卤素

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自鹵素
鹵素
氫(非金屬) 氦(惰性氣體)
鋰(鹼金屬) 鈹(鹼土金屬) 硼(類金屬) 碳(非金屬) 氮(非金屬) 氧(非金屬) 氟(鹵素) 氖(惰性氣體)
鈉(鹼金屬) 鎂(鹼土金屬) 鋁(貧金屬) 矽(類金屬) 磷(非金屬) 硫(非金屬) 氯(鹵素) 氬(惰性氣體)
鉀(鹼金屬) 鈣(鹼土金屬) 鈧(過渡金屬) 鈦(過渡金屬) 釩(過渡金屬) 鉻(過渡金屬) 錳(過渡金屬) 鐵(過渡金屬) 鈷(過渡金屬) 鎳(過渡金屬) 銅(過渡金屬) 鋅(過渡金屬) 鎵(貧金屬) 鍺(類金屬) 砷(類金屬) 硒(非金屬) 溴(鹵素) 氪(惰性氣體)
銣(鹼金屬) 鍶(鹼土金屬) 釔(過渡金屬) 鋯(過渡金屬) 鈮(過渡金屬) 鉬(過渡金屬) 鎝(過渡金屬) 釕(過渡金屬) 銠(過渡金屬) 鈀(過渡金屬) 銀(過渡金屬) 鎘(過渡金屬) 銦(貧金屬) 錫(貧金屬) 銻(類金屬) 碲(類金屬) 碘(鹵素) 氙(惰性氣體)
銫(鹼金屬) 鋇(鹼土金屬) 鑭(鑭系元素) 鈰(鑭系元素) 鐠(鑭系元素) 釹(鑭系元素) 鉕(鑭系元素) 釤(鑭系元素) 銪(鑭系元素) 釓(鑭系元素) 鋱(鑭系元素) 鏑(鑭系元素) 鈥(鑭系元素) 鉺(鑭系元素) 銩(鑭系元素) 鐿(鑭系元素) 鎦(鑭系元素) 鉿(過渡金屬) 鉭(過渡金屬) 鎢(過渡金屬) 錸(過渡金屬) 鋨(過渡金屬) 銥(過渡金屬) 鉑(過渡金屬) 金(過渡金屬) 汞(過渡金屬) 鉈(貧金屬) 鉛(貧金屬) 鉍(貧金屬) 釙(貧金屬) 砈(類金屬) 氡(惰性氣體)
鍅(鹼金屬) 鐳(鹼土金屬) 錒(錒系元素) 釷(錒系元素) 鏷(錒系元素) 鈾(錒系元素) 錼(錒系元素) 鈽(錒系元素) 鋂(錒系元素) 鋦(錒系元素) 鉳(錒系元素) 鉲(錒系元素) 鑀(錒系元素) 鐨(錒系元素) 鍆(錒系元素) 鍩(錒系元素) 鐒(錒系元素) 鑪(過渡金屬) 𨧀(過渡金屬) 𨭎(過渡金屬) 𨨏(過渡金屬) 𨭆(過渡金屬) 䥑(預測為過渡金屬) 鐽(預測為過渡金屬) 錀(預測為過渡金屬) 鎶(過渡金屬) 鉨(預測為貧金屬) 鈇(貧金屬) 鏌(預測為貧金屬) 鉝(預測為貧金屬) 鿬(預測為鹵素) 鿫(預測為惰性氣體)
氧族  稀有氣體
IUPAC族編號 7
以元素命名 氟族元素
俗稱 鹵素
CAS族編號
(美國,pattern A-B-A)
VIIA
舊IUPAC族編號
(歐洲,pattern A-B)
VIIB

↓ 週期
2 (F)
9 鹵素
3 (Cl)
17 鹵素
4 (Br)
35 鹵素
5 (I)
53 鹵素
6 (At)
85 類金屬
7 (Ts)
117 鹵素

圖例
原始核素英语primordial element
放射性元素
原子序顏色:

固體液體氣體

鹵素(英語:Halogen)是指在元素週期表中同屬第17(舊稱ⅦA族)的六種元素(F)、(Cl)、(Br)、(I)、(At)和(Ts),其中砈和具有極強的放射性,且屬於人造元素

鹵素是一類化學性質非常活潑的元素,能和許多金属形成盐类;元素的活性隨著原子序越大而漸低。

原子序越大的鹵素,沸点越高;電負度第一游離能越低;常温常压(300K、10萬Pa)的密度越高。卤素族是唯一在常溫常壓下有固、液、气三态元素的族。在标准状况下,气体液体[1]固体

历史[编辑]

含氟矿物萤石在1529年就已知。早期化学家就已知氟化合物裡有种未知元素,但无法分离。在1860年,英国化学家George Gore英语George Gore (chemist)用电流流过氢氟酸的方法并可能产生了氟气,但他当时无法证明自己的结果。1886年,巴黎化学家亨利·莫瓦桑电解了溶于无水氟化氢氟化氢钾,成功分离出氟。[2]

炼金术士和早期化学家早已知道盐酸,但1774年卡尔·威廉·舍勒加热盐酸和二氧化锰时才发现氯单质,他称之为dephlogisticated muriatic acid,也就是氯在这33年来的名字。1807年,咸夫里·戴维研究了氯,发现它是化学元素。氯氣在第一次世界大战期间被用作化学武器。根据不同的污染濃度,氯气会灼伤人体内外的组织,尤其是肺部,使人呼吸困难或无法呼吸。[2]

安托萬·巴拉爾英语Antoine Jérôme Balard在1820年代將氯气通入卤盐水英语brine样品发现了溴。他最初提议为新元素命名为muride,但法兰西学术院将该元素改名为bromine(溴)。[2]

贝尔纳·库尔图瓦发现了碘。他通常将海藻灰与水煮沸来生成氯化钾,用以生产硝石。然而,在1811年,他在产物加入硫酸,发现产物生成紫色烟雾,这些烟雾凝结成黑色晶体。他怀疑这些晶体是新元素,因此将样品发给其他化学家来调查。约瑟夫·路易·盖-吕萨克证明了它是新元素,也就是今天的碘。[2]

1931年,弗雷德·艾利森英语Fred Allison自称用磁光机器发现了85号元素,并将其命名为Alabamine,但他的发现是错误的。1937年,拉真达拉·德(Rajendralal De)自称在矿石中发现了85号元素,并称其为dakine,但他的发现也是错误的。霍里亞·胡盧貝伊英语Horia Hulubei伊維特·哥舒瓦英语Yvette Cauchois在1939年用光谱学尝试发现85号元素也未成功。瓦爾特·明德爾英语Walter Minder于同年尝试发现由β衰变产生的类似碘的元素。85号元素今天称为砹,于1940年由戴爾·R·科森英语Dale R. Corson肯尼斯·羅斯·麥肯齊英语Kenneth Ross MacKenzie埃米利奥·塞格雷成功合成,他们用α粒子轰击来合成砹。[2]

2010年,由核物理学家尤里·奥加涅相领导的团队,包含来自杜布纳联合原子核研究所橡树岭国家实验室劳伦斯利佛摩国家实验室范德堡大学的科学家用钙-48轰擊-249原子,成功合成出鿬-294。截至2023年,鿬是最新发现的化學元素。

命名[编辑]

卤素可和很多金属形成盐类,例如氟化鈣氯化鈉溴化銀碘化鉀等,英文halogen来自希腊語halos(盐)和gennan(形成)两词。中文的原意是盐碱地。所有已发现的卤素英文名都以-ine结尾。

1811年,德国化学家Johann Schweigger英语Johann Schweigger提议用halogen一名,意為「成盐者」,是希腊文αλς(als,意為盐)和γενειν(genein,意為产生),取代汉弗里·戴维提出的chlorine這個名稱來稱呼氯元素;[3]不过,1826年,瑞典化学家约恩斯·贝尔塞柳斯提議把halogen一詞改為指代氟、氯和碘元素,這些元素与碱金属形成化合物时,會產生類似海鹽的物質。[4][5]

所有卤素名称的结尾都有-ine英语-ine这后缀。氟的名字来自拉丁语fluere,意為「流动」,它由矿物萤石衍生而来,而萤石在金属加工中用作助焊剂。氯的名字来自希腊文chloros,意为黄绿色。溴的名字来自希腊文的bromos,意思是恶臭。碘的名字来自希腊文iodes,意为紫色。砹的名字来自希腊文的astatos,意为不稳定。鿬的名字则来自美国田纳西州[2][6]

分布[编辑]

卤素在自然界中以化合态广泛存在(極不穩定的砈和鿬除外),其中以的存在范围最广,其餘鹵素的含量按照的顺序减少(砈在自然界中痕量存在,鿬則不存在於自然界中)。

卤素 分布状况[7]
存在於萤石冰晶石氟磷灰石矿物中(地壳质量分数:0.065%)
火成岩沉积岩海水盐湖(地壳质量分数:0.031%;海水含量每公升20克)
岩石海水矿井水(地壳质量分数:0.00016%;海水含量每公升0.065克)
海水(含量5×10¯⁸%)、智利硝石(含量0.02%~1%)
在某些含放射性物質的地方,由其他放射性核種衰变產生(含量:少于1克)[8]
粒子加速器人工合成(含量:0克)

性質[编辑]

物理[编辑]

名称

符号

原子半径納米

主化合价

状态标况

单质密度,每毫升

单质熔点

单质沸点,℃

F 0.071 -1 气体 0.0017 -219.62 -188.12
Cl 0.099 -1,+1,+2,+3,+4,+5,+6,+7 氣体 0.0032 -101.5 -34.04
Br 0.114 -1,+1,+3,+4,+5,+7 液体 3.1028 -7.3 58.8
I 0.133 -1,+1,+3,+5,+7 固体 4.933 113.7 184.3
At 0.150 -1,+1,+3,+5,+7 固体 6.2-6.5(推測)[9] 302 337?
Ts 0.156-0.157(推算)[10] -1,+1,+3,+5(推測)[1] 固体(推測)[1][10] 7.1-7.3(推測)[10] 350-550(推測)[11] 610(推測)[11]

化學[编辑]

通常来说,液態卤素分子的沸点均高于对应的烃链,主要是卤素分子比烷链更电极化,而分子电极化增強分子间的连接力(正电极与负电极的相互吸引),我们需要对液体提供更多能量才能使其蒸发

卤素单质都是双原子分子,亦很容易挥发。鹵素的电子构型均为ns² np⁵,它们获取一個电子以达到稳定结构的趋势极為强烈,因此化学性质很活泼,在自然状态不能以单质存在,一般以化合价为-1价,即卤离子(X⁻)形式存在於溶液及礦物中。

Z 元素 核電外子構型 電子排布[注解 1]
9 2,7 [He] 2s² 2p⁵
17 2,8,7 [Ne] 3s² 3p⁵
35 2,8,18,7 [Ar] 3d¹⁰ 4s² 4p⁵
53 2,8,18,18,7 [Kr] 4d¹⁰ 5s² 5p⁵
85 2,8,18,32,18,7 [Xe] 4f¹⁴ 5d¹⁰ 6s² 6p⁵
117 2,8,18,32,32,18,7(預測) [Rn] 5f¹⁴ 6d¹⁰ 7s² 7p⁵(預測)[1]
卤素 分子 結構 模型 d(X−X),pm
(氣態)
d(X−X),pm
(固態)
F₂ 143 149
Cl₂ 199 198
Br₂ 228 227
I₂ 266 272

无机化学反应[编辑]

氧化[编辑]

卤素单质都是氧化劑,氧化力从氟到依次降低。碘单质氧化力较弱,三价铁离子可以把碘离子氧化为碘。卤素能与部分金属、非金属单质直接化合。卤素与水也能氧化还原:

  • 2X₂+2H₂O → 4H⁺+4X⁻+O₂

氟与水反应剧烈,氯受光照与水缓慢反应,碘不反应。

歧化反应[编辑]

卤素单质在碱中易歧化:

  • X₂+2OH⁻(冷)→ X⁻+XO⁻+H₂O
  • 3X₂+6OH⁻(热)→ 5X⁻+XO₃⁻+3H₂O

但在酸中很易逆反应:

  • 5X⁻+XO₃⁻+6H⁺ → 3X₂+3H₂O

这反应是制取溴和碘单质流程的最后一步。

氢化物[编辑]

卤素的氢化物叫卤化氢,为共价化合物;其溶液叫氢卤酸,它们在水中都以离子形式存在,且都是。一般而言氢氟酸(pKa=3.20)是弱酸。氢氯酸(即盐酸)、氢溴酸氢碘酸都是典型的强酸,酸度从HCl到HI依次增强,它们的pKa均为负数。至於氢砹酸則為氫鹵酸中最強的酸,但它極易分解為氫與砹單質。[12]

氧化物[编辑]

卤素的氧化物都是酸酐。像二氧化氯(ClO₂)这样的偶氧化态氧化物是混酐。

卤素 X₂O X₂O₂ X₂O₃ XO₂ X₂O₅ X₂O₆ X₂O₇
F OF₂ O₂F₂
Cl Cl₂O ClO Cl₂O₃ ClO₂ Cl₂O₅ Cl₂O₆ Cl₂O₇
Br Br₂O Br₂O₃ BrO₂ Br₂O₅
I I₂O₅

含氧酸[编辑]

卤素(除了氟,氟只有-1价)可以显示多种价态,正价态一般都体现在它们的含氧酸根中。

以氯为例:

卤素的含氧酸均有氧化力,同一元素中,次卤酸最强。

卤素含氧酸多数只在溶液中,少数盐以固态存在,如碘酸盐高碘酸盐。HXO(X為Cl、Br、I)、HIO₃和HXO₄(X為Cl、Br、I)分子在气相十分稳定,可用质谱和其他方法研究。卤素含氧酸见下表[13]290-291

氟的含氧酸 氯的含氧酸 溴的含氧酸 碘的含氧酸
HXO(次卤酸) HFO HClO HBrO HIO
HXO₂(亚卤酸) HClO₂ HBrO₂ HIO₂
HXO₃(卤酸) HClO₃ HBrO₃ HIO₃
HXO₄(高卤酸) HClO₄ HBrO₄ HIO₄
其他 H₇I₅O₁₄
其他 H₅IO₆

互卤化物[编辑]

只由两种卤素形成的化合物叫互卤化物,其中电正性强的元素呈正氧化态,氧化态为奇数。卤素的价电子数是奇数,周围与奇数粒其它卤原子成键比较稳定(如IF₇)。互卤化物都能水解。

鹵素 F Cl Br I At
F
F₂
Cl
ClFClF₃ClF₅
Cl₂
Br
BrFBrF₃BrF₅
BrCl
Br₂
I
IFIF₃IF₅IF₇
IClI₂Cl₆
IBrIBr₃
I₂
At
AtCl
AtBr
AtI
At₂(?)

其他无机化学性质[编辑]

F₂ Cl₂ Br₂ I₂
和鐵反应 FeF₃ FeCl₃ FeBr₃ FeI₂(碘的氧化力較弱)
和氫氧化鈉反应 NaF+OF₂ NaCl+NaClO
加热反应则生成NaCl+NaClO₃
NaBr+NaBrO
加热反应则生成NaBr+NaBrO₃
NaI+NaIO₃
和硫反应 SF₆
也会产生SF₄
S₂Cl₂
在催化剂的作用下产生SCl₂
低温下和低价硫的氯化物作用产生SCl₄
S₂Br₂ 不反应

有机化学反应[编辑]

有机化学,卤族元素经常作为决定有机化合物化学性质的官能团存在,常用X表示,如R-X是含鹵原子的烴類。

卤素的物理特性化学特性明显区分于与它对应的烃链的主要原因,在于卤素原子(如F、Cl、Br、I)与原子的连接,即碳-鹵的连接,明显不同于烃链碳-氫连接。

  • 卤原子通常电负性较大,碳-鹵连接比碳-氫连接更加电极化,但仍然是共价键
  • 卤原子体积和质量通常较碳原子大,碳-鹵连接的偶极子矩(Dipole Moment)和连接能量(Bonding Energy)远大于碳-氫,碳-鹵的连接力(Bonding strength)远小于碳-氫连接。
  • 卤原子脆弱的p轨道(Orbital)与碳原子稳定的sp³轨道相连接,碳-鹵连接不甚稳定。

卤素最常见的有机化学反应为亲核取代反应(nucleophilic substitution),通常的化学式如:

Nu:⁻+R-X → R-Nu+X⁻

“Nu:⁻”在这里代表亲核负离子,离子越亲核,产率和化学反应速度越可观。

“X”在这里代表卤素原子,如F、Cl、Br、I,若X⁻所对应的酸(即HX)为强酸,那么产率和反应的速度将非常可观,如果若X⁻所对应的酸为弱酸,则产率和反应的速度均会下降。

合成有機卤化物[编辑]

加成反应[编辑]

加成反应可在未饱和烃链加入卤素,此为最简单的方式,如:

CH₃-CH₂-CH=CH₂+HBr → CH₃-CH₂-CHBr−CH₃

不經催化,产率也可達90%以上。

Karasch方式[编辑]

如想将溴加在烃链第一粒碳原子,可用Karasch方式:

CH₃-CH₂-CH=CH₂+HBr → CH₃-CH₂-CH₂-CH₂-Br+H₂O

以雙氧水催化,产率90%以上。

合成[编辑]

合成卤化物则必须有催化剂,如:

催化剂:三鹵化鋁或三鹵化鐵(X為對應鹵素)

产率较高。

合成[编辑]

合成卤化物,必须用好的亲核试剂强酸作为催化剂以提高产率和速度:CH₃-CH₂-CH₂-CH₂-OH+Br⁻ ⇌ CH₃-CH₂-CH₂-CH₂-Br+H₂O

催化剂:H⁺

此反应为双向反应产率速度有限。

生产[编辑]

从左到右分别是;在室温,氯是气体、溴是液体、碘是固体。太過活潑而無法展示在圖片中,而的放射性极强且極不穩定,目前尚無可見量的單質被合成出來。

每年大约有六百万公吨的含氟矿物萤石被開採。人类每年生产約40万吨氢氟酸。由在磷酸生产中作为副产物产生的氢氟酸可制得氟气。人类每年生产约15000公吨的氟气。[2]

石盐是最常用于开采氯的矿物,但光鹵石钾石盐等矿物也可用于开采氯。每年還有約四千万吨的氯气以电解卤盐水的方法产生。[2]

人类每年生产约45万吨溴,其中一半来自美国,35%来自以色列,其余多来自中国。人們過去是向自然卤盐水添加硫酸和漂白粉生产溴;现代以赫伯特·亨利·道发明的电解法生产。溴也可以通过使氯气穿过海水,然后使空气穿过海水来生产。[2]

2003年全球碘产量约22000公吨,智利生产40%、日本生产30%,另有俄罗斯和美国的少量生产:248。直到1950年代,人类从海带提取碘,但现代以其他方式生产。产生碘的一种方法是将二氧化硫硝酸盐矿石混合,其中含有一些碘酸盐。碘也可以从天然气田中提取。[2]

尽管砹天然存在於礦中,但僅作為次要的衰變產物痕量產生,且生成後會快速衰變。因此砹通常是在粒子加速器中以α粒子轰击铋原子來合成。[2]

諸如鿬等超重元素皆不存在於自然界中,只能透過粒子加速器人工合成。

用途[编辑]

全世界对氟的最大的用途是在核燃料循环中生产六氟化鈾,每年消耗近7000吨氟。首先二氧化铀与氢氟酸反应生成四氟化铀,然后以氟气氟化四氟化铀生成六氟化鈾[14],可通过气体扩散法或者气体离心法浓缩铀[15][16]。每年大约有6000吨氟用于生产惰性电介质六氟化硫,该物质可以用于高压变压器与断路器,这样就不必在充油设备中使用危险的多氯联苯[17]。电子产品中会使用一些氟化合物:在化学气相沉积中会使用六氟化钨六氟化铼,在等离子蚀刻中会使用聚四氟乙烯[18][19][20][16]。此外氟也可用於牙齒護理、製藥及在血液中攜帶氧氣等。

氯可作为較便宜的消毒劑,一般的自来水游泳池就常用它消毒,但氯氣頗難溶、甚毒、會放出特殊氣味,且易生成有致癌風險的三鹵甲烷有机氯化合物,中、美等國常改用二氧化氯(ClO₂)、氯胺臭氧等代替氯氣作為水的消毒劑。除了用於消毒,氯氣也是一种重要的化工原料,用於制造盐酸漂白粉、制造氯代烃。也可以用于制造多种农药、制造氯仿有机溶剂。此外氯氣還广泛用于造纸、纺织、有机合成、金属冶炼等行业,也有作為化學武器的紀錄。

許多種的有機溴化物在工業上有其應用,其中一部份是由溴製備而來,另一部份則是由溴化氫製備而來。溴化合物在工業上可用於阻燃劑汽油添加劑、鑽井液化工原料等,用途十分廣泛。

碘化物的主要用途包括做為催化劑、動物食物添加品、穩定劑、染劑、著色劑、顏料、藥品、清潔衛生(碘酒)、照片與鹵素燈泡等;其他小眾用途為除霧、種雲,和在分析化學中的多種用途。此外其放射性同位素碘-131可用於醫學造影放射治療

儘管砈的同位素皆非常不穩定,但砈-211有核醫學用途。[21]剛製成的砈-211須馬上使用,不然其總量在7.2小時之後就會減半。砹-211會釋放α粒子,或經電子捕獲衰變成釋放α粒子的-211,所以可用於α粒子靶向治療[21]

只能用粒子加速器人工合成,且製備難度極大,製備出的量又極少(至多幾顆原子),生成後又會很快衰變,因此沒有任何商業用途,僅用於學術研究。

生物學作用及防護[编辑]

氟并非人类或者其它哺乳动物必须的元素。有人認為少量的氟可能对增加骨强度有益,但该理论尚未确立。日常环境有很多微量氟的来源,只有人工饮食能使人缺氟[22][23]。至於吸入大量氟氣對人體來說是劇毒,會刺激皮膚呼吸道粘膜

和氟相似,大量氯氣對人體來說也是劇毒,可損害人體全身器官神經系統,但氯離子是人體必需的礦物質,在人體中為代謝作用很重要的物質,中生成鹽酸和細胞幫浦的功能皆需要氯,飲食中主要的來源是餐桌上的氯化鈉,血液中過低或高濃度的氯為電解質失調的實例,在沒有其他異常的情況下很少發生低氯血症。

溴在人體中還未找到已知功能,但有機溴化合物的確自然存在。海中的有機物是有機溴化合物的主要來源,例如海藻骨螺等。溴會腐蝕及毒害人體,刺激皮膚呼吸道粘膜等,且傷害神經系統及胃道等。

碘是人體必需的礦物質,用以製造甲狀腺素以調控細胞代謝、神經性肌肉組織發展與成長(特別是在出生胎兒的腦部)[24]。缺碘症[25][26]是造成可避免性腦損害疾病最常見的因素,全世界估計有五千萬人深受影響。

砈和鿬沒有生物學功能。雖然依照元素週期律,原子序越大的鹵素化學毒性越低,故砈和鿬的化學毒性會低於氟、氯、溴、碘,但它們極強的放射性可能引發輻射中毒,因此砈和鿬肯定具有極高的毒性,但它們只會出現在受管制的輻射區域,絕大多數人不可能攝入砈和鿬(除非是在核能發電廠附近,某些同位素衰變過程會產生砈)。

注解[编辑]

  1. ^ 為了簡潔,用惰性氣體標記法表示核外電子排布:先寫出之前的惰性氣體元素符號,再繼續寫下該惰性氣體元素之外的電子排布。

参考文献[编辑]

  1. ^ 1.0 1.1 1.2 1.3 Haire, Richard G. Transactinides and the future elements. Morss; Edelstein, Norman M.; Fuger, Jean (编). The Chemistry of the Actinide and Transactinide Elements 3rd. Dordrecht, The Netherlands: Springer Science+Business Media. 2006: 1724, 1728. ISBN 1-4020-3555-1. 
  2. ^ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 Emsley, John. Nature's Building Blocks. 2011. ISBN 978-0199605637. 
  3. ^ Schweigger, J.S.C. Nachschreiben des Herausgebers, die neue Nomenclatur betreffend [Postscript of the editor concerning the new nomenclature]. Journal für Chemie und Physik. 1811, 3 (2): 249–255 [2020-11-01]. (原始内容存档于2020-04-23) (德语).  On p. 251, Schweigger proposed the word "halogen": "Man sage dafür lieber mit richter Wortbildung Halogen (da schon in der Mineralogie durch Werner's Halit-Geschlecht dieses Wort nicht fremd ist) von αλς Salz und dem alten γενειν (dorisch γενεν) zeugen." (One should say instead, with proper morphology, "halogen" (this word is not strange since [it's] already in mineralogy via Werner's "halite" species) from αλς [als] "salt" and the old γενειν [genein] (Doric γενεν) "to beget".)
  4. ^ In 1826, Berzelius coined the terms Saltbildare (salt-formers) and Corpora Halogenia (salt-making substances) for the elements chlorine, iodine, and fluorine. See: Berzelius, Jacob. Årsberättelser om Framstegen i Physik och Chemie [Annual Report on Progress in Physics and Chemistry] 6. Stockholm, Sweden: P.A. Norstedt & Söner. 1826: 187 [2020-11-01]. (原始内容存档于2020-04-23) (瑞典语).  From p. 187: "De förre af dessa, d. ä. de electronegativa, dela sig i tre klasser: 1) den första innehåller kroppar, som förenade med de electropositiva, omedelbart frambringa salter, hvilka jag derför kallar Saltbildare (Corpora Halogenia). Desse utgöras af chlor, iod och fluor *)." (The first of them [i.e., elements], the electronegative [ones], are divided into three classes: 1) The first includes substances which, [when] united with electropositive [elements], immediately produce salts, and which I therefore name "salt-formers" (salt-producing substances). These are chlorine, iodine, and fluorine *).)
  5. ^ The word "halogen" appeared in English as early as 1832 (or earlier). See, for example: Berzelius, J.J. with A.D. Bache, trans., (1832) "An essay on chemical nomenclature, prefixed to the treatise on chemistry,"页面存档备份,存于互联网档案馆The American Journal of Science and Arts, 22: 248–276 ; see, for example p. 263.页面存档备份,存于互联网档案馆
  6. ^ Elements 113, 115, 117, and 118 are now formally named nihonium (Nh), moscovium (Mc), tennessine (Ts), and oganesson (Og). IUPAC. 2016-11-30 [2016-11-30]. (原始内容存档于2018-07-29). 
  7. ^ 北京师范大学、华中师范大学、南京师范大学无机化学教研室。无机化学(第四版)。北京:高等教育出版社。第454页.
  8. ^ Hollerman, Arnold. Inorganic Chemistry. Berlin: Academic Press. 2001: 423 [2019-12-21]. ISBN 0123526515. (原始内容存档于2013-12-26). 
  9. ^ Bonchev, Danail; Kamenska, Verginia. Predicting the properties of the 113–120 transactinide elements. The Journal of Physical Chemistry (ACS Publications). 1981, 85 (9): 1177–86 [2019-10-10]. doi:10.1021/j150609a021. (原始内容存档于2013-12-20). 
  10. ^ 10.0 10.1 10.2 Bonchev, Danail; Kamenska, Verginia. Predicting the Properties of the 113–120 Transactinide Elements. J. Phys. Chem. 1981, 85: 1177–1186. 
  11. ^ 11.0 11.1 How Much Do You Know About the Element Tennessine?. www.thoughtco.com. [November 12, 2021]. 
  12. ^ Fairbrother, Peter, "Re: Is hydroastitic acid possible?"页面存档备份,存于互联网档案馆), accessed July 3, 2009.
  13. ^ 《无机化学》丛书。第六卷.2.6.4卤素含氧酸及其盐.P
  14. ^ Jaccaud et al. 2000,第392頁.
  15. ^ Jaccaud et al. 2000,第382頁.
  16. ^ 16.0 16.1 Villalba, Ayres & Schroder 2008.
  17. ^ Aigueperse et al. 2000,第430頁.
  18. ^ Jaccaud et al. 2000,第391–392頁.
  19. ^ El-Kareh 1994,第317.
  20. ^ Arana et al. 2007.
  21. ^ 21.0 21.1 Vértes, Attila; Nagy, Sándor; Klencsár, Zoltán. Handbook of Nuclear Chemistry 4. Springer. 2003: 337 [2019-11-09]. ISBN 978-1-4020-1316-4. (原始内容存档于2014-01-08). 
  22. ^ Nielsen 2009.
  23. ^ Olivares & Uauy 2004.
  24. ^ Gropper SS, Groff JL, et al.(2005)Advanced Nutrition and Human Metabolism, 4th ed., pp. 468-473. Wardswirth, ISBN 978-0-534-55986-1
  25. ^ iodine deficiency disorder. [2018-11-12]. (原始内容存档于2012-10-18). 
  26. ^ [1]页面存档备份,存于互联网档案馆

参见[编辑]

左方一族: 卤素
第17族(ⅦA)
右方一族:
氧族元素 稀有气体