萊斯分佈
外觀
維基百科,自由的百科全書
機率密度函數 Rice probability density functions for various v with σ=1. Rice probability density functions for various v with σ=0.25. | |||
累積分佈函數 Rice cumulative density functions for various v with σ=1. Rice cumulative density functions for various v with σ=0.25. | |||
母數 |
| ||
---|---|---|---|
值域 | |||
機率密度函數 | |||
期望值 | |||
變異數 | |||
偏度 | (complicated) | ||
峰度 | (complicated) |
在機率論與數理統計領域,萊斯分佈(Rice distribution或Rician distribution)是一種連續機率分佈,以美國科學家史蒂芬·萊斯(英語:Stephen O. Rice)的名字命名,其機率密度函數為:
其中是修正的第一類零階貝索函數(Bessel function)。當時,萊斯分佈退化為瑞利分佈。
矩
[編輯]極限情況
[編輯]For large values of the argument, the Laguerre polynomial becomes (See Abramowitz and Stegun §13.5.1 (頁面存檔備份,存於網際網路檔案館))
It is seen that as becomes large or becomes small the mean becomes and the variance becomes
相關條目
[編輯]- Stephen O. Rice (1907-1986)
- 瑞利分佈
- 萊斯衰落
外部連結
[編輯]- Yongjun Xie and Yuguang Fang, "A General Statistical Channel Model for Mobile Satellite Systems" IEEE Transactions on Vehicular Technology, VOL. 49, NO. 3, MAY 2000. http://www.fang.ece.ufl.edu/mypaper/tvt00_xie.pdf (頁面存檔備份,存於網際網路檔案館)
隱藏分類: