脑源性神经营养因子

维基百科,自由的百科全书
跳到导航 跳到搜索
脑源性神经营养因子
PDB rendering based on 1bnd.
有效结构
PDB 直系同源检索:PDBe, RCSB
标识
代号 BDNF; MGC34632
扩展标识 遗传学113505 鼠基因88145 同源基因7245 GeneCards: BDNF Gene
RNA表达模式
PBB GE BDNF 206382 s at tn.png
更多表达数据
直系同源体
物种 人类 小鼠
Entrez 627 12064
Ensembl ENSG00000176697 ENSMUSG00000048482
UniProt P23560 Q541P3
mRNA序列 NM_001143805.1 NM_001048139
蛋白序列 NP_001137277.1 NP_001041604
基因位置 Chr 11:
27.68 – 27.74 Mb
Chr 2:
109.51 – 109.57 Mb
PubMed查询 [1] [2]

脑源性神经营养因子(英語:Brain-Derived Neurotrophic Factor,縮寫為BDNF)是人脑中的一种蛋白质,由脑源性神经营养因子基因生成。脑源性神经营养因子是神经营养因子中的一种,这种因子存在于人的神经系统中。 BDNF是大腦中含量最豐富的蛋白質,在腦部可以促進神經元 (神經細胞) 的生長,也促進大腦神經細胞突觸的成形。[1][2]簡單來說,就是大腦非常需要的營養蛋白質。 研究顯示,在大腦中掌管記憶的海馬迴中含有特別豐富的 BDNF ,對於突觸的生長以及長期記憶也非常重要。[3]已經有許多國際研究顯示,缺乏 BDNF 將可能造成一些認知功能障礙,例如阿茲海默症[4],此為常見的退化性失智症之一。 另外,若長期處於壓力大或憂鬱的狀態,也可能會抑制大腦 BDNF 的分泌,影響記憶及認知功能,甚至於導致自律神經失調海馬迴萎縮等更嚴重的問題。

功能[编辑]

BDNF的作用[编辑]

  • 促進腦神經突觸傳遞與發生(Synaptogenesis)[9][10][11]
  • 提升神經元的分化(Neurogenesis):BDNF 在神經的生成中非常重要。許多人體研究證明 BDNF 是神經元分化的強促進劑。[12][13]
  • 改善認知功能(Cognitive Function)[14][15]

疾病關聯[编辑]

促進BDNF生成的食物[编辑]

1. 咖啡莓果(WCFC Coffee Berry)[编辑]

咖啡果提取物能使 BDNF 增加 143%[22]。提高 BDNF,可以改善以下的腦部的功能:

  • 更快速的學習[23][24]:思緒清晰、能量充沛。
  • 改善記憶的能力:BDNF可以刺激海馬迴記憶中心的腦細胞聯結,從而,改善記憶力。[25][26]
  • 延緩腦部退化:BDNF 可以保護腦部神經,延緩腦部退化[27][28][29]BDNF 也可以幫助腦細胞更快地從損傷中恢復。
  • 改善心情與情緒[30][31][32]

2. 含有膽鹼的磷脂(Choline-Containing Phospholipids)[编辑]

含有膽鹼的磷脂(聰明磷脂)可以提升BDNF,改善腦部的認知功能與腦神經元的再生。[33][34][35][36][37]

延伸閱讀[编辑]

  • Meerwijk, Esther L., Judith M. Ford, and Sandra J. Weiss. Brain regions associated with psychological pain: implications for a neural network and its relationship to physical pain. Brain imaging and behavior. 2013, 7 (1): 1–14. PMID 12424260. doi:10.1007/s11682-012-9179-y. 

外部連結[编辑]

Template:Nerve growth factor family

  1. ^ Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, Thadani A, Squinto SP, Yancopoulos GD, Lindsay RM (March 1995). "A BDNF autocrine loop in adult sensory neurons prevents cell death". Nature. 374 (6521): 450–53. Bibcode:1995Natur.374..450A. doi:10.1038/374450a0. PMID 7700353. S2CID 4316241.. 
  2. ^ Huang EJ, Reichardt LF (2001). "Neurotrophins: roles in neuronal development and function". Annual Review of Neuroscience. 24: 677–736. doi:10.1146/annurev.neuro.24.1.677. PMC 2758233. PMID 11520916.. 
  3. ^ Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH (February 2008). "BDNF is essential to promote persistence of long-term memory storage". Proceedings of the National Academy of Sciences of the United States of America. 105 (7): 2711–16. Bibcode:2008PNAS..105.2711B. doi:10.1073/pnas.0711863105. PMC 2268201. PMID 18263738.. 
  4. ^ Mattson MP (November 2008). "Glutamate and neurotrophic factors in neuronal plasticity and disease". Annals of the New York Academy of Sciences. 1144 (1): 97–112. Bibcode:2008NYASA1144...97M. doi:10.1196/annals.1418.005. PMC 2614307. PMID 19076369.. 
  5. ^ Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, Thadani A, Squinto SP, Yancopoulos GD, Lindsay RM (March 1995). "A BDNF autocrine loop in adult sensory neurons prevents cell death". Nature. 374 (6521): 450–53. Bibcode:1995Natur.374..450A. doi:10.1038/374450a0. PMID 7700353. S2CID 4316241.. 
  6. ^ Huang EJ, Reichardt LF (2001). "Neurotrophins: roles in neuronal development and function". Annual Review of Neuroscience. 24: 677–736. doi:10.1146/annurev.neuro.24.1.677. PMC 2758233. PMID 11520916.. 
  7. ^ Yamada K, Nabeshima T (April 2003). "Brain-derived neurotrophic factor/TrkB signaling in memory processes". Journal of Pharmacological Sciences. 91 (4): 267–70. doi:10.1254/jphs.91.267. PMID 12719654.. 
  8. ^ Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH (February 2008). "BDNF is essential to promote persistence of long-term memory storage". Proceedings of the National Academy of Sciences of the United States of America. 105 (7): 2711–16. Bibcode:2008PNAS..105.2711B. doi:10.1073/pnas.0711863105. PMC 2268201. PMID 18263738.. 
  9. ^ Bednarek E, Caroni P (March 2011). "β-Adducin is required for stable assembly of new synapses and improved memory upon environmental enrichment". Neuron. 69 (6): 1132–46. doi:10.1016/j.neuron.2011.02.034. PMID 21435558. S2CID 15373477.. 
  10. ^ Matsuoka Y, Li X, Bennett V (June 2000). "Adducin: structure, function and regulation". Cellular and Molecular Life Sciences. 57(6): 884–95. doi:10.1007/pl00000731. PMID 10950304. S2CID 29317393.. 
  11. ^ Stevens RJ, Littleton JT (May 2011). "Synaptic growth: dancing with adducin". Current Biology. 21 (10): R402–5. doi:10.1016/j.cub.2011.04.020. hdl:1721.1/92025. PMID 21601803. S2CID 3182599.. 
  12. ^ Bartkowska K, Paquin A, Gauthier AS, Kaplan DR, Miller FD (December 2007). "Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development". Development. 134 (24): 4369–80. doi:10.1242/dev.008227. PMID 18003743.. 
  13. ^ Bath KG, Akins MR, Lee FS (September 2012). "BDNF control of adult SVZ neurogenesis". Developmental Psychobiology. 54(6): 578–89. doi:10.1002/dev.20546. PMC 3139728. PMID 21432850.. 
  14. ^ van Praag H, Kempermann G, Gage FH (December 2000). "Neural consequences of environmental enrichment". Nature Reviews. Neuroscience. 1 (3): 191–98. doi:10.1038/35044558. PMID 11257907. S2CID 9750498.. 
  15. ^ Zhong L, Yan CH, Lu CQ, Xu J, Huang H, Shen XM (September 2009). "Calmodulin activation is required for the enhancement of hippocampal neurogenesis following environmental enrichment". Neurological Research. 31 (7): 707–13. doi:10.1179/174313209X380856. PMID 19055875. S2CID 43673092.. 
  16. ^ Zuccato C, Cattaneo E (June 2009). "Brain-derived neurotrophic factor in neurodegenerative diseases". Nature Reviews. Neurology. 5 (6): 311–22. doi:10.1038/nrneurol.2009.54. PMID 19498435. S2CID 30782827.. 
  17. ^ Arancio O, Chao MV (June 2007). "Neurotrophins, synaptic plasticity and dementia". Current Opinion in Neurobiology. 17 (3): 325–30. doi:10.1016/j.conb.2007.03.013. PMID 17419049. S2CID 22776264.. 
  18. ^ Kaplan AS, Levitan RD, Yilmaz Z, Davis C, Tharmalingam S, Kennedy JL (January 2008). "A DRD4/BDNF gene-gene interaction associated with maximum BMI in women with bulimia nervosa". The International Journal of Eating Disorders. 41 (1): 22–28. doi:10.1002/eat.20474. PMID 17922530.. 
  19. ^ Dwivedi Y (2009). "Brain-derived neurotrophic factor: role in depression and suicide". Neuropsychiatric Disease and Treatment. 5: 433–49. doi:10.2147/ndt.s5700. PMC 2732010. PMID 19721723.. 
  20. ^ Brunoni AR, Lopes M, Fregni F (December 2008). "A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression". The International Journal of Neuropsychopharmacology. 11 (8): 1169–80. doi:10.1017/S1461145708009309. PMID 18752720.. 
  21. ^ Xiu MH, Hui L, Dang YF, Hou TD, Zhang CX, Zheng YL, Chen DC, Kosten TR, Zhang XY (November 2009). "Decreased serum BDNF levels in chronic institutionalized schizophrenia on long-term treatment with typical and atypical antipsychotics". Progress in Neuro-Psychopharmacology & Biological Psychiatry. 33 (8): 1508–12. doi:10.1016/j.pnpbp.2009.08.011. PMID 19720106. S2CID 43300334.. 
  22. ^ Reyes-Izquierdo T, Nemzer B, Shu C, Huynh L, Argumedo R, Keller R, Pietrzkowski Z. “Modulatory effect of coffee fruit extract on plasma levels of brain-derived neurotrophic factor in healthy subjects.“ Br J Nutr. 2013 Aug 28;110(3):420-5. doi: 10.1017/S0007114512005338. Epub 2013 Jan 14. PMID 23312069.. 
  23. ^ Brigadski, T., Leßmann, V. BDNF: a regulator of learning and memory processes with clinical potential. e-Neuroforum 5, 1–11 (2014).doi:10.1007/s13295-014-0053-9. 
  24. ^ Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci. 2015;11(6):1164-1178. doi:10.5114/aoms.2015.56342. 
  25. ^ Brigadski, T., Leßmann, V. BDNF: a regulator of learning and memory processes with clinical potential. e-Neuroforum 5, 1–11 (2014). doi:10.1007/s13295-014-0053-9. 
  26. ^ Bekinschtein P, Cammarota M, Izquierdo I, Medina JH. BDNF and memory formation and storage. Neuroscientist. 2008 Apr;14(2):147-56. doi: 10.1177/1073858407305850. Epub 2007 Oct 2. PMID 17911219.. 
  27. ^ Zhao H, Alam A, San CY, Eguchi S, Chen Q, Lian Q, Ma D. Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments. Brain Res. 2017 Jun 15;1665:1-21. doi: 10.1016/j.brainres.2017.03.029. Epub 2017 Apr 7. PMID 28396009.. 
  28. ^ Kim JH. Brain-derived neurotrophic factor exerts neuroprotective actions against amyloid β-induced apoptosis in neuroblastoma cells. Exp Ther Med. 2014;8(6):1891-1895. doi:10.3892/etm.2014.2033.. 
  29. ^ Almeida RD, Manadas BJ, Melo CV, Gomes JR, Mendes CS, Grãos MM, Carvalho RF, Carvalho AP, Duarte CB. Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ. 2005 Oct;12(10):1329-43. doi: 10.1038/sj.cdd.4401662. PMID 15905876.. 
  30. ^ Yu H, Chen ZY. The role of BDNF in depression on the basis of its location in the neural circuitry. Acta Pharmacol Sin. 2011 Jan;32(1):3-11. doi: 10.1038/aps.2010.184. Epub 2010 Dec 6. PMID 21131999; PMCID: PMC4003317.. 
  31. ^ Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006 Jun 15;59(12):1116-27. doi: 10.1016/j.biopsych.2006.02.013. Epub 2006 Apr 21. PMID 16631126.. 
  32. ^ Sen S, Duman R, Sanacora G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry. 2008;64(6):527-532. doi:10.1016/j.biopsych.2008.05.005. 
  33. ^ Hyo Jeong Yu, Min Jung Kim, Jung Mee Park, So Young Park, Shi Nae Park, Dong Won Yang.The Effect of Choline Alphoscerate on Non spatial memory and Neurogenesis in a Rat Model of Dual Stress bioRxiv 2020.06.16.154310; doi: 10.1101/2020.06.16.154310. 
  34. ^ Catanesi M, d'Angelo M, Antonosante A, Castelli V, Alfonsetti M, Benedetti E, Desideri G, Ferri C, Cimini A. Neuroprotective potential of choline alfoscerate against β-amyloid injury: Involvement of neurotrophic signals. Cell Biol Int. 2020 Aug;44(8):1734-1744. doi: 10.1002/cbin.11369. Epub 2020 May 6. PMID 32343461.. 
  35. ^ Scholey, A.B., Camfield, D.A., Hughes, M.E. et al. A randomized controlled trial investigating the neurocognitive effects of Lacprodan® PL-20, a phospholipid-rich milk protein concentrate, in elderly participants with age-associated memory impairment: the Phospholipid Intervention for Cognitive Ageing Reversal (PLICAR): study protocol for a randomized controlled trial. Trials 14, 404 (2013). doi: 10.1186/1745-6215-14-404. 
  36. ^ Tran, P.V.; Kennedy, B.C.; Lien, Y.-C.; Simmons, R.A.; Georgieff, M.K. Fetal Iron Deficiency Induces Chromatin Remodeling at the Bdnf Locus in Adult Rat Hippocampus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, 276–282.. 
  37. ^ Tayebati SK. Phospholipid and Lipid Derivatives as Potential Neuroprotective Compounds. Molecules. 2018;23(9):2257. Published 2018 Sep 5. doi:10.3390/molecules23092257.