神經增強:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
无编辑摘要
标签移动版编辑 移动版网页编辑 高级移动版编辑
无编辑摘要
标签移动版编辑 移动版网页编辑 高级移动版编辑
第103行: 第103行:


[[膳食]]中的[[葡萄糖]](及其[[糖原]]形態)是[[大脑]]的主要能量来源,尽管直接摄入[[葡萄糖]]会影响健康,但一些研究人员认为葡萄糖是種「生化增强剂」,需要持續補充,但以單醣補充,会使血糖飙升,且其提供的葡萄糖供应,也不会持续太久。与快速吸收或高[[升糖指數|GI]]食物相比,吸收缓慢的含[[碳水化合物]]食物或低[[升糖指數|GI]]食物释放[[葡萄糖]]的速度较慢。<ref>{{cite journal |last1=Philippou |first1=Elena |last2=Constantinou |first2=Marios |title=The Influence of Glycemic Index on Cognitive Functioning: A Systematic Review of the Evidence |journal=Advances in Nutrition |date=1 March 2014 |volume=5 |issue=2 |pages=119–130 |doi=10.3945/an.113.004960 |pmid=24618754 |pmc=3951795 |language=en |issn=2161-8313}}</ref><ref name="10.1123/ijsnem.2017-0314">{{cite journal |last1=Meeusen |first1=Romain |last2=Decroix |first2=Lieselot |title=Nutritional Supplements and the Brain |journal=International Journal of Sport Nutrition and Exercise Metabolism |date=1 March 2018 |volume=28 |issue=2 |pages=200–211 |doi=10.1123/ijsnem.2017-0314 |pmid=29252056 |s2cid=4582295 |language=en |issn=1543-2742}}</ref><ref name="10.1021/acschemneuro.8b00571"/><ref name="joshi"/>尽管脑葡萄糖代谢与[[神经退行性疾病]]有关,但有关脑葡萄糖代谢与认知能力之间联系的研究却很少。<ref>{{cite journal |last1=Rebelos |first1=Eleni |last2=Rinne |first2=Juha O. |last3=Nuutila |first3=Pirjo |last4=Ekblad |first4=Laura L. |title=Brain Glucose Metabolism in Health, Obesity, and Cognitive Decline—Does Insulin Have Anything to Do with It? A Narrative Review |journal=Journal of Clinical Medicine |date=January 2021 |volume=10 |issue=7 |pages=1532 |doi=10.3390/jcm10071532 |pmid=33917464 |pmc=8038699 |language=en |issn=2077-0383|doi-access=free }}</ref>[[乳酸]](尤其是在特定类型的运动中释放)也可能与认知能力的提高有关。<ref>{{cite journal |last1=Gubert |first1=Carolina |last2=Hannan |first2=Anthony J. |title=Exercise mimetics: harnessing the therapeutic effects of physical activity |journal=Nature Reviews Drug Discovery |date=November 2021 |volume=20 |issue=11 |pages=862–879 |doi=10.1038/s41573-021-00217-1 |pmid=34103713 |s2cid=235379365 |language=en |issn=1474-1784}}</ref><ref>{{cite journal |last1=Yamada |first1=Yujiro |last2=Frith |first2=Emily M. |last3=Wong |first3=Vickie |last4=Spitz |first4=Robert W. |last5=Bell |first5=Zachary W. |last6=Chatakondi |first6=Raksha N. |last7=Abe |first7=Takashi |last8=Loenneke |first8=Jeremy P. |title=Acute exercise and cognition: A review with testable questions for future research into cognitive enhancement with blood flow restriction |journal=Medical Hypotheses |date=1 June 2021 |volume=151 |pages=110586 |doi=10.1016/j.mehy.2021.110586 |pmid=33848917 |s2cid=233233538 |language=en |issn=0306-9877}}</ref><ref>{{cite journal |last1=Taubert |first1=Marco |last2=Villringer |first2=Arno |last3=Lehmann |first3=Nico |title=Endurance Exercise as an "Endogenous" Neuro-enhancement Strategy to Facilitate Motor Learning |journal=Frontiers in Human Neuroscience |date=2015 |volume=9 |page=692 |doi=10.3389/fnhum.2015.00692 |pmid=26834602 |pmc=4714627 |issn=1662-5161|doi-access=free }}</ref>
[[膳食]]中的[[葡萄糖]](及其[[糖原]]形態)是[[大脑]]的主要能量来源,尽管直接摄入[[葡萄糖]]会影响健康,但一些研究人员认为葡萄糖是種「生化增强剂」,需要持續補充,但以單醣補充,会使血糖飙升,且其提供的葡萄糖供应,也不会持续太久。与快速吸收或高[[升糖指數|GI]]食物相比,吸收缓慢的含[[碳水化合物]]食物或低[[升糖指數|GI]]食物释放[[葡萄糖]]的速度较慢。<ref>{{cite journal |last1=Philippou |first1=Elena |last2=Constantinou |first2=Marios |title=The Influence of Glycemic Index on Cognitive Functioning: A Systematic Review of the Evidence |journal=Advances in Nutrition |date=1 March 2014 |volume=5 |issue=2 |pages=119–130 |doi=10.3945/an.113.004960 |pmid=24618754 |pmc=3951795 |language=en |issn=2161-8313}}</ref><ref name="10.1123/ijsnem.2017-0314">{{cite journal |last1=Meeusen |first1=Romain |last2=Decroix |first2=Lieselot |title=Nutritional Supplements and the Brain |journal=International Journal of Sport Nutrition and Exercise Metabolism |date=1 March 2018 |volume=28 |issue=2 |pages=200–211 |doi=10.1123/ijsnem.2017-0314 |pmid=29252056 |s2cid=4582295 |language=en |issn=1543-2742}}</ref><ref name="10.1021/acschemneuro.8b00571"/><ref name="joshi"/>尽管脑葡萄糖代谢与[[神经退行性疾病]]有关,但有关脑葡萄糖代谢与认知能力之间联系的研究却很少。<ref>{{cite journal |last1=Rebelos |first1=Eleni |last2=Rinne |first2=Juha O. |last3=Nuutila |first3=Pirjo |last4=Ekblad |first4=Laura L. |title=Brain Glucose Metabolism in Health, Obesity, and Cognitive Decline—Does Insulin Have Anything to Do with It? A Narrative Review |journal=Journal of Clinical Medicine |date=January 2021 |volume=10 |issue=7 |pages=1532 |doi=10.3390/jcm10071532 |pmid=33917464 |pmc=8038699 |language=en |issn=2077-0383|doi-access=free }}</ref>[[乳酸]](尤其是在特定类型的运动中释放)也可能与认知能力的提高有关。<ref>{{cite journal |last1=Gubert |first1=Carolina |last2=Hannan |first2=Anthony J. |title=Exercise mimetics: harnessing the therapeutic effects of physical activity |journal=Nature Reviews Drug Discovery |date=November 2021 |volume=20 |issue=11 |pages=862–879 |doi=10.1038/s41573-021-00217-1 |pmid=34103713 |s2cid=235379365 |language=en |issn=1474-1784}}</ref><ref>{{cite journal |last1=Yamada |first1=Yujiro |last2=Frith |first2=Emily M. |last3=Wong |first3=Vickie |last4=Spitz |first4=Robert W. |last5=Bell |first5=Zachary W. |last6=Chatakondi |first6=Raksha N. |last7=Abe |first7=Takashi |last8=Loenneke |first8=Jeremy P. |title=Acute exercise and cognition: A review with testable questions for future research into cognitive enhancement with blood flow restriction |journal=Medical Hypotheses |date=1 June 2021 |volume=151 |pages=110586 |doi=10.1016/j.mehy.2021.110586 |pmid=33848917 |s2cid=233233538 |language=en |issn=0306-9877}}</ref><ref>{{cite journal |last1=Taubert |first1=Marco |last2=Villringer |first2=Arno |last3=Lehmann |first3=Nico |title=Endurance Exercise as an "Endogenous" Neuro-enhancement Strategy to Facilitate Motor Learning |journal=Frontiers in Human Neuroscience |date=2015 |volume=9 |page=692 |doi=10.3389/fnhum.2015.00692 |pmid=26834602 |pmc=4714627 |issn=1662-5161|doi-access=free }}</ref>

====Medications====
Notable potentially viable pharmacological agents – as final products or as prototypes for similar ones – [[Lists of investigational drugs|under early-stage research]] with potential for substantial effect sizes for specific purposes in specific situations (such as learning periods) also in healthy non-old humans but, in at least most cases, largely unknown effects in humans and safety profiles (and consequently not widely used or not used at all): [[orexin-A]],<ref name="10.1371/journal.pbio.1001289">{{cite journal |last1=Tennison |first1=Michael N. |last2=Moreno |first2=Jonathan D. |title=Neuroscience, Ethics, and National Security: The State of the Art |journal=PLOS Biology |date=20 March 2012 |volume=10 |issue=3 |pages=e1001289 |doi=10.1371/journal.pbio.1001289 |pmid=22448146 |pmc=3308927 |language=en |issn=1545-7885}}</ref> [[Fibroblast growth loop peptide|FGL]], [[PTEN-PDZ]], and [[Phosphoinositide 3-kinase#Learning and memory|PI3K-activator]] PTD4-PI3KAc,<ref>{{cite journal |last1=Asua |first1=Diego |last2=Bougamra |first2=Ghassen |last3=Calleja-Felipe |first3=María |last4=Morales |first4=Miguel |last5=Knafo |first5=Shira |title=Peptides Acting as Cognitive Enhancers |journal=Neuroscience |date=1 February 2018 |volume=370 |pages=81–87 |doi=10.1016/j.neuroscience.2017.10.002 |pmid=29030286 |s2cid=10269993 |language=en |issn=0306-4522}}</ref> [[dihexa]],<ref>{{cite journal |last1=Wright |first1=John W. |last2=Harding |first2=Joseph W. |title=The Brain Hepatocyte Growth Factor/c-Met Receptor System: A New Target for the Treatment of Alzheimer's Disease |journal=Journal of Alzheimer's Disease |date=1 January 2015 |volume=45 |issue=4 |pages=985–1000 |doi=10.3233/JAD-142814 |pmid=25649658 |language=en |issn=1387-2877}}</ref><ref>{{cite journal |last1=Ho |first1=Jean K. |last2=Nation |first2=Daniel A. |title=Cognitive benefits of angiotensin IV and angiotensin-(1–7): A systematic review of experimental studies |journal=Neuroscience & Biobehavioral Reviews |date=1 September 2018 |volume=92 |pages=209–225 |doi=10.1016/j.neubiorev.2018.05.005 |pmid=29733881 |pmc=8916541 |language=en |issn=0149-7634}}</ref><ref>{{cite journal |last1=Hallberg |first1=Mathias |last2=Larhed |first2=Mats |title=From Angiotensin IV to Small Peptidemimetics Inhibiting Insulin-Regulated Aminopeptidase |journal=Frontiers in Pharmacology |date=2020 |volume=11 |page=590855 |doi=10.3389/fphar.2020.590855 |pmid=33178027 |pmc=7593869 |issn=1663-9812|doi-access=free }}</ref> [[d-cycloserine]],<ref>{{cite journal |last1=Stern |first1=Sarah A. |last2=Alberini |first2=Cristina M. |title=Mechanisms of memory enhancement |journal=WIREs Systems Biology and Medicine |date=January 2013 |volume=5 |issue=1 |pages=37–53 |doi=10.1002/wsbm.1196 |pmid=23151999 |pmc=3527655 |language=en |issn=1939-5094}}</ref><ref>{{cite journal |last1=Hofmann |first1=Stefan G. |last2=Fang |first2=Angela |last3=Gutner |first3=Cassidy A. |title=Cognitive enhancers for the treatment of anxiety disorders |journal=Restorative Neurology and Neuroscience |date=1 January 2014 |volume=32 |issue=1 |pages=183–195 |doi=10.3233/RNN-139002 |pmid=23542909 |language=en |issn=0922-6028}}</ref><ref name="10.3389/fnsys.2014.00046">{{cite journal |last1=Diekelmann |first1=Susanne |title=Sleep for cognitive enhancement |journal=Frontiers in Systems Neuroscience |date=2014 |volume=8 |page=46 |doi=10.3389/fnsys.2014.00046 |pmid=24765066 |pmc=3980112 |issn=1662-5137|doi-access=free }}</ref><ref name="10.1016/j.neubiorev.2007.12.001"/><ref>{{cite journal |last1=Merlo |first1=Emiliano |last2=Milton |first2=Amy L |last3=Everitt |first3=Barry J |title=Enhancing cognition by affecting memory reconsolidation |journal=Current Opinion in Behavioral Sciences |date=1 August 2015 |volume=4 |pages=41–47 |doi=10.1016/j.cobeha.2015.02.003 |s2cid=53170506 |language=en |issn=2352-1546|url=http://sro.sussex.ac.uk/id/eprint/81983/1/__smbhome.uscs.susx.ac.uk_sc328_Desktop_Papers%20for%20SRO_MERLO_Current_Opinion_in_Behavioral_Sciences_Jan_2015_author_copy.pdf }}</ref> [[Dopamine reuptake inhibitor|DAT blockers]] [[CE-123]] and CE-158,<ref>{{cite journal |last1=Desibhatla |first1=Mukund |title=The Development and Evaluation of Novel DA Transport Inhibitors and their Effects on Effort-Related Motivation: A Review |journal=Honors Scholar Theses |date=1 May 2021 |url=https://opencommons.uconn.edu/srhonors_theses/787/}}</ref> [[ampakine]]s like [[IDRA-21]] and [[CX717]],<ref name="10.3233/JAD-2012-121186">{{cite journal |last1=Froestl |first1=Wolfgang |last2=Muhs |first2=Andreas |last3=Pfeifer |first3=Andrea |title=Cognitive Enhancers (Nootropics). Part 1: Drugs Interacting with Receptors |journal=Journal of Alzheimer's Disease |date=1 January 2012 |volume=32 |issue=4 |pages=793–887 |doi=10.3233/JAD-2012-121186 |pmid=22886028 |language=en |issn=1387-2877}}</ref><ref>{{cite journal |last1=Partin |first1=Kathryn M |title=AMPA receptor potentiators: from drug design to cognitive enhancement |journal=Current Opinion in Pharmacology |date=1 February 2015 |volume=20 |pages=46–53 |doi=10.1016/j.coph.2014.11.002 |pmid=25462292 |pmc=4318786 |language=en |issn=1471-4892}}</ref><ref name="10.1016/j.neubiorev.2007.12.001"/><ref name="joshi">{{cite journal |last1=Pranav |first1=Joshi C. |title=A review on natural memory enhancers (nootropics) |journal=Unique Journal of Engineering and Advanced Sciences |date=2013 |url=http://www.ujconline.net/wp-content/uploads/2013/09/3-UJEAS-1314-Rv.pdf |language=en}}</ref><ref name="10.2174/1874620900902010048">{{cite journal |last1=Þorsteinsson |first1=Haraldur |last2=Karlsson |first2=KarlÆgir |title=Is Sleep Beyond Our Control? |journal=The Open Sleep Journal |date=12 August 2009 |volume=2 |issue=1 |pages=48–55 |doi=10.2174/1874620900902010048}}</ref> [[rapastinel]],<ref>{{cite journal |last1=Kato |first1=Taro |last2=Duman |first2=Ronald S. |title=Rapastinel, a novel glutamatergic agent with ketamine-like antidepressant actions: Convergent mechanisms |journal=Pharmacology Biochemistry and Behavior |date=1 January 2020 |volume=188 |pages=172827 |doi=10.1016/j.pbb.2019.172827 |pmid=31733218 |s2cid=207976034 |language=en |issn=0091-3057}}</ref><ref>{{cite journal |last1=Burgdorf |first1=Jeffrey |last2=Zhang |first2=Xiao-lei |last3=Weiss |first3=Craig |last4=Matthews |first4=Elizabeth |last5=Disterhoft |first5=John F. |last6=Stanton |first6=Patric K. |last7=Moskal |first7=Joseph R. |title=The N-methyl-d-aspartate receptor modulator GLYX-13 enhances learning and memory, in young adult and learning impaired aging rats |journal=Neurobiology of Aging |date=1 April 2011 |volume=32 |issue=4 |pages=698–706 |doi=10.1016/j.neurobiolaging.2009.04.012 |pmid=19446371 |pmc=3035742 |language=en |issn=0197-4580}}</ref><ref>{{cite journal |last1=R. Moskal |first1=Joseph |last2=S. Burgdorf |first2=Jeffrey |last3=K. Stanton |first3=Patric |last4=A. Kroes |first4=Roger |last5=F. Disterhoft |first5=John |last6=M. Burch |first6=Ronald |last7=Amin Khan |first7=M. |title=The Development of Rapastinel (Formerly GLYX-13); A Rapid Acting and Long Lasting Antidepressant |journal=Current Neuropharmacology |date=2017 |volume=15 |issue=1 |pages=47–56 |doi=10.2174/1570159X14666160321122703 |pmid=26997507 |pmc=5327451 |url=https://www.ingentaconnect.com/content/ben/cn/2017/00000015/00000001/art00008 |language=en}}</ref> [[ISRIB]],<ref>{{cite journal |last1=Costa-Mattioli |first1=Mauro |last2=Walter |first2=Peter |title=The integrated stress response: From mechanism to disease |journal=Science |date=24 April 2020 |volume=368 |issue=6489 |pages=eaat5314 |doi=10.1126/science.aat5314 |pmid=32327570 |pmc=8997189 |language=en |issn=0036-8075}}</ref><ref>{{cite journal |last1=Jin |first1=Yang |last2=Saatcioglu |first2=Fahri |title=Targeting the Unfolded Protein Response in Hormone-Regulated Cancers |journal=Trends in Cancer |date=1 February 2020 |volume=6 |issue=2 |pages=160–171 |doi=10.1016/j.trecan.2019.12.001 |pmid=32061305 |s2cid=211136354 |language=en |issn=2405-8033}}</ref> [[citicoline]],<ref>{{Cite web|last=Tardner|first=P.|date=2020-08-30|title=The use of citicoline for the treatment of cognitive decline and cognitive impairment: A meta-analysis of pharmacological literature • International Journal of Environmental Science & Technology|url=https://www.ijest.org/citicoline-cognitive-decline-ptardner-0820/|access-date=2020-08-31|website=International Journal of Environmental Science & Technology|language=en-US}}</ref> [[selective receptor modulator|selective]] [[receptor modulator]]s such as [[MRK-016]] which targets subtypes of GABA<sub>A</sub> receptors,<ref>{{cite journal |last1=Atack |first1=John R. |title=GABAA Receptor Subtype-Selective Modulators. II. α5-Selective Inverse Agonists for Cognition Enhancement |journal=Current Topics in Medicinal Chemistry |year=2011 |volume=11 |issue=9 |pages=1203–1214 |doi=10.2174/156802611795371314 |pmid=21050171 |language=en}}</ref> {{anchor|Modafinil analogs}}modafinil-analogs [[CRL-40,940]] and {{tooltip|modafiendz|N-Methylbisfluoromodafinil}},<ref name="10.1080/08897077.2019.1700584">{{cite journal |last1=Sousa |first1=Ana |last2=Dinis-Oliveira |first2=Ricardo Jorge |title=Pharmacokinetic and pharmacodynamic of the cognitive enhancer modafinil: Relevant clinical and forensic aspects |journal=Substance Abuse |date=2 April 2020 |volume=41 |issue=2 |pages=155–173 |doi=10.1080/08897077.2019.1700584 |pmid=31951804 |s2cid=210709160 |issn=0889-7077}}</ref> modafinil-inspired/hybrid [[Triple reuptake inhibitor|TRIs]] [[JZ-IV-10]] and JZAD-IV-22,<ref>{{cite journal |last1=Kleczkowska |first1=Patrycja |title=Chimeric Structures in Mental Illnesses&mdash;"Magic" Molecules Specified for Complex Disorders |journal=International Journal of Molecular Sciences |date=January 2022 |volume=23 |issue=7 |pages=3739 |doi=10.3390/ijms23073739 |pmid=35409098 |pmc=8998808 |language=en |issn=1422-0067|doi-access=free }}</ref><ref>{{cite journal |last1=Sharma |first1=Horrick |last2=Santra |first2=Soumava |last3=Dutta |first3=Aloke |title=Triple reuptake inhibitors as potential next-generation antidepressants: a new hope? |journal=Future Medicinal Chemistry |date=November 2015 |volume=7 |issue=17 |pages=2385–2406 |doi=10.4155/fmc.15.134|pmid=26619226 |pmc=4976848 }}</ref><ref>{{cite journal |last1=Subbaiah |first1=Murugaiah A. M. |title=Triple Reuptake Inhibitors as Potential Therapeutics for Depression and Other Disorders: Design Paradigm and Developmental Challenges |journal=Journal of Medicinal Chemistry |date=22 March 2018 |volume=61 |issue=6 |pages=2133–2165 |doi=10.1021/acs.jmedchem.6b01827 |pmid=28731336 |language=en |issn=0022-2623}}</ref> [[Danavorexton|TAK-925]] ([[Orexin receptor#Agonists|orexin agonist]] that promotes wakefulness in ways similar to modafinil),<ref>{{cite journal |last1=Jacobson |first1=Laura H. |last2=Hoyer |first2=Daniel |last3=Lecea |first3=Luis |title=Hypocretins (orexins): The ultimate translational neuropeptides |journal=Journal of Internal Medicine |date=May 2022 |volume=291 |issue=5 |pages=533–556 |doi=10.1111/joim.13406 |pmid=35043499 |s2cid=248119793 |language=en |issn=0954-6820}}</ref><ref>{{cite journal |last1=Seigneur |first1=Erica |last2=de Lecea |first2=Luis |title=Hypocretin (Orexin) Replacement Therapies |journal=Medicine in Drug Discovery |date=1 December 2020 |volume=8 |pages=100070 |doi=10.1016/j.medidd.2020.100070 |s2cid=225129746 |language=en |issn=2590-0986}}</ref> wakefulness-inducing or procognitive [[Narcolepsy#Medications|narcolepsy medication]] candidates like [[samelisant]],<ref name="10.3389/fphar.2022.861094"/><ref>{{cite journal |last1=Shinde |first1=Anil |last2=Subramanian |first2=Ramkumar |last3=Palacharla |first3=Raghava |last4=Benade |first4=Vijay |last5=Abraham |first5=Renny |last6=Kamuju |first6=Venkatesh |last7=Pandey |first7=Santosh |last8=Badange |first8=Rajesh |last9=Achanta |first9=Pramod Kumar |last10=Nirogi |first10=Ramakrishna |title=004 Samelisant (SUVN-G3031), Differentiating features over current treatments of narcolepsy |journal=Sleep |date=1 May 2021 |volume=44 |issue=Supplement_2 |pages=A2 |doi=10.1093/sleep/zsab072.003 |issn=0161-8105 |quote=Recent research has described a procognitive effect of samelisant, an inverse agonist of H3 receptors, in animal models of schizophrenia [157]. Nevertheless, more studies are required.}}</ref> [[pterostilbene]],<ref>{{cite journal |last1=Poulose |first1=Shibu M. |last2=Thangthaeng |first2=Nopporn |last3=Miller |first3=Marshall G. |last4=Shukitt-Hale |first4=Barbara |title=Effects of pterostilbene and resveratrol on brain and behavior |journal=Neurochemistry International |date=1 October 2015 |volume=89 |pages=227–233 |doi=10.1016/j.neuint.2015.07.017 |pmid=26212523 |s2cid=33577543 |language=en |issn=0197-0186}}</ref><ref>{{cite journal |last1=McCormack |first1=Denise |last2=McFadden |first2=David |title=A Review of Pterostilbene Antioxidant Activity and Disease Modification |journal=Oxidative Medicine and Cellular Longevity |date=4 April 2013 |volume=2013 |pages=e575482 |doi=10.1155/2013/575482 |pmid=23691264 |pmc=3649683 |language=en |issn=1942-0900|doi-access=free }}</ref> [[Caloric restriction mimetic|CRM]] acyl-[[ghrelin]] mimetics and agonists like [[ibutamoren]],<ref>{{cite journal |last1=Buntwal |first1=Luke |last2=Sassi |first2=Martina |last3=Morgan |first3=Alwena H. |last4=Andrews |first4=Zane B. |last5=Davies |first5=Jeffrey S. |title=Ghrelin-Mediated Hippocampal Neurogenesis: Implications for Health and Disease |journal=Trends in Endocrinology & Metabolism |date=1 November 2019 |volume=30 |issue=11 |pages=844–859 |doi=10.1016/j.tem.2019.07.001 |pmid=31445747 |s2cid=201126380 |language=en |issn=1043-2760|url=https://cronfa.swan.ac.uk/Record/cronfa52032 }}</ref><ref>{{cite journal |last1=Morgan |first1=A. H. |last2=Andrews |first2=Z. B. |last3=Davies |first3=J. S. |title=Less is more: Caloric regulation of neurogenesis and adult brain function |journal=Journal of Neuroendocrinology |date=October 2017 |volume=29 |issue=10 |pages=e12512 |doi=10.1111/jne.12512 |pmid=28771924 |s2cid=3070497 |url=https://research.monash.edu/en/publications/d666c1b2-d88f-46ba-ac78-1248c0b7d0fe |language=en}}</ref> and [[H3 receptor antagonist|H<sub>3</sub> receptor antagonist]] [[pitolisant]].<ref>{{cite journal |last1=Harwell |first1=Victoria |last2=Fasinu |first2=Pius |title=Pitolisant and Other Histamine-3 Receptor Antagonists—An Update on Therapeutic Potentials and Clinical Prospects |journal=Medicines |date=1 September 2020 |volume=7 |issue=9 |pages=55 |doi=10.3390/medicines7090055|pmid=32882898 |pmc=7554886 |doi-access=free }}</ref><ref name="10.3389/fphar.2022.861094">{{cite journal |last1=Alhusaini |first1=Mera |last2=Eissa |first2=Nermin |last3=Saad |first3=Ali K. |last4=Beiram |first4=Rami |last5=Sadek |first5=Bassem |title=Revisiting Preclinical Observations of Several Histamine H3 Receptor Antagonists/Inverse Agonists in Cognitive Impairment, Anxiety, Depression, and Sleep–Wake Cycle Disorder |journal=Frontiers in Pharmacology |date=2022 |volume=13 |page=861094 |doi=10.3389/fphar.2022.861094 |pmid=35721194 |pmc=9198498 |issn=1663-9812|doi-access=free }}</ref><ref>{{cite book |last1=Schlicker |first1=Eberhard |last2=Kathmann |first2=Markus |title=Histamine and Histamine Receptors in Health and Disease |date=2017 |publisher=Springer International Publishing |isbn=978-3-319-58194-1 |pages=277–299 |language=en |chapter=Role of the Histamine H3 Receptor in the Central Nervous System}}</ref>


==參考文獻==
==參考文獻==

2023年8月16日 (三) 13:59的版本

神经增强(英語:Neuroenhancement)或认知增强(英語:cognitive enhancement),是指對已知無任何精神疾病的健康人身上,通過應用神經生物學研究成果,有針對性地增強或擴展其認知與情感能力,算是個概括性的術語。[1][2][3][4][5][6][7]通過藥物或非藥物方法來改善神經功能,或是超出了维持或恢复健康所必需的范围,而旨在改善人类形态或機能的干预措施,以及伴随这些目标和做法的神經倫理學英语Neuroethics討論。[8][9]

尽管广义上的認知增強剂,還包括使用被认为不健康或有严重副作用的精神活性物质,但神经增強剂仍能几乎不会产生副作用的可靠地为健康人带来超出正常功能的大量认知、社交、心理、情绪或运动方面的益处。[9][7]促智藥包括莫达非尼[13]假馬齒莧[19]磷脂酰丝氨酸[6]咖啡因[27]等已被证实有健脑功效的药物,與用于治疗神经系统疾病的其他药物。

通过非药物措施来改善认知能力的方法,包括行为方法[28](活动、技巧和改变)、非侵入性脑刺激技术(已被用于改善各种认知和情感功能)和脑机接口(在扩展运动和认知能力方面具有很大潜力)。[29]

药物方法

PubMed上搜索title或abstract中包含 “nootropic”或“smart drug”的研究和摘要的搜索结果指标;[30]许多有关促智药的研究未被收录到PubMed,而有些被收录的研究也并非主要针对这类主题

有许多包括智能药物与膳食补充剂在内的促智药,与神经或认知增强有关,但许多营养剂在健康人身上起效小,副作用大。最常见、最流行[31][32]或最起效最显著的神经增强剂包括莫达菲尼哌醋甲酯利他林),此类药或可能产生显著的促智效果(或至少与咖啡因效果相同或相似)。[33][12][9][9]

一般的兴奋剂[20][22]和各种抗失智药英语Dementia#Medications[20][22][34][35]抗焦虑药[34]神入感激發劑英语Empathogen–entactogen[36]、各种微量用剂英语microdosing(主要用微剂量迷幻剂英语Psychedelic microdosing[36][37][38][39]、及抗抑郁药[20][22],尽管或不被认为是属促智药之范围,但或从属于神经增强的范畴。

尽管神经增强剂通常是在临床或技术领域取得成功后才被考虑投入使用,但其也常被用于帮助缺乏如社交技能与共情能力在内的,正常认知、运动和情感能力的个体。此种情况下,神经增强药物试图增加催产素,降低皮质醇水平,以帮助个体提高沟通与社交能力。[5][40]

神经增强不仅涉及强化短期和长期的智力(通常由各种类型的评估确定)、学习能力(如记忆强化)、专注沉浸能力[9][41][42][43][40],及通过各类心理测量所体现的指标,而且还涉及:

增强剂有生化、物理和行为层面上不同的增强策略。[64]乙醯半胱氨酸,一种低副作用的认知增强剂,与改善不健康的物质使用[51][52][65]或稳定情绪都有关系[66][67][68][69][70]

莫達非尼

莫达非尼的3D结构
PubMed使用title或abstract筛选检索“Modafinil”的检索结果指标[71]

莫达非尼觉醒促进剂英语Wakefulness-promoting agent之一,能减轻疲劳、提高警惕、减少白天过度嗜睡英语Excessive daytime sleepiness症状与改善情绪。[4][5][10]莫达非尼目前获准用于治疗嗜睡症睡眠呼吸暂停轮班工作睡眠紊乱等疾病,[2][5]目前也正被美国空军采用,以用于减轻机组人员执行长时间任务所带来的疲劳。莫达非尼在普通大众中也越来越受欢迎,在《自然》杂志进行的一次在线调查中,1400名读者中就有8.8%承认出于非医疗原因使用莫达非尼。他们使用莫达非尼的理由是为了提高注意力和对特定任务的专注度,或者是为了抵御睡眠不足和倒时差[2]若将莫达非尼销售量与患者人数进行比较发现,两者的比例失调,表明对莫达非尼的滥用现象严重。[2]

莫达非尼被报告出,可以改善非有失眠症状的健康个体的执行能力,或改善注意力、学习能力与记忆力[1]而莫达非尼对睡眠不足者的作用更为显著:单一剂量就已能提高清醒度、执行能力与记忆力。[10]在持续睡眠不足的情况下,重复服用莫达非尼有助于保持比安慰剂更高的清醒水平,但对改善注意力和执行能力没有帮助。[2][10]由于此类试验大多针对军人进行,因而还需进一步研究莫达非尼对普通人群的影响。莫达非尼或会损害人的自我监控能力,研究发现的常见趋势之一是:参与者对自己在认知测试中的表现评价高于实际水平,这表明存在「自负」效应。[2]

莫达非尼在普通人群中也越来越受欢迎,[8]除了希望借此改善自身神经系统性能,给药厂带来的经济利益也是原因之一。每年,莫达非尼的市场份额就超过7亿美元,表明除医用外的份额很高。[4]莫达非尼也是目前市场上,比较容易买到的神经增强药物之一。莫达非尼可以从许多网站(大多产自亚洲国家)或暗网市场上买到。[4][72][73]莫达非尼首次引起公众注意是在2003年田径世锦赛上,世界冠军长跑运动员凯莉·怀特因非法服用莫达非尼,被检测出阳性反应,因此也失去了两枚金牌。[4]

派醋甲酯

派醋甲酯的3D结构

哌醋甲酯(MPH)又名利他林,是兴奋剂,用于治疗注意力缺陷多动障碍(ADHD)。但众所周知,哌醋甲酯在普通人群——尤其是在大学生中被大量滥用。[2][4]在《自然》杂志开展的一次在线调查中,1400名读者中有12.4%承认出于非医疗原因使用哌醋甲酯,使用MPH的理由是为了提高注意力、改善睡眠不足和倒时差[2]

将MPH销售量与患者人数进行比较后发现,两者的比例失调,表明滥用现象严重。[2]MPH被认为对巩固记忆有积极作用,尽管研究未能最终证实此说法。[2][10]流行观点认为MPH能增强注意力,但这一观点同样未能得到证实。[2][10]MPH的研究报告指出,MPH能提高解题能力。然而,当重复研究以期复现结果时,安慰剂组的得分更高,这表明MPH甚至会损害成绩。[4]这些不确定的、普遍负面的记忆力改善研究结果,不足以解释出于非医疗用途使用MPH的原因。除了用于改善神经机能外,用药者还可能有其他动机,如主观和娱乐效果等,而这推动了其在无处方的情况下用药。[2]

美金剛胺

美金剛胺,一种NMDA受体拮抗剂,用于治疗中至重度阿尔茨海默病患者,但也被用作神经增强药物。[3]由于此类研究,大多是对美金刚的单剂量测试,而因此类药物,只有在持续摄入后才会显示出某些无论积极或消极的效果。因而,在此之前,单剂量美金刚研究不足以揭示该药物的实际潜力。[3]

多奈哌齊

多奈哌齐,一种乙酰胆碱酯酶抑制剂(AChEI),用于治疗轻至中度阿尔茨海默病患者。虽然,许多乙酰胆碱酯酶抑制剂都可能是潜在的神经增强物质,但因多奈哌齐被广泛用于治疗阿尔茨海默病,因而在普通人群中是属最常用的乙酰胆碱酯酶抑制剂。[3]

关于多奈哌齐的大多数研究都无法最终验证该药物具有神经增强的能力,[3]尽管这些研究中,服用多奈哌齐的参与者组得分高于服用安慰剂的参与者组。多奈哌齐能帮助患者保持训练任务、言语记忆和外显记忆。[3]在睡眠剥夺研究中,虽然多奈哌齐对休息良好的个体没有影响,但对被睡眠剥夺24小时的个体有积极影响,记忆力和注意力都得到了提高;若非如此,在如此睡眠不足的境地下,其记忆力和注意力就会出现缺陷。[3]不过,值得注意的是,此种效果仅出现在因睡眠不足,而成绩明显下降的人身上。[3]

研究和潜力药物

有关神经增强的研究数量指标(PubMed检索结果,通过titles与abstracts检索)[74]

有相关研究探索了现有认知增强剂的衍生物,这些衍生物具有或可能具有更高的生物利用度,如乙醯半胱胺酸的衍生物N-乙酰-L-胱氨酸英语Acetylcysteinamide,和其他生物利用度增强策略。[75][76]另一种增强药效、效力或选择性(selectivity)的方法是改进给药方式,[77][78]开辟更多给药途径,如通过奈米乳液英语nanoemulsion鼻内给药英语Drug delivery to the brain("nose-to-brain" drug deliver),[79]或假设通过脑部植入给药。[80]

半衰期或也是研发课题之一。如,尽管莫达非尼能显著提高人的警觉性,但其半衰期长达约13小时,[81]会延迟或影响入睡时间与睡眠[82][21]而目前市面上,也还没有短效的莫达非尼。根据2009年的两项研究,阿莫达非尼的消除速度,比外消旋莫达非尼的S-异构体慢约三倍。[83][81]

研究还可能围绕以下问题进行英语Research question

腦內生物工程

短期内,无法用于人类的高级认知增强技术,可以建立在设计受体的研究基础上,並通过蛋白质激活或抑制神经元,如使用药物遗传学技术英语Receptor activated solely by a synthetic ligand[105] 经过基因改造神经元可将外部元件与神经连接。[106]2020年,研究人員報告稱,通过生物工程秀麗隱桿線蟲進行了改造,使其能够在脑细胞中合成、制造和组装生物電子材料英语Bioelectronics,实现了对特定神经元群膜特性的调控,以及操纵活体动物的行为。[107][108][109]

如果有机神经形态设备达到一定程度,并具有生物相容性,就有可能實現新型大腦植入物。[110]还有有關潜在的可植入式物理人工神经元的研究。[111][112]基因工程干细胞培育的神经组织的生物移植也有可能实现,[113]另种方法是透過濕件計算機英语Wetware computer達成。

膳食成分和补充剂

健腦食品所含各種化合物,以草藥或分離物形式攝入,如:桂皮[114]可可粉[115][44][116][117][91] 花色素苷(如於 山桑子西洋接骨木之中)、[118]硝酸盐(如於紅菜頭之中)、[91]蜂蜜[119]多酚(存在於許多水果和蔬菜之中)、[91][120][121][122]儿茶素[123][124] L-多巴[42]苯丙氨酸[125][126]酪氨酸,[127][87]苯乙胺[128]類胡蘿蔔素番茄紅素(於番茄醬中)[128]茶氨酸[129][89][90]芹菜素(和洋甘菊)、[130][131][132][117][126]草本茶(尤為香蜂花迷迭香辣薄荷含咖啡因的飲料英语Caffeinated drink)、[133][134][135][136][26][126]红景天[77][85][126][137][138]肌酸[139][140][141]Ω-3脂肪酸(如,藻類提取物英语Algaculture[146]以及纠正普遍存有的微量营养素缺乏症[147][148][149][150][126][151]研究其對健康年輕人認知能力,可能产生的微小,但显著的影响或叠加影响。

膳食中的葡萄糖(及其糖原形態)是大脑的主要能量来源,尽管直接摄入葡萄糖会影响健康,但一些研究人员认为葡萄糖是種「生化增强剂」,需要持續補充,但以單醣補充,会使血糖飙升,且其提供的葡萄糖供应,也不会持续太久。与快速吸收或高GI食物相比,吸收缓慢的含碳水化合物食物或低GI食物释放葡萄糖的速度较慢。[152][91][64][126]尽管脑葡萄糖代谢与神经退行性疾病有关,但有关脑葡萄糖代谢与认知能力之间联系的研究却很少。[153]乳酸(尤其是在特定类型的运动中释放)也可能与认知能力的提高有关。[154][155][156]

Medications

Notable potentially viable pharmacological agents – as final products or as prototypes for similar ones – under early-stage research with potential for substantial effect sizes for specific purposes in specific situations (such as learning periods) also in healthy non-old humans but, in at least most cases, largely unknown effects in humans and safety profiles (and consequently not widely used or not used at all): orexin-A,[157] FGL, PTEN-PDZ, and PI3K-activator PTD4-PI3KAc,[158] dihexa,[159][160][161] d-cycloserine,[162][163][164][40][165] DAT blockers CE-123 and CE-158,[166] ampakines like IDRA-21 and CX717,[167][168][40][126][169] rapastinel,[170][171][172] ISRIB,[173][174] citicoline,[175] selective receptor modulators such as MRK-016 which targets subtypes of GABAA receptors,[176] modafinil-analogs CRL-40,940 and modafiendz,[100] modafinil-inspired/hybrid TRIs JZ-IV-10 and JZAD-IV-22,[177][178][179] TAK-925 (orexin agonist that promotes wakefulness in ways similar to modafinil),[180][181] wakefulness-inducing or procognitive narcolepsy medication candidates like samelisant,[182][183] pterostilbene,[184][185] CRM acyl-ghrelin mimetics and agonists like ibutamoren,[186][187] and H3 receptor antagonist pitolisant.[188][182][189]

參考文獻

引用

  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Battleday, Ruairidh; Brem, Anna-Katharine. Modafinil for cognitive neuroenhancement in healthy non-sleep-deprived subjects: a systematic review. European Neuropsychopharmacology. 28 July 2015, 25 (11): 1865–1881. PMID 26381811. S2CID 23319688. doi:10.1016/j.euroneuro.2015.07.028. 
  2. ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 Repantis, Dimitris; Schlattmann, Peter. Modafinil and methylphenidate for neuroenhancement in healthy individuals: A systematic review. Pharmacological Research. 2010, 62 (3): 187–206. PMID 20416377. doi:10.1016/j.phrs.2010.04.002. 
  3. ^ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Repantis, Dimitris. Acetylcholinesterase inhibitors and memantine for neuroenhancement in healthy individuals: A systematic review. Pharmacological Research. June 2010, 61 (6): 473–481. PMID 20193764. doi:10.1016/j.phrs.2010.02.009. 
  4. ^ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Normann, Claus; Berger, Mathias. Neuroenhancement: status quo and perspectives (PDF). European Archives of Psychiatry and Clinical Neuroscience. November 2008, 258: 110–114 [2023-08-13]. PMID 18985306. S2CID 9733191. doi:10.1007/s00406-008-5022-2. (原始内容存档 (PDF)于2019-11-21). [1]页面存档备份,存于互联网档案馆
  5. ^ 5.0 5.1 5.2 5.3 5.4 Normann, Claus; Nissen, C. Neuroenhancement strategies for psychiatric disorders: rationale, status quo and perspectives. European Archives of Psychiatry and Clinical Neuroscience. November 2012, 262: 113–116. PMID 22932721. S2CID 42536705. doi:10.1007/s00406-012-0356-1. 
  6. ^ 6.0 6.1 Ott, R. Neuroenhancement - perspectives of Swiss psychiatrists and general practitioners. Swiss Medical Weekly. 2012, 142: w13707. PMID 23254869. doi:10.4414/smw.2012.13707可免费查阅. 
  7. ^ 7.0 7.1 7.2 7.3 7.4 7.5 doi:10.1016/j.psychres.2015.07.006
    {{cite doi}}已停用,请参见{{cite journal}}。 引证错误:带有name属性“10.1016/j.psychres.2015.07.006”的<ref>标签用不同内容定义了多次
  8. ^ 8.0 8.1 Veit, Walter. Cognitive Enhancement and the Threat of Inequality. Journal of Cognitive Enhancement. 2018, 2 (4): 404–410. S2CID 158643005. doi:10.1007/s41465-018-0108-x可免费查阅. 
  9. ^ 9.0 9.1 9.2 9.3 9.4 9.5 Franke, A. G.; Northoff, R.; Hildt, E. The Case of Pharmacological Neuroenhancement: Medical, Judicial and Ethical Aspects from a German Perspective. Pharmacopsychiatry. November 2015, 48 (7): 256–264. PMID 26252723. S2CID 7179775. doi:10.1055/s-0035-1559640. 
  10. ^ 10.0 10.1 10.2 10.3 10.4 10.5 Ragan, Ian; Bard, I; Singh, I; Independent Scientific Committee on Drugs. What should we do about student use of cognitive enhancers? An analysis of current evidence. Neuropharmacology. February 2013, 64: 588–595. PMID 22732441. S2CID 207227699. doi:10.1016/j.neuropharm.2012.06.016. 
  11. ^ Mereu, Maddalena; Bonci, Antonello; Newman, Amy Hauck; Tanda, Gianluigi. The neurobiology of modafinil as an enhancer of cognitive performance and a potential treatment for substance use disorders. Psychopharmacology. 1 October 2013, 229 (3): 415–434. ISSN 1432-2072. PMC 3800148可免费查阅. PMID 23934211. doi:10.1007/s00213-013-3232-4 (英语). 
  12. ^ 12.0 12.1 12.2 12.3 12.4 Al-Shargie, Fares; Tariq, Usman; Mir, Hasan; Alawar, Hamad; Babiloni, Fabio; Al-Nashash, Hasan. Vigilance Decrement and Enhancement Techniques: A Review. Brain Sciences. August 2019, 9 (8): 178. ISSN 2076-3425. PMC 6721323可免费查阅. PMID 31357524. doi:10.3390/brainsci9080178可免费查阅 (英语). 
  13. ^ [1][4][5][10][11][12]
  14. ^ Kongkeaw, Chuenjid; Dilokthornsakul, Piyameth; Thanarangsarit, Phurit; Limpeanchob, Nanteetip; Norman Scholfield, C. Meta-analysis of randomized controlled trials on cognitive effects of Bacopa monnieri extract. Journal of Ethnopharmacology. 10 January 2014, 151 (1): 528–535. ISSN 0378-8741. PMID 24252493. doi:10.1016/j.jep.2013.11.008 (英语). 
  15. ^ Aguiar, Sebastian; Borowski, Thomas. Neuropharmacological Review of the Nootropic Herb Bacopa monnieri. Rejuvenation Research. 1 August 2013, 16 (4): 313–326. ISSN 1549-1684. PMC 3746283可免费查阅. PMID 23772955. doi:10.1089/rej.2013.1431. 
  16. ^ 16.0 16.1 Lorca, Cristina; Mulet, María; Arévalo-Caro, Catalina; Sanchez, M. Ángeles; Perez, Ainhoa; Perrino, María; Bach-Faig, Anna; Aguilar-Martínez, Alicia; Vilella, Elisabet; Gallart-Palau, Xavier; Serra, Aida. Plant-derived nootropics and human cognition: A systematic review. Critical Reviews in Food Science and Nutrition. 3 January 2022: 1–25. PMID 34978226. S2CID 245651213. doi:10.1080/10408398.2021.2021137. 
  17. ^ Kean, James D.; Downey, Luke A.; Stough, Con. Systematic Overview of Bacopa monnieri (L.) Wettst. Dominant Poly-Herbal Formulas in Children and Adolescents. Medicines. December 2017, 4 (4): 86. ISSN 2305-6320. PMC 5750610可免费查阅. PMID 29165401. doi:10.3390/medicines4040086可免费查阅 (英语). 
  18. ^ Lorca, Cristina; Mulet, María; Arévalo-Caro, Catalina; Sanchez, M. Ángeles; Perez, Ainhoa; Perrino, María; Bach-Faig, Anna; Aguilar-Martínez, Alicia; Vilella, Elisabet; Gallart-Palau, Xavier; Serra, Aida. Plant-derived nootropics and human cognition: A systematic review. Critical Reviews in Food Science and Nutrition. 3 January 2022: 1–25. ISSN 1040-8398. PMID 34978226. S2CID 245651213. doi:10.1080/10408398.2021.2021137. 
  19. ^ [14][15][16][17][18]
  20. ^ 20.0 20.1 20.2 20.3 Franke, A.G.; Lieb, K. Pharmakologisches Neuroenhancement und "Hirndoping". Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz. 1 August 2010, 53 (8): 853–860. ISSN 1437-1588. PMID 20700786. doi:10.1007/s00103-010-1105-0 (德语). 
  21. ^ 21.0 21.1 21.2 doi:10.52586/4948
    {{cite doi}}已停用,请参见{{cite journal}}。
  22. ^ 22.0 22.1 22.2 22.3 Losch, D.; Schulze, J. Neuroenhancement. Zentralblatt für Arbeitsmedizin, Arbeitsschutz und Ergonomie. 1 November 2019, 69 (6): 368–371. ISSN 2198-0713. S2CID 240645044. doi:10.1007/s40664-019-0340-y (德语). 
  23. ^ Iglseder, Bernhard. Doping für das Gehirn. Zeitschrift für Gerontologie und Geriatrie. 1 February 2018, 51 (2): 143–148. ISSN 1435-1269. PMID 29209802. doi:10.1007/s00391-017-1351-y (德语). 
  24. ^ Caviola, Lucius; Faber, Nadira S. Pills or Push-Ups? Effectiveness and Public Perception of Pharmacological and Non-Pharmacological Cognitive Enhancement. Frontiers in Psychology. 2015, 6: 1852. ISSN 1664-1078. PMC 4667098可免费查阅. PMID 26696922. doi:10.3389/fpsyg.2015.01852可免费查阅. 
  25. ^ 25.0 25.1 Daubner, Johanna; Arshaad, Muhammad Imran; Henseler, Christina; Hescheler, Jürgen; Ehninger, Dan; Broich, Karl; Rawashdeh, Oliver; Papazoglou, Anna; Weiergräber, Marco. Pharmacological Neuroenhancement: Current Aspects of Categorization, Epidemiology, Pharmacology, Drug Development, Ethics, and Future Perspectives. Neural Plasticity. 13 January 2021, 2021: 1–27. ISSN 1687-5443. PMC 7817276可免费查阅. PMID 33519929. doi:10.1155/2021/8823383可免费查阅 (英语). 
  26. ^ 26.0 26.1 26.2 doi:10.1097/YIC.0000000000000172
    {{cite doi}}已停用,请参见{{cite journal}}。
  27. ^ [20][9][12][21][22][16][23][24][25][26]
  28. ^ Jangwan, Nitish Singh; Ashraf, Ghulam Md; Ram, Veerma; Singh, Vinod; Alghamdi, Badrah S.; Abuzenadah, Adel Mohammad; Singh, Mamta F. Brain augmentation and neuroscience technologies: current applications, challenges, ethics and future prospects. Frontiers in Systems Neuroscience. 2022, 16. PMC 9538357可免费查阅. PMID 36211589. doi:10.3389/fnsys.2022.1000495可免费查阅. 
  29. ^ Nair, Prashant. Brain–machine interface. Proceedings of the National Academy of Sciences. 2013-11-12, 110 (46): 18343. Bibcode:2013PNAS..11018343N. ISSN 0027-8424. PMC 3831969可免费查阅. PMID 24222678. doi:10.1073/pnas.1319310110可免费查阅. 
  30. ^ "nootropic"[Title/Abstract] OR "smart drug"[Title/Abstract] - Search Results - PubMed. PubMed. [20 March 2023] (英语). 
  31. ^ Wood, Suzanne; Sage, Jennifer R.; Shuman, Tristan; Anagnostaras, Stephan G. Psychostimulants and Cognition: A Continuum of Behavioral and Cognitive Activation. Pharmacological Reviews. 1 January 2014, 66 (1): 193–221. ISSN 0031-6997. PMC 3880463可免费查阅. PMID 24344115. doi:10.1124/pr.112.007054 (英语). 
  32. ^ Schifano, Fabrizio; Catalani, Valeria; Sharif, Safia; Napoletano, Flavia; Corkery, John Martin; Arillotta, Davide; Fergus, Suzanne; Vento, Alessandro; Guirguis, Amira. Benefits and Harms of 'Smart Drugs' (Nootropics) in Healthy Individuals. Drugs. 1 April 2022, 82 (6): 633–647. ISSN 1179-1950. PMID 35366192. S2CID 247860331. doi:10.1007/s40265-022-01701-7 (英语). 
  33. ^ Wingelaar-Jagt, Yara Q.; Bottenheft, Charelle; Riedel, Wim J.; Ramaekers, Johannes G. Effects of modafinil and caffeine on night-time vigilance of air force crewmembers: A randomized controlled trial. Journal of Psychopharmacology. February 2023, 37 (2): 172–180. ISSN 0269-8811. PMC 9912306可免费查阅. PMID 36515156. doi:10.1177/02698811221142568 (英语). 
  34. ^ 34.0 34.1 34.2 Graf, William D.; Nagel, Saskia K.; Epstein, Leon G.; Miller, Geoffrey; Nass, Ruth; Larriviere, Dan. Pediatric neuroenhancement: Ethical, legal, social, and neurodevelopmental implications. Neurology. 26 March 2013, 80 (13): 1251–1260. ISSN 0028-3878. PMID 23486879. S2CID 207122859. doi:10.1212/WNL.0b013e318289703b (英语). 
  35. ^ 35.0 35.1 Weiergräber, Marco; Ehninger, Dan; Broich, Karl. Neuroenhancement and mood enhancement – Physiological and pharmacodynamical background. Medizinische Monatsschrift für Pharmazeuten. 1 April 2017, 40 (4): 154–164. ISSN 0342-9601. PMID 29952165. 
  36. ^ 36.0 36.1 36.2 Marazziti, Donatella; Avella, Maria Teresa; Ivaldi, Tea; Palermo, Stefania; Massa, Lucia; Della Vecchia, Alessandra; Basile, Lucia; Mucci, Federico. Neuroenhancement: state of the art and future perspectives. Clinical Neuropsychiatry. June 2021, 18 (3): 137–169. PMC 8629054可免费查阅. PMID 34909030. doi:10.36131/cnfioritieditore20210303. 
  37. ^ 37.0 37.1 37.2 doi:10.1111/bph.13813
    {{cite doi}}已停用,请参见{{cite journal}}。
  38. ^ 38.0 38.1 38.2 Brühl, Annette B.; d'Angelo, Camilla; Sahakian, Barbara J. Neuroethical issues in cognitive enhancement: Modafinil as the example of a workplace drug?. Brain and Neuroscience Advances. January 2019, 3: 239821281881601. PMC 7058249可免费查阅. PMID 32166175. doi:10.1177/2398212818816018. 
  39. ^ Bornemann, Joel. The Viability of Microdosing Psychedelics as a Strategy to Enhance Cognition and Well-being - An Early Review. Journal of Psychoactive Drugs. 7 August 2020, 52 (4): 300–308. ISSN 0279-1072. PMID 32362269. S2CID 218493319. doi:10.1080/02791072.2020.1761573. 
  40. ^ 40.0 40.1 40.2 40.3 40.4 40.5 40.6 40.7 40.8 doi:10.1016/j.neubiorev.2007.12.001
    {{cite doi}}已停用,请参见{{cite journal}}。
  41. ^ 41.0 41.1 41.2 doi:10.1098/rstb.2014.0214
    {{cite doi}}已停用,请参见{{cite journal}}。
  42. ^ 42.0 42.1 42.2 42.3 42.4 42.5 Brühl, Annette B.; Sahakian, Barbara J. Drugs, games, and devices for enhancing cognition: implications for work and society. Annals of the New York Academy of Sciences. 2016, 1369 (1): 195–217. Bibcode:2016NYASA1369..195B. PMID 27043232. S2CID 5111793. doi:10.1111/nyas.13040. 
  43. ^ doi:10.1016/j.ejphar.2018.08.008
    {{cite doi}}已停用,请参见{{cite journal}}。
  44. ^ 44.0 44.1 Tuenter, Emmy; Foubert, Kenn; Pieters, Luc. Mood Components in Cocoa and Chocolate: The Mood Pyramid. Planta Medica. August 2018, 84 (12/13): 839–844. ISSN 0032-0943. PMID 29539647. S2CID 3912460. doi:10.1055/a-0588-5534 (英语). 
  45. ^ Marcora, Samuele. Can Doping be a Good Thing? Using Psychoactive Drugs to Facilitate Physical Activity Behaviour. Sports Medicine. 1 January 2016, 46 (1): 1–5. ISSN 1179-2035. PMID 26497149. S2CID 13448073. doi:10.1007/s40279-015-0412-x (英语). 
  46. ^ 46.0 46.1 Porsdam Mann, Sebastian; Sahakian, Barbara J. The increasing lifestyle use of modafinil by healthy people: safety and ethical issues. Current Opinion in Behavioral Sciences. 1 August 2015, 4: 136–141. ISSN 2352-1546. S2CID 53198934. doi:10.1016/j.cobeha.2015.05.004 (英语). 
  47. ^ Mun, Monique; Wong, Andrew. Kratom and Phenibut: A Concise Review for Psychiatric Trainees. American Journal of Psychiatry Residents' Journal. 14 December 2020, 16 (2): 6–8. ISSN 2474-4662. S2CID 230589322. doi:10.1176/appi.ajp-rj.2020.160203 (英语). 
  48. ^ Peele, Stanton; Brodsky, Archie. Exploring psychological benefits associated with moderate alcohol use: a necessary corrective to assessments of drinking outcomes?. Drug and Alcohol Dependence. 10 November 2000, 60 (3): 221–247. ISSN 0376-8716. PMID 11053757. doi:10.1016/S0376-8716(00)00112-5 (英语). 
  49. ^ Wudarczyk, Olga A.; Earp, Brian D.; Guastella, Adam; Savulescu, Julian. Could intranasal oxytocin be used to enhance relationships? Research imperatives, clinical policy, and ethical considerations. Current Opinion in Psychiatry. September 2013, 26 (5): 474–484. PMC 3935449可免费查阅. PMID 23880593. doi:10.1097/YCO.0b013e3283642e10. 
  50. ^ Buckner, Julia D.; Morris, Paige E.; Abarno, Cristina N.; Glover, Nina I.; Lewis, Elizabeth M. Biopsychosocial Model Social Anxiety and Substance Use Revised. Current Psychiatry Reports. 17 April 2021, 23 (6): 35. ISSN 1535-1645. PMID 33864136. S2CID 233261493. doi:10.1007/s11920-021-01249-5 (英语). 
  51. ^ 51.0 51.1 Peltier, MacKenzie R.; Sofuoglu, Mehmet. Chapter 23 - Pharmacological cognitive enhancers. Cognition and Addiction. Academic Press. 1 January 2020: 303–320. ISBN 978-0-12-815298-0 (英语). 
  52. ^ 52.0 52.1 Brady, Kathleen T.; Gray, Kevin M.; Tolliver, Bryan K. Cognitive enhancers in the treatment of substance use disorders: Clinical evidence. Pharmacology Biochemistry and Behavior. 1 August 2011, 99 (2): 285–294. ISSN 0091-3057. PMC 3114106可免费查阅. PMID 21557964. doi:10.1016/j.pbb.2011.04.017 (英语). 
  53. ^ Kampman, Kyle M. The treatment of cocaine use disorder. Science Advances. 4 October 2019, 5 (10): eaax1532. Bibcode:2019SciA....5.1532K. ISSN 2375-2548. PMC 6795516可免费查阅. PMID 31663022. doi:10.1126/sciadv.aax1532 (英语). 
  54. ^ Fluyau, Dimy; Cook, Sarah Clare; Chima, Ashmeer; Kailasam, Vasanth Kattalai; Revadigar, Neelambika. Pharmacological management of psychoactive substance withdrawal syndrome. Drugs & Therapy Perspectives. 1 November 2021, 37 (11): 519–535. ISSN 1179-1977. S2CID 244583239. doi:10.1007/s40267-021-00874-7 (英语). 
  55. ^ 引证错误:没有为名为ERLN的参考文献提供内容
  56. ^ 56.0 56.1 Beda, Zsolt; Smith, Steven M.; Orr, Joseph. Creativity on demand – Hacking into creative problem solving. NeuroImage. 1 August 2020, 216: 116867. ISSN 1053-8119. PMID 32325208. S2CID 215823256. doi:10.1016/j.neuroimage.2020.116867 (英语). 
  57. ^ 57.0 57.1 引证错误:没有为名为10.1016/j.phrs.2008.02.004的参考文献提供内容
  58. ^ Neuroenhancement in Military Personnel: Conceptual and Methodological Promises and Challenge. [10 March 2023] (英语). 
  59. ^ Tennison, Michael N.; Moreno, Jonathan D. Neuroenhancement and Therapy in National Defense Contexts. The Routledge Handbook of Neuroethics. 2017: 150–165. ISBN 9781315708652. doi:10.4324/9781315708652-12. 
  60. ^ 60.0 60.1 60.2 Crawford, Cindy; Teo, Lynn; Lafferty, Lynn; Drake, Angela; Bingham, John J.; Gallon, Matthew D.; O'Connell, Meghan L.; Chittum, Holly K.; Arzola, Sonya M.; Berry, Kevin. Caffeine to optimize cognitive function for military mission-readiness: a systematic review and recommendations for the field. Nutrition Reviews. June 2017, 75 (suppl_2): 17–35. PMID 28969341. doi:10.1093/nutrit/nux007. 
  61. ^ 61.0 61.1 Bagot, Kara Simone; Kaminer, Yifrah. Efficacy of stimulants for cognitive enhancement in non-attention deficit hyperactivity disorder youth: a systematic review. Addiction. 2014, 109 (4): 547–557. PMC 4471173可免费查阅. PMID 24749160. doi:10.1111/add.12460. 
  62. ^ Mahdiani, Hamideh; Ungar, Michael. Can biomedical and cognitive enhancement increase psychological resilience?. Canadian Psychology. August 2021, 62 (3): 295–303. ISSN 1878-7304. S2CID 216387797. doi:10.1037/cap0000217 (英语). 
  63. ^ Budde, Henning; Wegner, Mirko. The Exercise Effect on Mental Health: Neurobiological Mechanisms. CRC Press. 17 April 2018. ISBN 978-1-4987-3953-5 (英语). 
  64. ^ 64.0 64.1 64.2 64.3 64.4 Dresler, Martin; Sandberg, Anders; Bublitz, Christoph; Ohla, Kathrin; Trenado, Carlos; Mroczko-Wąsowicz, Aleksandra; Kühn, Simone; Repantis, Dimitris. Hacking the Brain: Dimensions of Cognitive Enhancement. ACS Chemical Neuroscience. 20 March 2019, 10 (3): 1137–1148. ISSN 1948-7193. PMC 6429408可免费查阅. PMID 30550256. doi:10.1021/acschemneuro.8b00571 (英语). 
  65. ^ Sherman, Brian J.; McRae-Clark, Aimee L. Treatment of Cannabis Use Disorder: Current Science and Future Outlook. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. May 2016, 36 (5): 511–535. PMC 4880536可免费查阅. PMID 27027272. doi:10.1002/phar.1747 (英语). 
  66. ^ Bortolato, Beatrice; Miskowiak, Kamilla W.; Köhler, Cristiano A.; Maes, Michael; Fernandes, Brisa S.; Berk, Michael; Carvalho, André F. Cognitive remission: a novel objective for the treatment of major depression?. BMC Medicine. 22 January 2016, 14 (1): 9. ISSN 1741-7015. PMC 4724131可免费查阅. PMID 26801406. doi:10.1186/s12916-016-0560-3. 
  67. ^ Ooi, Soo Liang; Green, Ruth; Pak, Sok Cheon. N-Acetylcysteine for the Treatment of Psychiatric Disorders: A Review of Current Evidence. BioMed Research International. 22 October 2018, 2018: e2469486. ISSN 2314-6133. PMC 6217900可免费查阅. PMID 30426004. doi:10.1155/2018/2469486可免费查阅 (英语). 
  68. ^ Nery, Fabiano G.; Li, Wenbin; DelBello, Melissa P.; Welge, Jeffrey A. N-acetylcysteine as an adjunctive treatment for bipolar depression: A systematic review and meta-analysis of randomized controlled trials. Bipolar Disorders. 15 January 2021, 23 (7): 707–714. ISSN 1398-5647. PMID 33354859. S2CID 229692736. doi:10.1111/bdi.13039. 
  69. ^ Colpo, Gabriela D.; Leboyer, Marion; Dantzer, Robert; Trivedi, Mahdukar H.; Teixeira, Antonio L. Immune-based strategies for mood disorders: facts and challenges. Expert Review of Neurotherapeutics. 1 February 2018, 18 (2): 139–152. ISSN 1473-7175. PMC 5819337可免费查阅. PMID 29179585. doi:10.1080/14737175.2018.1407242. 
  70. ^ Fernandes, Brisa S.; Dean, Olivia M.; Dodd, Seetal; Malhi, Gin S.; Berk, Michael. N-Acetylcysteine in Depressive Symptoms and Functionality: A Systematic Review and Meta-Analysis. The Journal of Clinical Psychiatry. 27 April 2016, 77 (4): e457–66. ISSN 0160-6689. PMID 27137430. S2CID 40688371. doi:10.4088/JCP.15r09984 (English). 
  71. ^ "Modafinil"[Title/Abstract] - Search Results - PubMed. PubMed. [13 March 2023] (英语). 
  72. ^ Woolf, Nicky. Silk Road sentencing: why governments can't win the war on darknet drugs. The Guardian. 31 May 2015 [30 December 2016]. 
  73. ^ Valette, Jean-Jacques. Du commerce illicite à la liberté d'expression totale, on a plongé dans le darknet. We Demain. 9 September 2016 [30 December 2016]. 
  74. ^ ("enhance"[Title/Abstract] AND "cognition"[Title/Abstract]) OR ("neuroenhancement"[Title/Abstract]) OR ("cognitive enhancement"[Title/Abstract]) - Search Results - PubMed. PubMed. [13 March 2023] (英语). 
  75. ^ Hara, Y.; McKeehan, N.; Dacks, P. A.; Fillit, H. M. Evaluation of the neuroprotective potential of n-acetylcysteine for prevention and treatment of cognitive aging and dementia. Journal of Prevention of Alzheimer's Disease. 1 September 2017,. J Prev Alz Dis 20174 (3): 201–206. PMID 29182711. S2CID 45647979. doi:10.14283/jpad.2017.22. 
  76. ^ Zhao, Danyue; Simon, James E.; Wu, Qingli. A critical review on grape polyphenols for neuroprotection: Strategies to enhance bioefficacy. Critical Reviews in Food Science and Nutrition. 21 February 2020, 60 (4): 597–625. ISSN 1040-8398. PMID 30614258. S2CID 58598405. doi:10.1080/10408398.2018.1546668. 
  77. ^ 77.0 77.1 77.2 77.3 Onaolapo, Adejoke Yetunde; Obelawo, Adebimpe Yemisi; Onaolapo, Olakunle James. Brain Ageing, Cognition and Diet: A Review of the Emerging Roles of Food-Based Nootropics in Mitigating Age-related Memory Decline. Current Aging Science. 2019, 12 (1): 2–14. PMC 6971896可免费查阅. PMID 30864515. doi:10.2174/1874609812666190311160754 (英语). 
  78. ^ Ali, Fahad; Naz, Falaq; Jyoti, Smita; Siddique, Yasir Hasan. Health functionality of apigenin: A review. International Journal of Food Properties. 3 June 2017, 20 (6): 1197–1238. ISSN 1094-2912. S2CID 88642353. doi:10.1080/10942912.2016.1207188 (英语). 
  79. ^ Bonferoni, Maria Cristina; Rossi, Silvia; Sandri, Giuseppina; Ferrari, Franca; Gavini, Elisabetta; Rassu, Giovanna; Giunchedi, Paolo. Nanoemulsions for "Nose-to-Brain" Drug Delivery. Pharmaceutics. February 2019, 11 (2): 84. ISSN 1999-4923. PMC 6409749可免费查阅. PMID 30781585. doi:10.3390/pharmaceutics11020084可免费查阅 (英语). 
  80. ^ Kaurav, Hemlata; Kapoor, Deepak N. Implantable systems for drug delivery to the brain. Therapeutic Delivery. December 2017, 8 (12): 1097–1107. PMID 29125063. doi:10.4155/tde-2017-0082. 
  81. ^ 81.0 81.1 81.2 Darwish, Mona; Kirby, Mary; Hellriegel, Edward T.; Robertson, Philmore. Armodafinil and Modafinil Have Substantially Different Pharmacokinetic Profiles Despite Having the Same Terminal Half-Lives. Clinical Drug Investigation. 1 September 2009, 29 (9): 613–623. ISSN 1179-1918. PMID 19663523. S2CID 6607186. doi:10.2165/11315280-000000000-00000 (英语). 
  82. ^ 82.0 82.1 Sheng, Ping; Hou, Lijun; Wang, Xiang; Wang, Xiaowen; Huang, Chengguang; Yu, Mingkun; Han, Xi; Dong, Yan. Efficacy of Modafinil on Fatigue and Excessive Daytime Sleepiness Associated with Neurological Disorders: A Systematic Review and Meta-Analysis. PLOS ONE. 3 December 2013, 8 (12): e81802. Bibcode:2013PLoSO...881802S. PMC 3849275可免费查阅. PMID 24312590. doi:10.1371/journal.pone.0081802可免费查阅. 
  83. ^ Darwish, Mona; Kirby, Mary; Hellriegel, Edward T.; Yang, Ronghua; Robertson, Philmore. Pharmacokinetic Profile of Armodafinil in Healthy Subjects. Clinical Drug Investigation. 1 February 2009, 29 (2): 87–100. ISSN 1179-1918. PMID 19133704. S2CID 24886727. doi:10.2165/0044011-200929020-00003 (英语). 
  84. ^ Getting smart to cognitive enhancers. eClinicalMedicine. 1 May 2019, 11: 1–2. ISSN 2589-5370. PMC 6610764可免费查阅. PMID 31312801. S2CID 196810318. doi:10.1016/j.eclinm.2019.06.014 (English). 
  85. ^ 85.0 85.1 85.2 Malík, Matěj; Tlustoš, Pavel. Nootropics as Cognitive Enhancers: Types, Dosage and Side Effects of Smart Drugs. Nutrients. January 2022, 14 (16): 3367. ISSN 2072-6643. PMC 9415189可免费查阅. PMID 36014874. doi:10.3390/nu14163367可免费查阅 (英语). 
  86. ^ 引证错误:没有为名为10.3389/fnsys.2014.00090的参考文献提供内容
  87. ^ 87.0 87.1 Fernstrom, John D.; Fernstrom, Madelyn H. Tyrosine, Phenylalanine, and Catecholamine Synthesis and Function in the Brain. The Journal of Nutrition. 1 June 2007, 137 (6): S1539–S1547. ISSN 0022-3166. PMID 17513421. doi:10.1093/jn/137.6.1539S (英语). 
  88. ^ Riedel, Wim J; Klaassen, Tineke; Schmitt, Jeroen A. J. Tryptophan, mood, and cognitive function. Brain, Behavior, and Immunity. 1 October 2002, 16 (5): 581–589. ISSN 0889-1591. PMID 12401472. S2CID 42931109. doi:10.1016/S0889-1591(02)00013-2 (英语). [...] As noted above two experiments addressed the question how [acute tryptophan depletion (ATD)] affects cognitive functions in healthy individuals. These experiments shared one common dependent variable, which was the memory task. In the first study it was shown that ATD impaired long-term memory consolidation when a new word list was learned at 6 h after start of depletion [...] 
  89. ^ 89.0 89.1 Camfield, David A; Stough, Con; Farrimond, Jonathon; Scholey, Andrew B. Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: a systematic review and meta-analysis. Nutrition Reviews. August 2014, 72 (8): 507–522. PMID 24946991. doi:10.1111/nure.12120. 
  90. ^ 90.0 90.1 Sohail, Anas Anas; Ortiz, Fernando; Varghese, Teresa; Fabara, Stephanie P.; Batth, Arshdeep S.; Sandesara, Darshan P.; Sabir, Ahtesham; Khurana, Mahika; Datta, Shae; Patel, Urvish K.; Sohail, Anas Anas; Ortiz, Juan Fernando; Varghese, Teresa; Fabara, Stephanie P.; Batth, Arshdeep S.; Sandesara, Darshan P.; Sabir, Ahtesham; Khurana, Mahika; Datta, Shae; Patel, Urvish K. The Cognitive-Enhancing Outcomes of Caffeine and L-theanine: A Systematic Review. Cureus. 30 December 2021, 13 (12): e20828. ISSN 2168-8184. PMC 8794723可免费查阅. PMID 35111479. doi:10.7759/cureus.20828 (英语). 
  91. ^ 91.0 91.1 91.2 91.3 91.4 Meeusen, Romain; Decroix, Lieselot. Nutritional Supplements and the Brain. International Journal of Sport Nutrition and Exercise Metabolism. 1 March 2018, 28 (2): 200–211. ISSN 1543-2742. PMID 29252056. S2CID 4582295. doi:10.1123/ijsnem.2017-0314 (英语). 
  92. ^ Gunzelmann, Glenn; M. James, Stephen; Caldwell, Jo Lynn. Basic and applied science interactions in fatigue understanding and risk mitigation. Chapter 8 - Basic and applied science interactions in fatigue understanding and risk mitigation. Progress in Brain Research 246. Elsevier. 1 January 2019: 177–204. ISBN 9780444642509. PMID 31072561. S2CID 145885926. doi:10.1016/bs.pbr.2019.03.022 (英语). 
  93. ^ Young, Allan H. 'Memory, hither come': Psychopharmacology of memory and more. Journal of Psychopharmacology. June 2021, 35 (6): 619–620. ISSN 0269-8811. PMID 34039101. S2CID 235217295. doi:10.1177/02698811211021065 (英语). 
  94. ^ Gonzalez, Natalie A.; Sakhamuri, Navya; Athiyaman, Sreekartthik; Randhi, Bhawna; Gutlapalli, Sai Dheeraj; Pu, Jingxiong; Zaidi, Maheen F.; Patel, Maithily; Atluri, Lakshmi Malvika; Franchini, Ana P. Arcia; Gonzalez, Natalie A.; Sakhamuri, Navya; Athiyaman, Sreekartthik; Randhi, Bhawna; Gutlapalli, Sai Dheeraj; Pu, Jingxiong; Zaidi, Maheen F.; Patel, Maithily; Atluri, Lakshmi Malvika; Franchini, Ana P. Arcia. A Systematic Review of Yoga and Meditation for Attention-Deficit/Hyperactivity Disorder in Children. Cureus. 14 March 2023, 15 (3): e36143. ISSN 2168-8184. PMC 10101238可免费查阅. PMID 37065343. S2CID 257541572. doi:10.7759/cureus.36143 (英语). 
  95. ^ Baumel, Barry S.; Doraiswamy, P. Murali; Sabbagh, Marwan; Wurtman, Richard. Potential Neuroregenerative and Neuroprotective Effects of Uridine/Choline-Enriched Multinutrient Dietary Intervention for Mild Cognitive Impairment: A Narrative Review. Neurology and Therapy. 1 June 2021, 10 (1): 43–60. ISSN 2193-6536. PMC 8139993可免费查阅. PMID 33368017. doi:10.1007/s40120-020-00227-y (英语). 
  96. ^ Wurtman, Richard J; Cansev, Mehmet; Sakamoto, Toshimasa; Ulus, Ismael. Nutritional modifiers of aging brain function: use of uridine and other phosphatide precursors to increase formation of brain synapses: Nutrition Reviews, Vol. 68, No. s2. Nutrition Reviews. December 2010, 68 (Suppl 2): S88–S101. PMC 3062998可免费查阅. PMID 21091953. doi:10.1111/j.1753-4887.2010.00344.x. 
  97. ^ 97.0 97.1 Cardoso, Carlos; Afonso, Cláudia; Bandarra, Narcisa M. Dietary DHA and health: cognitive function ageing. Nutrition Research Reviews. December 2016, 29 (2): 281–294. ISSN 0954-4224. PMID 27866493. S2CID 4243219. doi:10.1017/S0954422416000184 (英语). 
  98. ^ 98.0 98.1 98.2 98.3 Van Puyvelde, Martine; Van Cutsem, Jeroen; Lacroix, Emilie; Pattyn, Nathalie. A State-of-the-Art Review on the Use of Modafinil as A Performance-enhancing Drug in the Context of Military Operationality. Military Medicine. 11 October 2021, 187 (11–12): 1286–1298. ISSN 0026-4075. PMID 34632515. doi:10.1093/milmed/usab398. 
  99. ^ 引证错误:没有为名为10.1002/wcs.1306的参考文献提供内容
  100. ^ 100.0 100.1 100.2 100.3 Sousa, Ana; Dinis-Oliveira, Ricardo Jorge. Pharmacokinetic and pharmacodynamic of the cognitive enhancer modafinil: Relevant clinical and forensic aspects. Substance Abuse. 2 April 2020, 41 (2): 155–173. ISSN 0889-7077. PMID 31951804. S2CID 210709160. doi:10.1080/08897077.2019.1700584. 
  101. ^ Minzenberg, Michael J; Carter, Cameron S. Modafinil: A Review of Neurochemical Actions and Effects on Cognition. Neuropsychopharmacology. June 2008, 33 (7): 1477–1502. PMID 17712350. S2CID 13752498. doi:10.1038/sj.npp.1301534. 
  102. ^ Hofmann, Stefan G.; Mundy, Elizabeth A.; Curtiss, Joshua; Hofmann, Stefan G.; Mundy, Elizabeth A.; Curtiss, Joshua. Neuroenhancement of Exposure Therapy in Anxiety Disorders. AIMS Neuroscience. 2015, 2 (3): 123–138. PMC 4545667可免费查阅. PMID 26306326. doi:10.3934/Neuroscience.2015.3.123. 
  103. ^ Zager, Adriano. Modulating the immune response with the wake-promoting drug modafinil: A potential therapeutic approach for inflammatory disorders. Brain, Behavior, and Immunity. 1 August 2020, 88: 878–886. ISSN 0889-1591. PMID 32311496. S2CID 215807973. doi:10.1016/j.bbi.2020.04.038 (英语). 
  104. ^ 引证错误:没有为名为10.1093/arclin/acw009的参考文献提供内容
  105. ^ Tennison, Michael N.; Moreno, Jonathan D. Neuroenhancement and Therapy in National Defense Contexts. The Routledge Handbook of Neuroethics. 
  106. ^ Genetically modified neurons could help us connect to implants. New Scientist. [1 February 2022]. 
  107. ^ Scientists program cells to carry out gene-guided construction projects. phys.org. [5 April 2020] (美国英语). 
  108. ^ Otto, Kevin J.; Schmidt, Christine E. Neuron-targeted electrical modulation. Science. 20 March 2020, 367 (6484): 1303–1304. Bibcode:2020Sci...367.1303O. PMID 32193309. S2CID 213192749. doi:10.1126/science.abb0216. 
  109. ^ Liu, Jia; Kim, Yoon Seok; Richardson, Claire E.; Tom, Ariane; Ramakrishnan, Charu; Birey, Fikri; Katsumata, Toru; Chen, Shucheng; Wang, Cheng; Wang, Xiao; Joubert, Lydia-Marie; Jiang, Yuanwen; Wang, Huiliang; Fenno, Lief E.; Tok, Jeffrey B.-H.; Pașca, Sergiu P.; Shen, Kang; Bao, Zhenan; Deisseroth, Karl. Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals. Science. 20 March 2020, 367 (6484): 1372–1376. Bibcode:2020Sci...367.1372L. PMC 7527276可免费查阅. PMID 32193327. S2CID 213191980. doi:10.1126/science.aay4866. 
  110. ^ Bolakhe, Saugat. Lego Robot with an Organic 'Brain' Learns to Navigate a Maze. Scientific American. [1 February 2022] (英语). 
  111. ^ Sample, Ian. Bionic neurons could enable implants to restore failing brain circuits. The Guardian. 3 December 2019 [27 February 2023]. 
  112. ^ Abu-Hassan, Kamal; Taylor, Joseph D.; Morris, Paul G.; Donati, Elisa; Bortolotto, Zuner A.; Indiveri, Giacomo; Paton, Julian F. R.; Nogaret, Alain. Optimal solid state neurons. Nature Communications. 3 December 2019, 10 (1): 5309. Bibcode:2019NatCo..10.5309A. ISSN 2041-1723. PMC 6890780可免费查阅. PMID 31796727. doi:10.1038/s41467-019-13177-3 (英语). 
  113. ^ Buchanan, Allen. Cognitive enhancement and education. Theory and Research in Education. July 2011, 9 (2): 145–162. ISSN 1477-8785. S2CID 145441073. doi:10.1177/1477878511409623 (英语). 
  114. ^ Nakhaee, Samaneh; Kooshki, Alireza; Hormozi, Ali; Akbari, Aref; Mehrpour, Omid; Farrokhfall, Khadijeh. Cinnamon and cognitive function: a systematic review of preclinical and clinical studies. Nutritional Neuroscience. 18 January 2023: 1–15. ISSN 1028-415X. PMID 36652384. S2CID 255969320. doi:10.1080/1028415X.2023.2166436. 
  115. ^ Gratton, Gabriele; Weaver, Samuel R.; Burley, Claire V.; Low, Kathy A.; Maclin, Edward L.; Johns, Paul W.; Pham, Quang S.; Lucas, Samuel J. E.; Fabiani, Monica; Rendeiro, Catarina. Dietary flavanols improve cerebral cortical oxygenation and cognition in healthy adults. Scientific Reports. 24 November 2020, 10 (1): 19409. Bibcode:2020NatSR..1019409G. ISSN 2045-2322. PMC 7687895可免费查阅. PMID 33235219. doi:10.1038/s41598-020-76160-9 (英语). 
  116. ^ Melzer, Thayza Martins; Manosso, Luana Meller; Yau, Suk-yu; Gil-Mohapel, Joana; Brocardo, Patricia S. In Pursuit of Healthy Aging: Effects of Nutrition on Brain Function. International Journal of Molecular Sciences. January 2021, 22 (9): 5026. ISSN 1422-0067. PMC 8126018可免费查阅. PMID 34068525. doi:10.3390/ijms22095026可免费查阅 (英语). 
  117. ^ 117.0 117.1 Socci, Valentina; Tempesta, Daniela; Desideri, Giovambattista; De Gennaro, Luigi; Ferrara, Michele. Enhancing Human Cognition with Cocoa Flavonoids. Frontiers in Nutrition. 2017, 4: 19. ISSN 2296-861X. PMC 5432604可免费查阅. PMID 28560212. doi:10.3389/fnut.2017.00019可免费查阅. 
  118. ^ Kent, K.; Charlton, K. E.; Netzel, M.; Fanning, K. Food-based anthocyanin intake and cognitive outcomes in human intervention trials: a systematic review. Journal of Human Nutrition and Dietetics. June 2017, 30 (3): 260–274. PMID 27730693. S2CID 4344504. doi:10.1111/jhn.12431 (英语). 
  119. ^ Zamri, Nurul Ashykin; Ghani, Nurhafizah; Ismail, Che Aishah Nazariah; Zakaria, Rahimah; Shafin, Nazlahshaniza. Honey on brain health: A promising brain booster. Frontiers in Aging Neuroscience. 2023, 14. ISSN 1663-4365. PMC 9887050可免费查阅. PMID 36733498. doi:10.3389/fnagi.2022.1092596可免费查阅. 
  120. ^ Kennedy, David O. Polyphenols and the Human Brain: Plant "Secondary Metabolite" Ecologic Roles and Endogenous Signaling Functions Drive Benefits. Advances in Nutrition. 1 September 2014, 5 (5): 515–533. ISSN 2161-8313. PMC 4188223可免费查阅. PMID 25469384. doi:10.3945/an.114.006320 (英语). 
  121. ^ Gomez-Pinilla, Fernando; Nguyen, Trang T J. Natural mood foods: The actions of polyphenols against psychiatric and cognitive disorders. Nutritional Neuroscience. 1 May 2012, 15 (3): 127–133. ISSN 1028-415X. PMC 3355196可免费查阅. PMID 22334236. doi:10.1179/1476830511Y.0000000035. 
  122. ^ Vauzour, David; Rodriguez-Mateos, Ana; Corona, Giulia; Oruna-Concha, Maria Jose; Spencer, Jeremy P. E. Polyphenols and Human Health: Prevention of Disease and Mechanisms of Action. Nutrients. November 2010, 2 (11): 1106–1131. ISSN 2072-6643. PMC 3257622可免费查阅. PMID 22254000. doi:10.3390/nu2111106可免费查阅 (英语). 
  123. ^ Guerrieri, Davide; Moon, Hyo Youl; van Praag, Henriette. Exercise in a Pill: The Latest on Exercise-Mimetics. Brain Plasticity. 1 January 2017, 2 (2): 153–169. ISSN 2213-6304. PMC 5928571可免费查阅. PMID 29765854. doi:10.3233/BPL-160043 (英语). 
  124. ^ Haskell-Ramsay, Crystal F.; Schmitt, Jeroen; Actis-Goretta, Lucas. The Impact of Epicatechin on Human Cognition: The Role of Cerebral Blood Flow. Nutrients. August 2018, 10 (8): 986. ISSN 2072-6643. PMC 6115745可免费查阅. PMID 30060538. doi:10.3390/nu10080986可免费查阅 (英语). 
  125. ^ Strasser, Barbara; Gostner, Johanna M.; Fuchs, Dietmar. Mood, food, and cognition: role of tryptophan and serotonin需要付费订阅. Current Opinion in Clinical Nutrition and Metabolic Care. January 2016, 19 (1): 55–61. PMID 26560523. S2CID 12387611. doi:10.1097/MCO.0000000000000237. 
  126. ^ 126.0 126.1 126.2 126.3 126.4 126.5 126.6 Pranav, Joshi C. A review on natural memory enhancers (nootropics) (PDF). Unique Journal of Engineering and Advanced Sciences. 2013 (英语). 
  127. ^ Jongkees, Bryant J.; Hommel, Bernhard; Kühn, Simone; Colzato, Lorenza S. Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands—A review. Journal of Psychiatric Research. 1 November 2015, 70: 50–57. ISSN 0022-3956. PMID 26424423. doi:10.1016/j.jpsychires.2015.08.014 (英语). 
  128. ^ 128.0 128.1 128.2 McCarthy, Bozena; O'Neill, Graham; Abu-Ghannam, Nissreen. Potential Psychoactive Effects of Microalgal Bioactive Compounds for the Case of Sleep and Mood Regulation: Opportunities and Challenges. Marine Drugs. August 2022, 20 (8): 493. ISSN 1660-3397. PMC 9410000可免费查阅. PMID 36005495. doi:10.3390/md20080493可免费查阅 (英语). 
  129. ^ Lee, Gihyun; Bae, Hyunsu. Therapeutic Effects of Phytochemicals and Medicinal Herbs on Depression. BioMed Research International. 2017, 2017: 1–11. PMC 5414506可免费查阅. PMID 28503571. doi:10.1155/2017/6596241可免费查阅. 
  130. ^ Venigalla, Madhuri; Gyengesi, Erika; Münch, Gerald. Curcumin and Apigenin – novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease. Neural Regeneration Research. August 2015, 10 (8): 1181–1185. ISSN 1673-5374. PMC 4590215可免费查阅. PMID 26487830. doi:10.4103/1673-5374.162686. 
  131. ^ Salehi, Bahare; Venditti, Alessandro; Sharifi-Rad, Mehdi; Kręgiel, Dorota; Sharifi-Rad, Javad; Durazzo, Alessandra; Lucarini, Massimo; Santini, Antonello; Souto, Eliana B.; Novellino, Ettore; Antolak, Hubert; Azzini, Elena; Setzer, William N.; Martins, Natália. The Therapeutic Potential of Apigenin. International Journal of Molecular Sciences. January 2019, 20 (6): 1305. ISSN 1422-0067. PMC 6472148可免费查阅. PMID 30875872. doi:10.3390/ijms20061305可免费查阅 (英语). 
  132. ^ Arcusa, Raúl; Villaño, Débora; Marhuenda, Javier; Cano, Miguel; Cerdà, Begoña; Zafrilla, Pilar. Potential Role of Ginger (Zingiber officinale Roscoe) in the Prevention of Neurodegenerative Diseases. Frontiers in Nutrition. 2022, 9: 809621. ISSN 2296-861X. PMC 8971783可免费查阅. PMID 35369082. doi:10.3389/fnut.2022.809621可免费查阅. 
  133. ^ Etheridge, Christopher John; Derbyshire, Emma. Herbal infusions and health: A review of findings from human studies, mechanisms and future research directions. Nutrition & Food Science. 1 January 2020, 50 (5): 969–985. ISSN 0034-6659. S2CID 211002387. doi:10.1108/NFS-08-2019-0263. 
  134. ^ Howes, Melanie-Jayne R.; Perry, Nicolette S.L.; Vásquez-Londoño, Carlos; Perry, Elaine K. Role of phytochemicals as nutraceuticals for cognitive functions affected in ageing. British Journal of Pharmacology. March 2020, 177 (6): 1294–1315. ISSN 0007-1188. PMC 7056459可免费查阅. PMID 31650528. doi:10.1111/bph.14898 (英语). 
  135. ^ Roe, Amy L.; Venkataraman, Arvind. The Safety and Efficacy of Botanicals with Nootropic Effects. Current Neuropharmacology. September 2021, 19 (9): 1442–1467. PMC 8762178可免费查阅. PMID 34315377. doi:10.2174/1570159X19666210726150432. 
  136. ^ Hussain, S. M.; Syeda, A. F.; Alshammari, M.; Alnasser, S.; Alenzi, N. D.; Alanazi, S. T.; Nandakumar, K. Cognition enhancing effect of rosemary (Rosmarinus officinalis L.) in lab animal studies: a systematic review and meta-analysis. Brazilian Journal of Medical and Biological Research. 9 February 2022, 55: e11593. ISSN 0100-879X. PMC 8851910可免费查阅. PMID 35170682. doi:10.1590/1414-431X2021e11593 (英语). 
  137. ^ 137.0 137.1 Lewis, John E.; Poles, Jillian; Shaw, Delaney P.; Karhu, Elisa; Khan, Sher Ali; Lyons, Annabel E.; Sacco, Susana Barreiro; McDaniel, H. Reginald. The effects of twenty-one nutrients and phytonutrients on cognitive function: A narrative review. Journal of Clinical and Translational Research. 26 August 2021, 7 (4): 575–620. ISSN 2424-810X. PMC 8445631可免费查阅. PMID 34541370. doi:10.18053/jctres.07.202104.014. 
  138. ^ Suliman, Noor Azuin; Mat Taib, Che Norma; Mohd Moklas, Mohamad Aris; Adenan, Mohd Ilham; Hidayat Baharuldin, Mohamad Taufik; Basir, Rusliza. Establishing Natural Nootropics: Recent Molecular Enhancement Influenced by Natural Nootropic. Evidence-Based Complementary and Alternative Medicine. 30 August 2016, 2016: e4391375. ISSN 1741-427X. PMC 5021479可免费查阅. PMID 27656235. doi:10.1155/2016/4391375可免费查阅 (英语). 
  139. ^ Roschel, Hamilton; Gualano, Bruno; Ostojic, Sergej M.; Rawson, Eric S. Creatine Supplementation and Brain Health. Nutrients. February 2021, 13 (2): 586. ISSN 2072-6643. PMC 7916590可免费查阅. PMID 33578876. doi:10.3390/nu13020586可免费查阅 (英语). 
  140. ^ Dolan, Eimear; Gualano, Bruno; Rawson, Eric S. Beyond muscle: the effects of creatine supplementation on brain creatine, cognitive processing, and traumatic brain injury. European Journal of Sport Science. 2 January 2019, 19 (1): 1–14. ISSN 1746-1391. PMID 30086660. S2CID 51936612. doi:10.1080/17461391.2018.1500644. 
  141. ^ 141.0 141.1 Crawford, Cindy; Boyd, Courtney; Deuster, Patricia A. Dietary Supplement Ingredients for Optimizing Cognitive Performance Among Healthy Adults: A Systematic Review. The Journal of Alternative and Complementary Medicine. 1 November 2021, 27 (11): 940–958. ISSN 1075-5535. PMID 34370563. S2CID 236969310. doi:10.1089/acm.2021.0135. 
  142. ^ Dyall, Simon C. Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Frontiers in Aging Neuroscience. 2015, 7: 52. ISSN 1663-4365. PMC 4404917可免费查阅. PMID 25954194. doi:10.3389/fnagi.2015.00052可免费查阅. 
  143. ^ Singh, Jessica E. Dietary Sources of Omega-3 Fatty Acids Versus Omega-3 Fatty Acid Supplementation Effects on Cognition and Inflammation. Current Nutrition Reports. 1 September 2020, 9 (3): 264–277. ISSN 2161-3311. PMID 32621236. S2CID 220306807. doi:10.1007/s13668-020-00329-x (英语). 
  144. ^ Fadó, Rut; Molins, Anna; Rojas, Rocío; Casals, Núria. Feeding the Brain: Effect of Nutrients on Cognition, Synaptic Function, and AMPA Receptors. Nutrients. January 2022, 14 (19): 4137. ISSN 2072-6643. PMC 9572450可免费查阅. PMID 36235789. doi:10.3390/nu14194137可免费查阅 (英语). 
  145. ^ 引证错误:没有为名为10.3390/nu8020099的参考文献提供内容
  146. ^ [142][143][128][144][145][97] and other nutrients and phytonutrients[137][141]
  147. ^ Muscaritoli, Maurizio. The Impact of Nutrients on Mental Health and Well-Being: Insights From the Literature. Frontiers in Nutrition. 2021, 8: 656290. ISSN 2296-861X. PMC 7982519可免费查阅. PMID 33763446. doi:10.3389/fnut.2021.656290可免费查阅. 
  148. ^ Venkatramanan, Sudha; Armata, Ilianna E; Strupp, Barbara J; Finkelstein, Julia L. Vitamin B-12 and Cognition in Children. Advances in Nutrition. 1 September 2016, 7 (5): 879–888. ISSN 2161-8313. PMC 5015033可免费查阅. PMID 27633104. doi:10.3945/an.115.012021 (英语). Despite the high prevalence of vitamin B-12 insufficiency and associated risk of adverse cognitive outcomes in children, to our knowledge, no studies to date have been conducted to examine the effects of vitamin B-12 supplementation on cognition in children. 
  149. ^ Benton, David. To establish the parameters of optimal nutrition do we need to consider psychological in addition to physiological parameters?. Molecular Nutrition & Food Research. January 2013, 57 (1): 6–19. PMID 23038656. doi:10.1002/mnfr.201200477 (英语). The decarboyxlase enzymes have pyridoxal phosphate as a coenzyme, the form in which vitamin B6 occurs most commonly in the diet. Yet there is evidence of marginal intakes of this vitamin: e.g. using a biochemical measure of pyridoxal phosphate status there was a subgroup of about 10% of British school children who were deficient [89]. In young British adults 27.7% of males and 36.6% of females were deficient as judged by the same measure 
  150. ^ Stevens, Gretchen A.; Beal, Ty; Mbuya, Mduduzi N. N.; Luo, Hanqi; Neufeld, Lynnette M.; Addo, O. Yaw; Adu-Afarwuah, Seth; Alayón, Silvia; Bhutta, Zulfiqar; Brown, Kenneth H.; Jefferds, Maria Elena; Engle-Stone, Reina; Fawzi, Wafaie; Hess, Sonja Y.; Johnston, Robert; Katz, Joanne; Krasevec, Julia; McDonald, Christine M.; Mei, Zuguo; Osendarp, Saskia; Paciorek, Christopher J.; Petry, Nicolai; Pfeiffer, Christine M.; Ramirez-Luzuriaga, Maria J.; Rogers, Lisa M.; Rohner, Fabian; Sethi, Vani; Suchdev, Parminder S.; Tessema, Masresha; Villapando, Salvador; Wieringa, Frank T.; Williams, Anne M.; Woldeyahannes, Meseret; Young, Melissa F. Micronutrient deficiencies among preschool-aged children and women of reproductive age worldwide: a pooled analysis of individual-level data from population-representative surveys. The Lancet Global Health. 1 November 2022, 10 (11): e1590–e1599. ISSN 2214-109X. PMID 36240826. S2CID 252857990. doi:10.1016/S2214-109X(22)00367-9可免费查阅 (English). 
  151. ^ Enderami, Athena; Zarghami, Mehran; Darvishi-Khezri, Hadi. The effects and potential mechanisms of folic acid on cognitive function: a comprehensive review. Neurological Sciences. 1 October 2018, 39 (10): 1667–1675. ISSN 1590-3478. PMID 29936555. S2CID 49421574. doi:10.1007/s10072-018-3473-4 (英语). 
  152. ^ Philippou, Elena; Constantinou, Marios. The Influence of Glycemic Index on Cognitive Functioning: A Systematic Review of the Evidence. Advances in Nutrition. 1 March 2014, 5 (2): 119–130. ISSN 2161-8313. PMC 3951795可免费查阅. PMID 24618754. doi:10.3945/an.113.004960 (英语). 
  153. ^ Rebelos, Eleni; Rinne, Juha O.; Nuutila, Pirjo; Ekblad, Laura L. Brain Glucose Metabolism in Health, Obesity, and Cognitive Decline—Does Insulin Have Anything to Do with It? A Narrative Review. Journal of Clinical Medicine. January 2021, 10 (7): 1532. ISSN 2077-0383. PMC 8038699可免费查阅. PMID 33917464. doi:10.3390/jcm10071532可免费查阅 (英语). 
  154. ^ Gubert, Carolina; Hannan, Anthony J. Exercise mimetics: harnessing the therapeutic effects of physical activity. Nature Reviews Drug Discovery. November 2021, 20 (11): 862–879. ISSN 1474-1784. PMID 34103713. S2CID 235379365. doi:10.1038/s41573-021-00217-1 (英语). 
  155. ^ Yamada, Yujiro; Frith, Emily M.; Wong, Vickie; Spitz, Robert W.; Bell, Zachary W.; Chatakondi, Raksha N.; Abe, Takashi; Loenneke, Jeremy P. Acute exercise and cognition: A review with testable questions for future research into cognitive enhancement with blood flow restriction. Medical Hypotheses. 1 June 2021, 151: 110586. ISSN 0306-9877. PMID 33848917. S2CID 233233538. doi:10.1016/j.mehy.2021.110586 (英语). 
  156. ^ Taubert, Marco; Villringer, Arno; Lehmann, Nico. Endurance Exercise as an "Endogenous" Neuro-enhancement Strategy to Facilitate Motor Learning. Frontiers in Human Neuroscience. 2015, 9: 692. ISSN 1662-5161. PMC 4714627可免费查阅. PMID 26834602. doi:10.3389/fnhum.2015.00692可免费查阅. 
  157. ^ Tennison, Michael N.; Moreno, Jonathan D. Neuroscience, Ethics, and National Security: The State of the Art. PLOS Biology. 20 March 2012, 10 (3): e1001289. ISSN 1545-7885. PMC 3308927可免费查阅. PMID 22448146. doi:10.1371/journal.pbio.1001289 (英语). 
  158. ^ Asua, Diego; Bougamra, Ghassen; Calleja-Felipe, María; Morales, Miguel; Knafo, Shira. Peptides Acting as Cognitive Enhancers. Neuroscience. 1 February 2018, 370: 81–87. ISSN 0306-4522. PMID 29030286. S2CID 10269993. doi:10.1016/j.neuroscience.2017.10.002 (英语). 
  159. ^ Wright, John W.; Harding, Joseph W. The Brain Hepatocyte Growth Factor/c-Met Receptor System: A New Target for the Treatment of Alzheimer's Disease. Journal of Alzheimer's Disease. 1 January 2015, 45 (4): 985–1000. ISSN 1387-2877. PMID 25649658. doi:10.3233/JAD-142814 (英语). 
  160. ^ Ho, Jean K.; Nation, Daniel A. Cognitive benefits of angiotensin IV and angiotensin-(1–7): A systematic review of experimental studies. Neuroscience & Biobehavioral Reviews. 1 September 2018, 92: 209–225. ISSN 0149-7634. PMC 8916541可免费查阅. PMID 29733881. doi:10.1016/j.neubiorev.2018.05.005 (英语). 
  161. ^ Hallberg, Mathias; Larhed, Mats. From Angiotensin IV to Small Peptidemimetics Inhibiting Insulin-Regulated Aminopeptidase. Frontiers in Pharmacology. 2020, 11: 590855. ISSN 1663-9812. PMC 7593869可免费查阅. PMID 33178027. doi:10.3389/fphar.2020.590855可免费查阅. 
  162. ^ Stern, Sarah A.; Alberini, Cristina M. Mechanisms of memory enhancement. WIREs Systems Biology and Medicine. January 2013, 5 (1): 37–53. ISSN 1939-5094. PMC 3527655可免费查阅. PMID 23151999. doi:10.1002/wsbm.1196 (英语). 
  163. ^ Hofmann, Stefan G.; Fang, Angela; Gutner, Cassidy A. Cognitive enhancers for the treatment of anxiety disorders. Restorative Neurology and Neuroscience. 1 January 2014, 32 (1): 183–195. ISSN 0922-6028. PMID 23542909. doi:10.3233/RNN-139002 (英语). 
  164. ^ Diekelmann, Susanne. Sleep for cognitive enhancement. Frontiers in Systems Neuroscience. 2014, 8: 46. ISSN 1662-5137. PMC 3980112可免费查阅. PMID 24765066. doi:10.3389/fnsys.2014.00046可免费查阅. 
  165. ^ Merlo, Emiliano; Milton, Amy L; Everitt, Barry J. Enhancing cognition by affecting memory reconsolidation (PDF). Current Opinion in Behavioral Sciences. 1 August 2015, 4: 41–47. ISSN 2352-1546. S2CID 53170506. doi:10.1016/j.cobeha.2015.02.003 (英语). 
  166. ^ Desibhatla, Mukund. The Development and Evaluation of Novel DA Transport Inhibitors and their Effects on Effort-Related Motivation: A Review. Honors Scholar Theses. 1 May 2021. 
  167. ^ Froestl, Wolfgang; Muhs, Andreas; Pfeifer, Andrea. Cognitive Enhancers (Nootropics). Part 1: Drugs Interacting with Receptors. Journal of Alzheimer's Disease. 1 January 2012, 32 (4): 793–887. ISSN 1387-2877. PMID 22886028. doi:10.3233/JAD-2012-121186 (英语). 
  168. ^ Partin, Kathryn M. AMPA receptor potentiators: from drug design to cognitive enhancement. Current Opinion in Pharmacology. 1 February 2015, 20: 46–53. ISSN 1471-4892. PMC 4318786可免费查阅. PMID 25462292. doi:10.1016/j.coph.2014.11.002 (英语). 
  169. ^ Þorsteinsson, Haraldur; Karlsson, KarlÆgir. Is Sleep Beyond Our Control?. The Open Sleep Journal. 12 August 2009, 2 (1): 48–55. doi:10.2174/1874620900902010048. 
  170. ^ Kato, Taro; Duman, Ronald S. Rapastinel, a novel glutamatergic agent with ketamine-like antidepressant actions: Convergent mechanisms. Pharmacology Biochemistry and Behavior. 1 January 2020, 188: 172827. ISSN 0091-3057. PMID 31733218. S2CID 207976034. doi:10.1016/j.pbb.2019.172827 (英语). 
  171. ^ Burgdorf, Jeffrey; Zhang, Xiao-lei; Weiss, Craig; Matthews, Elizabeth; Disterhoft, John F.; Stanton, Patric K.; Moskal, Joseph R. The N-methyl-d-aspartate receptor modulator GLYX-13 enhances learning and memory, in young adult and learning impaired aging rats. Neurobiology of Aging. 1 April 2011, 32 (4): 698–706. ISSN 0197-4580. PMC 3035742可免费查阅. PMID 19446371. doi:10.1016/j.neurobiolaging.2009.04.012 (英语). 
  172. ^ R. Moskal, Joseph; S. Burgdorf, Jeffrey; K. Stanton, Patric; A. Kroes, Roger; F. Disterhoft, John; M. Burch, Ronald; Amin Khan, M. The Development of Rapastinel (Formerly GLYX-13); A Rapid Acting and Long Lasting Antidepressant. Current Neuropharmacology. 2017, 15 (1): 47–56. PMC 5327451可免费查阅. PMID 26997507. doi:10.2174/1570159X14666160321122703 (英语). 
  173. ^ Costa-Mattioli, Mauro; Walter, Peter. The integrated stress response: From mechanism to disease. Science. 24 April 2020, 368 (6489): eaat5314. ISSN 0036-8075. PMC 8997189可免费查阅. PMID 32327570. doi:10.1126/science.aat5314 (英语). 
  174. ^ Jin, Yang; Saatcioglu, Fahri. Targeting the Unfolded Protein Response in Hormone-Regulated Cancers. Trends in Cancer. 1 February 2020, 6 (2): 160–171. ISSN 2405-8033. PMID 32061305. S2CID 211136354. doi:10.1016/j.trecan.2019.12.001 (英语). 
  175. ^ Tardner, P. The use of citicoline for the treatment of cognitive decline and cognitive impairment: A meta-analysis of pharmacological literature • International Journal of Environmental Science & Technology. International Journal of Environmental Science & Technology. 2020-08-30 [2020-08-31] (美国英语). 
  176. ^ Atack, John R. GABAA Receptor Subtype-Selective Modulators. II. α5-Selective Inverse Agonists for Cognition Enhancement. Current Topics in Medicinal Chemistry. 2011, 11 (9): 1203–1214. PMID 21050171. doi:10.2174/156802611795371314 (英语). 
  177. ^ Kleczkowska, Patrycja. Chimeric Structures in Mental Illnesses—"Magic" Molecules Specified for Complex Disorders. International Journal of Molecular Sciences. January 2022, 23 (7): 3739. ISSN 1422-0067. PMC 8998808可免费查阅. PMID 35409098. doi:10.3390/ijms23073739可免费查阅 (英语). 
  178. ^ Sharma, Horrick; Santra, Soumava; Dutta, Aloke. Triple reuptake inhibitors as potential next-generation antidepressants: a new hope?. Future Medicinal Chemistry. November 2015, 7 (17): 2385–2406. PMC 4976848可免费查阅. PMID 26619226. doi:10.4155/fmc.15.134. 
  179. ^ Subbaiah, Murugaiah A. M. Triple Reuptake Inhibitors as Potential Therapeutics for Depression and Other Disorders: Design Paradigm and Developmental Challenges. Journal of Medicinal Chemistry. 22 March 2018, 61 (6): 2133–2165. ISSN 0022-2623. PMID 28731336. doi:10.1021/acs.jmedchem.6b01827 (英语). 
  180. ^ Jacobson, Laura H.; Hoyer, Daniel; Lecea, Luis. Hypocretins (orexins): The ultimate translational neuropeptides. Journal of Internal Medicine. May 2022, 291 (5): 533–556. ISSN 0954-6820. PMID 35043499. S2CID 248119793. doi:10.1111/joim.13406 (英语). 
  181. ^ Seigneur, Erica; de Lecea, Luis. Hypocretin (Orexin) Replacement Therapies. Medicine in Drug Discovery. 1 December 2020, 8: 100070. ISSN 2590-0986. S2CID 225129746. doi:10.1016/j.medidd.2020.100070 (英语). 
  182. ^ 182.0 182.1 Alhusaini, Mera; Eissa, Nermin; Saad, Ali K.; Beiram, Rami; Sadek, Bassem. Revisiting Preclinical Observations of Several Histamine H3 Receptor Antagonists/Inverse Agonists in Cognitive Impairment, Anxiety, Depression, and Sleep–Wake Cycle Disorder. Frontiers in Pharmacology. 2022, 13: 861094. ISSN 1663-9812. PMC 9198498可免费查阅. PMID 35721194. doi:10.3389/fphar.2022.861094可免费查阅. 
  183. ^ Shinde, Anil; Subramanian, Ramkumar; Palacharla, Raghava; Benade, Vijay; Abraham, Renny; Kamuju, Venkatesh; Pandey, Santosh; Badange, Rajesh; Achanta, Pramod Kumar; Nirogi, Ramakrishna. 004 Samelisant (SUVN-G3031), Differentiating features over current treatments of narcolepsy. Sleep. 1 May 2021, 44 (Supplement_2): A2. ISSN 0161-8105. doi:10.1093/sleep/zsab072.003. Recent research has described a procognitive effect of samelisant, an inverse agonist of H3 receptors, in animal models of schizophrenia [157]. Nevertheless, more studies are required. 
  184. ^ Poulose, Shibu M.; Thangthaeng, Nopporn; Miller, Marshall G.; Shukitt-Hale, Barbara. Effects of pterostilbene and resveratrol on brain and behavior. Neurochemistry International. 1 October 2015, 89: 227–233. ISSN 0197-0186. PMID 26212523. S2CID 33577543. doi:10.1016/j.neuint.2015.07.017 (英语). 
  185. ^ McCormack, Denise; McFadden, David. A Review of Pterostilbene Antioxidant Activity and Disease Modification. Oxidative Medicine and Cellular Longevity. 4 April 2013, 2013: e575482. ISSN 1942-0900. PMC 3649683可免费查阅. PMID 23691264. doi:10.1155/2013/575482可免费查阅 (英语). 
  186. ^ Buntwal, Luke; Sassi, Martina; Morgan, Alwena H.; Andrews, Zane B.; Davies, Jeffrey S. Ghrelin-Mediated Hippocampal Neurogenesis: Implications for Health and Disease. Trends in Endocrinology & Metabolism. 1 November 2019, 30 (11): 844–859. ISSN 1043-2760. PMID 31445747. S2CID 201126380. doi:10.1016/j.tem.2019.07.001 (英语). 
  187. ^ Morgan, A. H.; Andrews, Z. B.; Davies, J. S. Less is more: Caloric regulation of neurogenesis and adult brain function. Journal of Neuroendocrinology. October 2017, 29 (10): e12512. PMID 28771924. S2CID 3070497. doi:10.1111/jne.12512 (英语). 
  188. ^ Harwell, Victoria; Fasinu, Pius. Pitolisant and Other Histamine-3 Receptor Antagonists—An Update on Therapeutic Potentials and Clinical Prospects. Medicines. 1 September 2020, 7 (9): 55. PMC 7554886可免费查阅. PMID 32882898. doi:10.3390/medicines7090055可免费查阅. 
  189. ^ Schlicker, Eberhard; Kathmann, Markus. Role of the Histamine H3 Receptor in the Central Nervous System. Histamine and Histamine Receptors in Health and Disease. Springer International Publishing. 2017: 277–299. ISBN 978-3-319-58194-1 (英语). 

引证错误:在<references>标签中name属性为“F”的参考文献没有在文中使用
引证错误:在<references>标签中name属性为“G”的参考文献没有在文中使用
引证错误:在<references>标签中name属性为“H”的参考文献没有在文中使用
引证错误:在<references>标签中name属性为“K”的参考文献没有在文中使用
引证错误:在<references>标签中name属性为“W”的参考文献没有在文中使用

引证错误:在<references>标签中name属性为“X”的参考文献没有在文中使用

扩展阅读