十面體

维基百科,自由的百科全书
跳转至: 导航搜索
部分的十面體
Square cupola.png
正四角帳塔
Pentagonal trapezohedron.svg
五方偏方面體
Octagonal prism.png
八角柱
Pentagonal dipyramid.png
雙五角錐

幾何學中,十面體是指由10個組成的多面體。在樸拓學中,有32300種不同的十面體[1],許多對稱性高的十面體通常會有五個對稱軸[2]。在幾何學上,沒有任何十面體是正十面體,也就是說找不到面由正多邊形組成且每個面全等、每個角相等的正十面體,但在抽象理論中,存在一種正十面體,半二十面體英语Hemi-icosahedron[3][4],其由十個全等的正三角形組成,但其屬於抽象多面體[5]。雖然幾何學上沒有正十面體,但仍有半正多面體,即雖面未必全部全等。但其面全部都是正多邊形且每個角等角的多面體例如正四角反稜柱和八角柱等。

常見的十面體[编辑]

所有面都由正多邊形組成且每個角都相等的十面體是半正多面體,所有十面體中僅有八角柱符合,由正方形和正八邊形組成,但一般不會稱正八角柱為半正十面體。

面為正多邊形的十面體有:正八角柱正四角帳塔雙五角錐側錐五角柱側錐正二十面體欠三側錐英语Augmented tridiminished icosahedron正四角反稜柱[6],其中雙五角錐三角面多面體,另外,不規則的十面體有無限多個,其中,樸拓結構有明顯差異的十面體共有32300種[1][7],其中,拓樸結構有明顯差異代表著兩種不同的多面體不能透過扭曲面或邊來改變成的多面體,例如八角柱和九角錐,但八角柱和八角錐台則沒有明顯不同的拓樸結構

詹森多面體[编辑]

有部分的詹森多面體具有10個面[8]

名稱 種類 圖像 編號 頂點 面的種類 對稱性 展開圖
正四角帳塔 帳塔 Square cupola.png J4 12 20 10 4個正三角形Red Equilateral triangle(R=204,GB=0).svg
5個正方形Red square.gif
1個正八邊形Redoctagon.svg
C4v, [4], (*44) Johnson solid 4 net.png
雙正五角錐 雙錐體 Pentagonal dipyramid.png J13 7 15 10 10個正三角形Red Equilateral triangle(R=204,GB=0).svg D5h, [5,2], (*225), order 20 Johnson solid 13 net.png
側錐五角柱 錐體與柱體組合 Augmented pentagonal prism.png J52 11 19 10 4個正三角形Red Equilateral triangle(R=204,GB=0).svg
4個正方形Red square.gif
2個正五邊形Regular polygon pentagon.svg
C2v Johnson solid 52 net.png
側錐正二十面體欠三側錐 切割的正二十面體
與錐體的組合
Augmented tridiminished icosahedron.png J64 10 18 10 7個正三角形Red Equilateral triangle(R=204,GB=0).svg
3個正五邊形Regular polygon pentagon.svg
C3v Johnson solid 64 net.png

八角柱[编辑]

八角柱是一種底面為八邊形的柱體,由10個面24條邊和16個頂點組成。正八角柱代表每個面都是正多邊形的八角柱,其每個頂點都是2個正方形和1個八邊形的公共頂點,因此具有每個角等角的性質,可以歸類為半正十面體。

九角錐[编辑]

九角錐是一種底面為九邊形的錐體,其具有10個面、18條邊和10個頂點,其對偶多面體是自己本身。正九角錐是一種底面為正九邊形的九角錐。

其他十面體[编辑]

名稱 種類 圖像 符號 頂點 χ 面的種類 對稱性 展開圖
八角柱 稜柱體 Octagonal prism.png t{2,8}
{8}x{}
CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 8.pngCDel node.png
16 24 10 2 2個八邊形Redoctagon.svg
8個矩形Rectangle example.svg
D8h, [8,2], (*822), order 32 Net of octagonal prism.svg
九角錐 稜錐體 Enneagonal pyramid1.png ( ) ∨ {9} 10 18 10 2 1個九邊形Regular nonagon.svg
9個三角形Red Equilateral triangle(R=204,GB=0).svg
C9v, [9], (*99)
雙五角錐 雙錐體 Pentagonale bipiramide.png { } + {5}
CDel node f1.pngCDel 2.pngCDel node f1.pngCDel 5.pngCDel node.png
7 15 10 2 10個三角形Red Equilateral triangle(R=204,GB=0).svg D5h, [5,2], (*225), order 20 Johnson solid 13 net.png
四角反柱 反稜柱 Square antiprism.png s{2,4}
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 8.pngCDel node.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node h.png
8 16 10 2 2個四邊形Tetragons of Space-Filling Triskaidecahedron.svg
8個三角形Red Equilateral triangle(R=204,GB=0).svg
D4d, [2+,8], (2*4), order 16 Net of square antiprism.png

參見[编辑]

  • 十胞體:在四維或更高維度的空間中具有十個維面的圖形
  • 十邊形:在二維空間中具有十個維面的圖形

參考文獻[编辑]

  1. ^ 1.0 1.1 Steven Dutch: How Many Polyhedra are There?
  2. ^ J Phys Chem C Nanomater Interfaces. A New Mechanism of Stabilization of Large Decahedral Nanoparticles. 2012-05-31. doi:10.1021/jp3011475. 
  3. ^ The hemi-icosahedron. [2016-08-21]. 
  4. ^ McMullen, Peter; Schulte, Egon, 6C. Projective Regular Polytopes, Abstract Regular Polytopes 1st, Cambridge University Press: 162–165, December 2002, ISBN 0-521-81496-0 
  5. ^ N. Wedd. The hemi-icosahedron. Regular Map database. weddslist.com. 2010 [2016-08-14]. 
  6. ^ MathWorldDecahedron的资料,作者:埃里克·韦斯坦因
  7. ^ Counting polyhedra numericana.com [2016-1-10]
  8. ^ Norman Johnson, "Convex Solids with Regular Faces", Canadian Journal of Mathematics, 18, 1966, pages 169–200. Contains the original enumeration of the 92 solids and the conjecture that there are no others.