# 毕奥-萨伐尔定律

${\displaystyle \mathrm {d} \mathbf {B} ={\frac {\mu _{0}I}{4\pi }}\mathrm {d} {\boldsymbol {\ell }}'\times {\frac {\mathbf {r} -\mathbf {r} '}{|\mathbf {r} -\mathbf {r} '|^{3}}}}$

${\displaystyle \mathbf {B} (\mathbf {r} )={\frac {\mu _{0}}{4\pi }}\int _{\mathbb {V} '}\mathbf {J} (\mathbf {r} ')\times {\frac {\mathbf {r} -\mathbf {r} '}{|\mathbf {r} -\mathbf {r} '|^{3}}}\ \mathrm {d} ^{3}{r}'}$

## 概念

${\displaystyle \mathbf {B} (\mathbf {r} )={\frac {\mu _{0}I}{4\pi }}\int _{\mathbb {L} '}\mathrm {d} {\boldsymbol {\ell }}'\times {\frac {\mathbf {r} -\mathbf {r} '}{|\mathbf {r} -\mathbf {r} '|^{3}}}}$

${\displaystyle \mathbf {B} (\mathbf {r} )={\frac {\mu _{0}}{4\pi }}\int _{\mathbb {V} '}\mathbf {J} (\mathbf {r} ')\times {\frac {\mathbf {r} -\mathbf {r} '}{|\mathbf {r} -\mathbf {r} '|^{3}}}\mathrm {d} ^{3}{r}'}$

### 匀速运动的点电荷所产生的电场和磁场

${\displaystyle \mathbf {E} ={\frac {q}{4\pi \epsilon _{0}}}{\frac {1-v^{2}/c^{2}}{(1-v^{2}\sin ^{2}\theta /c^{2})^{3/2}}}{\frac {\mathbf {r} -\mathbf {w} }{|\mathbf {r} -\mathbf {w} |^{3}}}}$
${\displaystyle \mathbf {B} =\mathbf {v} \times {\frac {1}{c^{2}}}\mathbf {E} }$

${\displaystyle v^{2}\ll c^{2}}$时，电场和磁场可以近似为

${\displaystyle \mathbf {E} ={\frac {q}{4\pi \epsilon _{0}}}\ {\frac {\mathbf {r} -\mathbf {w} }{|\mathbf {r} -\mathbf {w} |^{3}}}}$
${\displaystyle \mathbf {B} ={\frac {\mu _{0}q\mathbf {v} }{4\pi }}\times {\frac {\mathbf {r} -\mathbf {w} }{|\mathbf {r} -\mathbf {w} |^{3}}}}$

## 参考文献

1. Jackson, John David. Classical Electrodynamics 3rd ed. New York: Wiley. 1999. Chapter 5. ISBN 0-471-30932-X.
2. Griffiths, David J. Introduction to Electrodynamics (3rd ed.). Prentice Hall. 1998: pp. 222–224, 435–440. ISBN 0-13-805326-X.