跳转到内容

半导体器件制造

本页使用了标题或全文手工转换
本页使用了标题或全文手工转换
维基百科,自由的百科全书
NASA的Glenn研发中心无尘室
外部图片链接
image icon Photo of the interior of a clean room of a 300mm fab run by TSMC

半导体器件制造是用于制造半导体器件的过程,通常是集成电路(IC),如电脑处理器微控制器存储芯片(如NAND闪存和DRAM),这些器件存在于日常电子装置中。这是一个多步光刻物理化学过程(包括热氧化薄膜沉积离子注入蚀刻等步骤),在此过程中,电子电路逐渐在晶圆上创建,晶圆通常由纯单晶半导体材料制成。硅几乎总是被使用,但各种化合物半导体被用于专业应用。

制造过程在高度专业化的半导体制造工厂中执行,也称为晶圆厂或"fabs",[1] 其核心部分是"洁净室"。在更先进的半导体器件(如现代14/10/7纳米节点)中,制造过程可能需要长达15周的时间,行业平均为11-13周。[2]在先进的制造设施中,生产完全是自动化的,自动化材料处理系统负责从机器到机器的晶圆传送。[3]

单个晶片在称为晶片分离或晶圆切割的过程中从成品晶圆中分离出来。然后,晶片可以进行进一步的组装和封装。[4]

在制造工厂内,晶圆在称为FOUPs的特殊密封塑料盒中传送。在许多晶圆厂中,[3] FOUPs包含内部氮气氛,[5][6] 有助于防止晶圆上的铜氧化。[7] 铜在现代半导体中用于布线。处理装置和FOUPs的内部比洁净室周围的空气更干净。这种内部气氛被称为微环境,有助于提高晶圆上工作装置的数量。这个微环境位于一个EFEM英语EFEM(装置前端模块)内,[8] 它允许一台机器接收FOUPs,并将来自FOUPs的晶圆引入机器。此外,许多机器还在清洁的氮气真空环境中处理晶圆,以减少污染并提高过程控制。[3] 制造工厂需要大量液氮来维持生产装置和FOUPs内的气氛,这些装置不断地用氮气净化。[5][6] FOUP和EFEM之间还可以有一层气帘,有助于减少进入FOUP的湿度量,并提高产量。[9][10]

制造工艺中使用的机器制造公司包括ASMLApplied MaterialsLam Research

晶圆

[编辑]

典型的晶片是用极度纯净的柴可拉斯基法泡生法等方式长成直径12吋(300毫米)的单晶圆柱梨形人造宝石)。这些硅碇被切成晶片大约0.75毫米厚并抛光为非常平整的表面。

一旦晶圆准备好之后,很多工艺步骤对于生产需要的半导体集成电路是必要的。总之,这些步骤可分成四组:

  • 前端工艺
  • 后端工艺
  • 测试
  • 封装

工艺

[编辑]

在半导体工艺中,不同的生产工序可归为如下四类:沉积、清除、制作布线图案、以及电学属性的调整。

前端工艺

[编辑]

"前端工艺"指的是在上直接形成晶体管。双极二极管,mos管等

二氧化硅

[编辑]

金属层

[编辑]

互联

[编辑]

晶片测试

[编辑]

晶片处理高度有序化的本质增加了对不同处理步骤之间度量方法的需求。晶片测试度量装置被用于检验晶片仍然完好且没有被前面的处理步骤损坏。当一块晶片测量失败次数超过一个预先设定的阈值时,晶片将被废弃而非继续后续的处理工艺。

器件测试

[编辑]

封装

[编辑]

塑料或陶瓷封装牵涉到固定裸晶(die)、连接裸晶垫片至封装上的针脚并密封整块裸晶。微小的接合线(bondwires,请参考打线接合)用来连接裸晶电片到针脚上。在早期1970年代,接线是靠手工搭接,但现今已经仰赖特制的机器去完成同样的工作。传统上,这些接线由黄金组成,引导至一片镀铜的含铅导线架(lead frame)。由于铅是有毒的,现今厂商大多为了遵守有害物质限用指令(RoHS)而不再使用含铅材料。

晶片尺寸封装(Chip Scale Package)是另一种封装技术。大部分的封装,如双列直插封装(dual in-line package),比实际隐藏在内部的裸晶大好几倍,然而 CSP 晶片就可以几乎等同于原本裸晶的大小,一片 CSP 可以在晶圆还没切割之前就建构在每个裸晶上。

封装过的晶片会再加以测试以确保它们在封装过程中没被损坏,以及裸晶至针脚上的连接作业有正确地被完成,接着就会使用激光在封装外壳上刻蚀出晶片名称和编号。

步骤列表

[编辑]

有害材料标志

[编辑]

许多有毒材料在制造过程中被使用。这些包括:

工人直接暴露在这些有毒物质下是致命的。通常IC制造业高度自动化能帮助降低暴露于这一类物品的风险。

历史

[编辑]

当线宽远高于10微米时,纯净度还不像今天的器件生产中那样至关紧要。但随着器件变得越来越集成,无尘室也变得越来越干净。今天,工厂内是加压过滤空气,来去除哪怕那些可能留在晶片上并形成缺陷的最小的粒子。半导体制造产线里的工人被要求穿着无尘衣来保护器件不被人类污染。

在利润增长的推动下,在1960年代半导体器件生产遍及德克萨斯州加州乃至全世界,比如爱尔兰以色列日本台湾韩国新加坡,现今已成为全球产业。

半导体生产商的领袖大都在全世界拥有产线。英特尔,世界最大的生产商之一,以及在美其他顶级生产商包括台积电(台湾)、三星(韩国)、得州仪器(美国)、超微半导体(美国)、联电(台湾)、东芝(日本)、NEC电子(日本)、意法半导体(欧洲)、英飞凌(欧洲)、瑞萨(日本)、索尼(日本),以及恩智浦半导体 (欧洲)在欧洲和亚洲都有自己的装置。

在2006年,在美国有大约5000家半导体和电子零件生产商,营业额达1650亿美元[11]

商用 MOSFET 节点的时间表

[编辑]

参考文献

[编辑]
  1. ^ 引用错误:没有为名为berlin-regression-methods的参考文献提供内容
  2. ^ 8 Things You Should Know About Water & Semiconductors. China Water Risk. 11 July 2013 [2023-01-21]. (原始内容存档于2023-07-23) (美国英语). 
  3. ^ 3.0 3.1 3.2 Yoshio, Nishi, Handbook of Semiconductor Manufacturing Technology, CRC Press, 2017 
  4. ^ Lei, Wei-Sheng; Kumar, Ajay; Yalamanchili, Rao. Die singulation technologies for advanced packaging: A critical review. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 2012-04-06, 30 (4). ISSN 2166-2746. doi:10.1116/1.3700230. 
  5. ^ 5.0 5.1 Advanced FOUP purge using diffusers for FOUP door-off application | IEEE Conference Publication | IEEE Xplore. ieeexplore.ieee.org. [2024-01-17]. (原始内容存档于2023-12-19). 
  6. ^ 6.0 6.1 450mm FOUP/LPU system in advanced semiconductor manufacturing processes: A study on the minimization of oxygen content inside FOUP when the door is opened | IEEE Conference Publication | IEEE Xplore. ieeexplore.ieee.org. [2024-01-17]. (原始内容存档于2023-12-19). 
  7. ^ Moisture Prevention in a Pre-Purged Front-Opening Unified Pod (FOUP) During Door Opening in a Mini-Environment | IEEE Journals & Magazine | IEEE Xplore. ieeexplore.ieee.org. [2024-01-17]. (原始内容存档于2024-03-25). 
  8. ^ Kure, Tokuo; Hanaoka, Hideo; Sugiura, Takumi; Nakagawa, Shinya. Clean-room Technologies for the Mini-environment Age (PDF). Hitachi Review. 2007, 56 (3): 70–74 [2021-11-01]. CiteSeerX 10.1.1.493.1460可免费查阅. S2CID 30883737. (原始内容存档 (PDF)于2021-11-01). 
  9. ^ A Numerical Study on the Effects of Purge and Air Curtain Flow Rates on Humidity Invasion Into a Front Opening Unified Pod (FOUP) | IEEE Journals & Magazine | IEEE Xplore. ieeexplore.ieee.org. [2024-01-17]. (原始内容存档于2024-04-23). 
  10. ^ Performance of Different Front-Opening Unified Pod (FOUP) Moisture Removal Techniques With Local Exhaust Ventilation System | IEEE Journals & Magazine | IEEE Xplore. ieeexplore.ieee.org. 
  11. ^ Barnes报告页面存档备份,存于互联网档案馆)“2006美国工业和市场展望”

外部链接

[编辑]

参见

[编辑]