莱斯分布
外观
维基百科,自由的百科全书
概率密度函数 Rice probability density functions for various v with σ=1. Rice probability density functions for various v with σ=0.25. | |||
累积分布函数 Rice cumulative density functions for various v with σ=1. Rice cumulative density functions for various v with σ=0.25. | |||
参数 |
| ||
---|---|---|---|
值域 | |||
概率密度函数 | |||
期望值 | |||
方差 | |||
偏度 | (complicated) | ||
峰度 | (complicated) |
在概率论与数理统计领域,莱斯分布(Rice distribution或Rician distribution)是一种连续概率分布,以美国科学家斯蒂芬·莱斯(英语:Stephen O. Rice)的名字命名,其概率密度函数为:
其中是修正的第一类零阶贝塞尔函数(Bessel function)。当时,莱斯分布退化为瑞利分布。
矩
[编辑]极限情况
[编辑]For large values of the argument, the Laguerre polynomial becomes (See Abramowitz and Stegun §13.5.1 (页面存档备份,存于互联网档案馆))
It is seen that as becomes large or becomes small the mean becomes and the variance becomes
相关条目
[编辑]- Stephen O. Rice (1907-1986)
- 瑞利分布
- 莱斯衰落
外部链接
[编辑]- Yongjun Xie and Yuguang Fang, "A General Statistical Channel Model for Mobile Satellite Systems" IEEE Transactions on Vehicular Technology, VOL. 49, NO. 3, MAY 2000. http://www.fang.ece.ufl.edu/mypaper/tvt00_xie.pdf (页面存档备份,存于互联网档案馆)
隐藏分类: