非参数回归:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
建立内容为“{{回归侧栏}} '''非参数回归'''指的是一类回归分析,其中的预测子不是预先确定的,而根据从数据中获得的信息。也就是说,预测子与因变量之间的关系不会假定为参数形式。非参数回归需要更大的样本量,因为数据必须提供参数模型结构和模型估计值。 == 定义 == 非参数回归中,有随机变量<math>X</math>、<math>Y</math>,并假设其关系…”的新页面
 
InternetArchiveBot留言 | 贡献
补救3个来源,并将0个来源标记为失效。) #IABot (v2.0.9.5) (落花有意12138 - 15464
第24行: 第24行:
* [[多元自适应回归样条]]
* [[多元自适应回归样条]]
* [[平滑样条]]
* [[平滑样条]]
* [[神经网络]]<ref>Statistical and neural network techniques for nonparametric regression by Vladimir Cherkassky, Filip Mulier https://link.springer.com/chapter/10.1007/978-1-4612-2660-4_39</ref>
* [[神经网络]]<ref>Statistical and neural network techniques for nonparametric regression by Vladimir Cherkassky, Filip Mulier https://link.springer.com/chapter/10.1007/978-1-4612-2660-4_39 {{Wayback|url=https://link.springer.com/chapter/10.1007/978-1-4612-2660-4_39 |date=20230515214821 }}</ref>


== 例子 ==
== 例子 ==
第83行: 第83行:


==外部链接==
==外部链接==
*[http://www.hyperniche.com/ HyperNiche, software for nonparametric multiplicative regression].
*[http://www.hyperniche.com/ HyperNiche, software for nonparametric multiplicative regression] {{Wayback|url=http://www.hyperniche.com/ |date=20040920004546 }}.
*[http://www.cs.tut.fi/~lasip Scale-adaptive nonparametric regression] (with Matlab software).
*[http://www.cs.tut.fi/~lasip Scale-adaptive nonparametric regression] {{Wayback|url=http://www.cs.tut.fi/~lasip |date=20201031201040 }} (with Matlab software).


{{统计学}}
{{统计学}}

2023年10月2日 (一) 09:15的版本

非参数回归指的是一类回归分析,其中的预测子不是预先确定的,而根据从数据中获得的信息。也就是说,预测子与因变量之间的关系不会假定为参数形式。非参数回归需要更大的样本量,因为数据必须提供参数模型结构和模型估计值。

定义

非参数回归中,有随机变量,并假设其关系如下:

其中是某个确定函数。线性回归也是非参数回归的一种,假定为仿射。 有些学者使用了稍强的加性噪声假设:

其中随机变量是“噪声项”,均值为0. 若不假设属于特定的函数参数族,就不可能得到的无偏估计,但大多数估计量在适当条件下都是一致的。

通用非参数回归算法列表

这是非参数回归模型的非详尽列表。

例子

高斯过程回归/克里金法

高斯过程回归也称克里金法,假设回归曲线的先验为正态分布,并假设误差遵循多元正态分布,回归曲线由后验模式估计。正态先验可能取决于未知的超参数,可用经验贝叶斯方法估计。 超参数通常指定一个先验协方差核。若核也要从数据中进行非参数推断,则可使用临界滤波器

平滑样条法可解释为高斯过程货柜的后验模式。

核回归

使用高斯核平滑器对小数据集(黑点)进行非参数回归拟合(红线)。粉色阴影展示了核函数,以获得给定x值的y估计值。核函数定义了在得出目标点估计值时,给每个数据点的权。

核回归用核函数卷积数据点位置,从有限的数据点中估计连续因变量。近似地说,核函数说明了“模糊”数据点影响的方法,以便用它们的值预测附近位置的值。

回归树

决策树学习算法可以从数据中学习,以预测因变量。[2]虽然最初的分类回归树(CART)公式仅适用于预测单变量数据,该框架也可用于预测多变量数据,包括时间序列。[3]

另见

参考文献

  1. ^ Statistical and neural network techniques for nonparametric regression by Vladimir Cherkassky, Filip Mulier https://link.springer.com/chapter/10.1007/978-1-4612-2660-4_39页面存档备份,存于互联网档案馆
  2. ^ Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. Classification and regression trees. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software. 1984. ISBN 978-0-412-04841-8. 
  3. ^ Segal, M.R. Tree-structured methods for longitudinal data. Journal of the American Statistical Association (American Statistical Association, Taylor & Francis). 1992, 87 (418): 407–418. JSTOR 2290271. doi:10.2307/2290271. 

阅读更多

外部链接