体积模量

维基百科,自由的百科全书
跳转至: 导航搜索



压缩示意图

体积模量K)也稱為不可壓縮量,是材料对於表面四周压强产生形变程度的度量。它被定义为产生单位相对体积收缩所需的压强。它在SI单位制中的基本单位是帕斯卡

定义[编辑]

体积模量可由下式定义:

K=-V\frac{\partial p}{\partial V}

其中p压强V体积\frac{\partial p}{\partial V} 是压强对体积的偏导数。体积模量的倒数即为一种物质的压缩率

还有其他一些描述材料对应变的反应的物理量。比如剪切模量描述了材料对剪切应变的反应;而杨氏模量则描述了材料对线性应变的反应。对流体而言,只有体积模量具有意义。而对于不具有各向同性的固体材料(如等),上述三种弹性模量则不足以描述这些材料对应变的反应。

热力学关系[编辑]

严格的说,体积模量是一个热力学量。说明在何种温度变化条件下对体积模量是有必要的。等温体积模量(K_T)以及定熵(绝热)体积模量(K_S)或其他形式都是可能出现的。实践中上述区分只是用于对气体的讨论中。

对于气体,绝热体积模量 K_S 大约由下式给出:


K_S=\gamma\, p

而等温体积模量 K_T 大约由下式给出:


K_T=p\,

其中

\gamma绝热指数
p压强

对于流体,体积模量和密度决定了在该种材料中的声速。此种关系由下式说明:

c=\sqrt{\frac{K}{\rho}}.

固体可以传递横波,故要决定固体中的声速还需要其他的弹性模量,如剪切模量

部分材料的体积模量[编辑]

部分材料的体积模量
材料 体积模量(Pa)
玻璃 3.7×1010[1]
16×1010[1]
水银 2.5×1010[1]
乙醇 0.09×1010[1]
金刚石 442×109[2]
2.2×109[3]
空气 1.42×105 绝热体积模量
空气 1.01×105 等温体积模量
固态 5×107 (估计值)[4]

注释与参考[编辑]

  1. ^ 1.0 1.1 1.2 1.3 钟锡华、周岳明. 《力学》. 北京大学出版社. 2000年12月: 204. ISBN 978-7-301-04591-6. 
  2. ^ Phys. Rev. B 32, 7988 - 7991 (1985), Calculation of bulk moduli of diamond and zinc-blende solids
  3. ^ http://hyperphysics.phy-astr.gsu.edu/hbase/permot3.html
  4. ^ http://www3.interscience.wiley.com/cgi-bin/abstract/105558571/ABSTRACT
换算公式
均质各向同性线弹性材料具有独特的弹性性质,因此知道弹性模量中的任意两种,就可由下列换算公式求出其他所有的弹性模量。
(\lambda,\,G) (E,\,G) (K,\,\lambda) (K,\,G) (\lambda,\,\nu) (G,\,\nu) (E,\,\nu) (K,\, \nu) (K,\,E) (M,\,G)
K=\, \lambda+ \tfrac{2G}{3} \tfrac{EG}{3(3G-E)} \tfrac{\lambda(1+\nu)}{3\nu} \tfrac{2G(1+\nu)}{3(1-2\nu)} \tfrac{E}{3(1-2\nu)} M - \tfrac{4G}{3}
E=\, \tfrac{G(3\lambda + 2G)}{\lambda + G} \tfrac{9K(K-\lambda)}{3K-\lambda} \tfrac{9KG}{3K+G} \tfrac{\lambda(1+\nu)(1-2\nu)}{\nu} 2G(1+\nu)\, 3K(1-2\nu)\, \tfrac{G(3M-4G)}{M-G}
\lambda=\, \tfrac{G(E-2G)}{3G-E} K-\tfrac{2G}{3} \tfrac{2 G \nu}{1-2\nu} \tfrac{E\nu}{(1+\nu)(1-2\nu)} \tfrac{3K\nu}{1+\nu} \tfrac{3K(3K-E)}{9K-E} M - 2G\,
G=\, \tfrac{3(K-\lambda)}{2} \tfrac{\lambda(1-2\nu)}{2\nu} \tfrac{E}{2(1+\nu)} \tfrac{3K(1-2\nu)}{2(1+\nu)} \tfrac{3KE}{9K-E}
\nu=\, \tfrac{\lambda}{2(\lambda + G)} \tfrac{E}{2G}-1 \tfrac{\lambda}{3K-\lambda} \tfrac{3K-2G}{2(3K+G)} \tfrac{3K-E}{6K} \tfrac{M - 2G}{2M - 2G}
M=\, \lambda+2G\, \tfrac{G(4G-E)}{3G-E} 3K-2\lambda\, K+\tfrac{4G}{3} \tfrac{\lambda(1-\nu)}{\nu} \tfrac{2G(1-\nu)}{1-2\nu} \tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)} \tfrac{3K(1-\nu)}{1+\nu} \tfrac{3K(3K+E)}{9K-E}