 99 Workshop on Machine Learning for Information Extraction, 1999. (also at CiteSeer: [1] (頁面存檔備份,存於互聯網檔案館))
- http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html (頁面存檔備份,存於互聯網檔案館)
- J. Li (頁面存檔備份,存於互聯網檔案館), A. Najmi, R. M. Gray, Image classification by a two dimensional hidden Markov model, IEEE Transactions on Signal Processing, 48(2):517-33, February 2000.
- 隱藏式馬可夫模型(課件), 徐從富,浙江大學人工智能研究所 [2]
外部連結
[編輯]- Hidden Markov Model (HMM) Toolbox for Matlab (by Kevin Murphy)
- Hidden Markov Model Toolkit (HTK) (頁面存檔備份,存於互聯網檔案館) (a portable toolkit for building and manipulating hidden Markov models)
- Hidden Markov Models (頁面存檔備份,存於互聯網檔案館) (an exposition using basic mathematics)
- GHMM Library (頁面存檔備份,存於互聯網檔案館) (home page of the GHMM Library project)
- Jahmm Java Library (Java library and associated graphical application)
- A step-by-step tutorial on HMMs (頁面存檔備份,存於互聯網檔案館) (University of Leeds)
- Software for Markov Models and Processes (TreeAge Software)