截对角偏方面体
外观
类别 | 截对角偏方面体 |
---|---|
对偶多面体 | 双锥反柱体 |
性质 | |
面 | |
边 | |
顶点 | |
欧拉特征数 | F=, E=, V= (χ=2) |
组成与布局 | |
面的种类 | 2n个五边形,2个n边形 |
对称性 | |
对称群 | Dnd, [2+,2n], (2*n), 阶数 4n |
旋转对称群 | Dn, [2,2n]+, (22n), 阶数 2n |
特性 | |
凸 | |
注:为底面边数 。 | |
在几何学中,截对角偏方面体是一种多面体,可以透过将偏方面体截去上下两个顶点构成,并具备二面体群对称性[1]。它的命名方式是根据上下两个面的形状而命名的,例如:正十二面体可以视为是截对角正五方偏方面体,它的上下两个面都是正五边形,其他的面也是五边形;[2]:251截对角四方偏方面体的上下两个面则是正方形或四边形,其他的面则是五边形,依此类推。部分的截对角偏方面体可以作为化学的分子笼结构。[3]
形状
[编辑]截对角偏方面体可以根据其底面边数分类:
- 截对角三方偏方面体 (杜勒立体):
- 截对角四方偏方面体:
- 截对角五方偏方面体或正十二面体:
- 截对角六方偏方面体:
- ...
- 截对角n方偏方面体:
- 由2n个五边形和2个n边形组成,对偶多面体为双n角锥反角柱。
相关多面体
[编辑]截顶角偏方面体
[编辑]截顶角偏方面体又称截一角偏方面体是指截去一个顶角的偏方面体。其对偶多面体为角锥反角柱。若截顶角偏方面体的底面边数为n,则其会有2n+1个面、5n条边和3n+1个顶点。
3 | 4 | 5 | 6 |
---|---|---|---|
截顶角三方偏方面体 |
截顶角四方偏方面体 |
截顶角五方偏方面体 |
截顶角六方偏方面体 |
参见
[编辑]参考文献
[编辑]- ^ Katrina Biele, Yuan Feng, David Heras, Ahmed Tadde. Associating Finite Groups with Dessins d’Enfants (PDF). Purdue Research in Mathematics Experience (PRiME), Department of Mathematics, Purdue University. 2013 [2021-10-23]. (原始内容存档 (PDF)于2021-10-23).
- ^ 2.0 2.1 Alsina, C. and Nelsen, R.B. A Mathematical Space Odyssey: Solid Geometry in the 21st Century. Dolciani Mathematical Expositions. Mathematical Association of America. 2015. ISBN 9781614442165.
- ^ Seong-Pil Kang, Ju-Young Shin, Jong-Se Lim, Sangyong Lee. Experimental measurement of the induction time of natural gas Hydrate and its prediction with polymeric kinetic inhibitor. Chemical Engineering Science. 2014-09, 116: 817–823 [2021-10-07]. doi:10.1016/j.ces.2014.04.035. (原始内容存档于2018-06-09) (英语).
- ^ Weitzel, Hans, A further hypothesis on the polyhedron of A. Dürer's engraving Melencolia I, Historia Mathematica, 2004, 31 (1): 11–14, doi:10.1016/S0315-0860(03)00029-6
- ^ Ziegler, Günter M., Dürer's polyhedron: 5 theories that explain Melencolia's crazy cube, Alex Bellos's Adventures in Numberland, The Guardian, December 3, 2014 [2021-10-23], (原始内容存档于2020-11-11)
- ^ Diudea, M.V. and Nagy, C.L. Diamond and Related Nanostructures. Carbon Materials: Chemistry and Physics. Springer Netherlands. 2013. ISBN 9789400763715.
- ^ Wang, Dong and Cherkaev, Andrej and Osting, Braxton. Dynamics and stationary configurations of heterogeneous foams. PloS one (Public Library of Science). 2019, 14 (4): e0215836.
- ^ Jing Fan, Shin-Hyun Kim, Zi Chen, Shaobing Zhou, Esther Amstad, Tina Lin, David A. Weitz. Creation of Faceted Polyhedral Microgels from Compressed Emulsions (PDF). seas.harvard.edu. [2021-10-23]. (原始内容存档 (PDF)于2021-10-23).
- ^ 9.0 9.1 Wearie-Phelan Bubbles. steelpillow.com. [2019-10-05]. (原始内容存档于2019-08-06).
- ^ Șerban, D. A., Sărăndan, S., Negru, R., Belgiu, G., & Marşavina, L., A Parametric Study of the Mechanical Properties of Open-Cell Kelvin Structures, IOP Conference Series: Materials Science and Engineering 416 (1) (IOP Publishing), 2018, 416 (1): 012108