循环小数

维基百科,自由的百科全书
跳到导航 跳到搜索
循环小数
1
7
=0.142857142857…
各种各样的
基本

NumberSetinC.svg

正数
自然数
正整数
小数
有限小数
无限小数
循环小数
有理数
代数数
实数
复数
高斯整数

负数
整数
负整数
分数
单位分数
二进分数
规矩数
无理数
超越数
虚数
二次无理数
艾森斯坦整数

延伸

二元数
四元数
八元数
十六元数
超实数
大实数
上超实数

双曲复数
双复数
复四元数
共四元数英语Dual quaternion
超复数
超数
超现实数

其他

质数
可计算数
基数
阿列夫数
同馀
整数数列
公称值

规矩数
可定义数
序数
超限数
p进数
数学常数

圆周率
自然对数的底
虚数单位
无穷大

循环小数,是从小数部分的某一位起,一个数字或几个数字,依次不断地重复出现的小数。可分为有限循环小数和无限循环小数。

定义[编辑]

循环小数都为有理数小数表示形式,例:

性质[编辑]

  • 一个分母为N的循环小数的循环节位数最多不超过N-1位。
  • 根据分数的情况分开讨论
1.除数a为的倍数时,有max(m,n)个不循环位数,其中为任意自然数,为非之其他数。
2.如果,a不是2或5的倍数,并且a与b互质,那么存在一个正整数e,e为的循环节位数,而e=[1]
表示可以整除a,或称与1同馀)
事实上以该参考文献的定理一公式推导式子:来看,也成立,例如,两者循环小数一致,因为,只差别在商,馀数皆为1(同馀)故成立。
3.承接以上两点,当除数a可以质因数标准分解式表示成时,会有max(m,n)个不循环位数,和个循环节位数。
其中,, ,⋯,分别各有e1,e2,...,en个循环节位数,存在一个最小公倍数e1,e2,...,en
例:的循环节个数?
答:前三位不循环(2 和 5 的最高次方为 3),循环节个数是 48(因为的循环节位数为1,7的循环节位数为6,17的循环节位数为16,[1,6,16]=48)[2]

化为分数的方法[编辑]

  1. 先看有几位“非循环节位数()”和“循环节位数()”,算出后,将摆于“分母”。
  2. 分子”则是将“非循环节部分”和“循环节部分”并为一个数字,将其减去“非循环节部分”,即,详细公式如下。
  3. 公式:
  4. 原理:
    1. ──①式。
    2. ──②式。
    3. ②-①⇒
  5. 范例:
    1. 两式相减得

计算方法[编辑]

利用短除法可以将分数(有理数)转化为循环小数。

例如可以用短除法计算如下:

7|3.00000000000000000
  0.42857142857142857...

表示方法[编辑]

在不同的国家地区对循环小数有不同的表示习惯。

  • 使用“上划线”表示,如:

  • 使用“上点”表示,如:

  • 使用“大括号”表示,如:

缺点[编辑]

不唯一性[编辑]

使用循环小数表示有理数的缺点在于表示方式的不唯一性,例如

进位制系统密切相关[编辑]

由于循环小数与进位制系统密切相关,使得一些简单的有理数在循环小数表示法中的表示形式相当复杂。如

但在某些进位制当中反而因为循环节较短,使得看起来相当简单。如

参考资料[编辑]

  1. ^ 康明昌. 循环小数 (PDF). 数学传播. 2001年9月, 25 (3) [2014-12-28]. 
  2. ^ 质数循环节的位数 (PDF). 

参见[编辑]

外部链接[编辑]