跳转到内容

拟正多面体

维基百科,自由的百科全书
拟正图形
(3.3)2 (3.4)2 (3.5)2 (3.6)2 (3.7)2 (3.8)2 (3.∞)2
r{3,3} r{3,4} r{3,5} r{3,6} r{3,7} r{3,8} r{3,∞}
node 3 node_1 3 node  node 4 node_1 3 node  node 5 node_1 3 node  node 6 node_1 3 node  node 7 node_1 3 node  node 8 node_1 3 node  node infin node_1 3 node 
A quasiregular polyhedron or tiling has exactly two kinds of regular face, which alternate around each vertex. Their vertex figures are rectangles.

几何学中,拟正多面体是一种半正多面体,并由两种正多边形面交错环绕每一个顶点。具有边可递性质,因此比半正多面体更接近正多面体,仅差一个点可递性质。只有两种凸拟正多面体,分别为截半立方体和截半二十面体。他们的名称,由开普勒给出,来自首次确认他们的所有的面都来自对偶对——正方体和正八面体,第二个则来自对偶对——正十二面体和正二十面体。

这些形式表示对一个正多面体及其对偶多面体可以给出一个垂直施莱夫利符号 或r{p,q}来代表它们同时包含正{p,q}和正{q,p}对偶的面。一个拟正多面体有此符号就会有一个顶点这样的顶点图:p.q.p.q (或 (p.q)2)。

参考文献

[编辑]

外部链接

[编辑]