跳转到内容

核冬天:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
无编辑摘要
无编辑摘要
第78行: 第78行:
2 = 布拉沃城堡]]
2 = 布拉沃城堡]]


1952年,在埃鲁格拉布岛进行炸弹试验前几周,人们担心爆炸产生的气溶胶可能会使地球冷却。美国空军的诺雷尔·卢勒吉少校和天文学家纳塔拉扬·维斯瓦纳坦研究了这种可能性,并在《超级武器对世界气候的影响》中报告了他们的发现,超级武器的分布受到严格控制。该报告在国防威胁降低局2013年的一份报告中被描述为“核冬天”概念的初步研究。 它表明爆炸引起的气候变化的可能性不明显。
1952年,在埃鲁格拉布岛进行炸弹试验前几周,人们担心爆炸产生的气溶胶可能会使地球冷却。美国空军的诺雷尔·卢勒吉少校和天文学家纳塔拉扬·维斯瓦纳坦研究了这种可能性,并在《超级武器对世界气候的影响》中报告了他们的发现,超级武器的分布受到严格控制。该报告在国防威胁降低局2013年的一份报告中被描述为“核冬天”概念的初步研究。它表明爆炸引起的气候变化的可能性不明显。<ref>{{Cite web|title=Castle bravo: Fifty years of legend and lore|url=https://www.wikidata.org/wiki/Q63070323|access-date=2023-12-21|website=www.wikidata.org|language=en}}</ref>


1957年关于核武器影响的报告描述了太平洋试验场岛屿上多次高当量氢弹爆炸对民防的影响,例如1952年的常春藤迈克岛和1954年的布拉沃城堡。该书中题为“核弹与天气”的一节指出:“众所周知,严重的火山喷发(例如 1883 年的喀拉喀托火山喷发)所产生的尘埃会导致到达地球的阳光明显减少…… 即使是最大的核武器爆炸后,残留在大气中的(土壤或其他表面)碎片也可能不超过喀拉喀托火山喷发产生的碎片的百分之一左右。此外,太阳辐射记录显示,没有任何核辐射 迄今为止的爆炸已经导致地面上记录的直射阳光发生任何可检测到的变化。”1956年,美国气象局认为,可以想象,一场足够大规模的核战争,其表面爆炸量达到百万吨级,可能会掀起足够多的土壤,造成新的冰河时代。
1957年关于核武器影响的报告描述了太平洋试验场岛屿上多次高当量氢弹爆炸对民防的影响,例如1952年的常春藤迈克岛和1954年的布拉沃城堡。该书中题为“核弹与天气”的一节指出:“众所周知,严重的火山喷发(例如 1883 年的喀拉喀托火山喷发)所产生的尘埃会导致到达地球的阳光明显减少…… 即使是最大的核武器爆炸后,残留在大气中的(土壤或其他表面)碎片也可能不超过喀拉喀托火山喷发产生的碎片的百分之一左右。此外,太阳辐射记录显示,没有任何核辐射 迄今为止的爆炸已经导致地面上记录的直射阳光发生任何可检测到的变化。”1956年,美国气象局认为,可以想象,一场足够大规模的核战争,其表面爆炸量达到百万吨级,可能会掀起足够多的土壤,造成新的冰河时代。<ref>{{Cite web|date=2014-08-24|title=The effects of nuclear weapons. . - Full View {{!}} HathiTrust Digital Library {{!}} HathiTrust Digital Library|url=https://web.archive.org/web/20140824081908/http://babel.hathitrust.org/cgi/pt?seq=9&view=image&size=100&id=mdp.39015010999814&u=1&num=69|access-date=2023-12-21|website=web.archive.org}}</ref><ref>{{Cite journal |last=Dorries |first=Matthias |title=Politics of Atmospheric Sciences: 'Nuclear winter' and global climate change |url=https://univoak.eu/islandora/object/islandora%3A62598/ |journal=Osiris |language=fr |doi=10.1086/661272}}</ref>


1966年兰德公司备忘录《核战争对天气和气候的影响》主要分析了地表爆炸的潜在尘埃影响,指出“除了碎片的影响外,核爆炸引发的大范围火灾可能会改变该地区的表面特征并改变当地的天气模式……但是,需要对大气有更全面的了解,以确定其确切的性质、范围和强度。”
1966年兰德公司备忘录《核战争对天气和气候的影响》主要分析了地表爆炸的潜在尘埃影响,指出“除了碎片的影响外,核爆炸引发的大范围火灾可能会改变该地区的表面特征并改变当地的天气模式……但是,需要对大气有更全面的了解,以确定其确切的性质、范围和强度。”


美国国家研究委员会1975年出版的《多重核武器爆炸对全球的长期影响》一书中指出,涉及现有武库中4,000吨的核战争在平流层中沉积的灰尘可能比喀拉喀托火山少得多。火山爆发,判断灰尘和氮氧化物的影响可能是轻微的气候变冷,“可能处于正常的全球气候变化范围内,但不能排除更剧烈的气候变化的可能性”。
美国国家研究委员会1975年出版的《多重核武器爆炸对全球的长期影响》一书中指出,涉及现有武库中4,000吨的核战争在平流层中沉积的灰尘可能比喀拉喀托火山少得多。火山爆发,判断灰尘和氮氧化物的影响可能是轻微的气候变冷,“可能处于正常的全球气候变化范围内,但不能排除更剧烈的气候变化的可能性”。<ref>{{Cite web|date=2014-10-06|title=The global health effects of nuclear war|url=https://web.archive.org/web/20141006093303/http://www.bmartin.cc/pubs/82cab/|access-date=2023-12-21|website=web.archive.org}}</ref><ref>{{Cite book|chapter=Long-term Worldwide Effects of Multiple Nuclear-weapons Detonations|url=https://books.google.com/books?id=JVArAAAAYAAJ&q=%22Long-term%20worldwide%20effects%20of%20multiple%20nuclear%20weapons%20detonations%22&pg=PA25|publisher=National Academy of Sciences|date=1975|isbn=978-0-309-02418-1|language=en|first=National Research Council (U S. ) Committee to Study the Long-Term Worldwide Effects of Multiple Nuclear-Weapons|last=Detonations|title=Long-term worldwide effects of multiple nuclear weapons detonations}}</ref>


在1985年的报告《一次重大核交换对大气的影响》中,核爆炸大气影响委员会认为,对1公吨地表爆炸后注入平流层尘埃量的“合理”估计为0.3太克, 其中8%在微米范围内。1992年,美国国家科学院 (NAS)的一份地球工程报告再次审视了土壤尘埃的潜在冷却作用,该报告估计,平流层注入的土壤尘埃约为1010 千克,其颗粒尺寸需要0.1至1微米来缓解大气中二氧化碳加倍造成的变暖,产生约2°C的冷却。
在1985年的报告《一次重大核交换对大气的影响》中,核爆炸大气影响委员会认为,对1公吨地表爆炸后注入平流层尘埃量的“合理”估计为0.3太克, 其中8%在微米范围内。1992年,美国国家科学院 (NAS)的一份地球工程报告再次审视了土壤尘埃的潜在冷却作用,该报告估计,平流层注入的土壤尘埃约为1010 千克,其颗粒尺寸需要0.1至1微米来缓解大气中二氧化碳加倍造成的变暖,产生约2°C的冷却。<ref>{{Cite journal |date=1992-01-01 |title=Policy Implications of Greenhouse Warming |url=http://dx.doi.org/10.17226/1605 |doi=10.17226/1605}}</ref><ref>{{Cite journal |last=Virgoe |first=John |date=2008-12-09 |title=International governance of a possible geoengineering intervention to combat climate change |url=http://dx.doi.org/10.1007/s10584-008-9523-9 |journal=Climatic Change |volume=95 |issue=1-2 |doi=10.1007/s10584-008-9523-9 |issn=0165-0009}}</ref>


1969年,Paul Crutzen 发现氮氧化物可能是破坏臭氧层/平流层臭氧的有效催化剂。对20世纪70年代平流层飞行的超音速运输飞机中发动机热量产生的氮氧化物的潜在影响进行研究后,约翰·汉普森于1974年在《自然》杂志上提出,由于核火球在大气中产生氮氧化物, 大规模的核交换可能会导致臭氧层的消耗,可能使地球遭受紫外线辐射一年或更长时间。1975年,汉普森的假设“直接导致”美国国家研究委员会在《多重核武器爆炸的长期全球影响》一书中报告了核战争后臭氧消耗模型。
1969年,Paul Crutzen 发现氮氧化物可能是破坏臭氧层/平流层臭氧的有效催化剂。对20世纪70年代平流层飞行的超音速运输飞机中发动机热量产生的氮氧化物的潜在影响进行研究后,约翰·汉普森于1974年在《自然》杂志上提出,由于核火球在大气中产生氮氧化物, 大规模的核交换可能会导致臭氧层的消耗,可能使地球遭受紫外线辐射一年或更长时间。1975年,汉普森的假设“直接导致”美国国家研究委员会在《多重核武器爆炸的长期全球影响》一书中报告了核战争后臭氧消耗模型。<ref>{{Cite journal |last=Hampson |first=John |date=1974-07 |title=Photochemical war on the atmosphere |url=https://www.nature.com/articles/250189a0 |journal=Nature |language=en |volume=250 |issue=5463 |doi=10.1038/250189a0 |issn=1476-4687}}</ref><ref>{{Cite web|title=John Hampson's warnings of disaster|url=https://www.bmartin.cc/pubs/88Hampson.html|access-date=2023-12-21|website=www.bmartin.cc}}</ref>


在这本1975年NRC书中有关火球产生的NOx及其造成的臭氧层损失问题的部分中,NRC介绍了20世纪70年代初期到中期使用大量多核技术对核战争影响的模型计算。百万吨级爆炸得出的结论是这可能会使北半球的臭氧水平降低50%或更多。
在这本1975年NRC书中有关火球产生的NOx及其造成的臭氧层损失问题的部分中,NRC介绍了20世纪70年代初期到中期使用大量多核技术对核战争影响的模型计算。百万吨级爆炸得出的结论是这可能会使北半球的臭氧水平降低50%或更多。<ref>{{Cite web|date=2014-10-06|title=The global health effects of nuclear war|url=https://web.archive.org/web/20141006093303/http://www.bmartin.cc/pubs/82cab/|access-date=2023-12-21|website=web.archive.org}}</ref>


然而,独立于1975年NRC作品中提出的计算机模型,1973年《自然》杂志上的一篇论文描述了大气试验期间全球平流层臭氧水平与核爆炸次数的叠加。作者的结论是,数据和模型都没有显示出历史大气测试中大约500公吨的量与臭氧浓度的增加或减少之间存在任何相关性。1976年,一项对影响臭氧层的早期大气核试验的实验测量的研究也发现,在当时第一个令人震惊的模型计算之后,核爆炸对消耗臭氧层的影响是无罪的。同样,1981年的一篇论文发现,一次测试中的臭氧破坏模型与所进行的物理测量不一致,因为没有观察到破坏。
然而,独立于1975年NRC作品中提出的计算机模型,1973年《自然》杂志上的一篇论文描述了大气试验期间全球平流层臭氧水平与核爆炸次数的叠加。作者的结论是,数据和模型都没有显示出历史大气测试中大约500公吨的量与臭氧浓度的增加或减少之间存在任何相关性。1976年,一项对影响臭氧层的早期大气核试验的实验测量的研究也发现,在当时第一个令人震惊的模型计算之后,核爆炸对消耗臭氧层的影响是无罪的。同样,1981年的一篇论文发现,一次测试中的臭氧破坏模型与所进行的物理测量不一致,因为没有观察到破坏。<ref>{{Cite journal |last=Goldsmith |first=P. |last2=Tuck |first2=A. F. |last3=Foot |first3=J. S. |last4=Simmons |first4=E. L. |last5=Newson |first5=R. L. |date=1973-08 |title=Nitrogen Oxides, Nuclear Weapon Testing, Concorde and Stratospheric Ozone |url=https://www.nature.com/articles/244545a0 |journal=Nature |language=en |volume=244 |issue=5418 |doi=10.1038/244545a0 |issn=1476-4687}}</ref><ref>{{Cite journal |last=Christie |first=A. D. |date=1976-05-20 |title=Atmospheric ozone depletion by nuclear weapons testing |url=http://doi.wiley.com/10.1029/JC081i015p02583 |journal=Journal of Geophysical Research |language=en |volume=81 |issue=15 |doi=10.1029/JC081i015p02583}}</ref>


1945年至1971年间,总共约500公吨在大气层中引爆,在1961年至1962年期间达到顶峰,当时美国和苏联在大气层中引爆了340公吨。在此高峰期间,随着两国核试验系列的百万吨级爆炸,经过专门检查,估计释放了300 吨能量的总产量。因此,据信额外3×1034个一氧化氮分子(每公吨约5,000吨,每百万吨5 × 109克)已进入平流层,而臭氧消耗量为 2.2%。1963年,下降早在1961年就开始了,据信是由其他气象影响造成的。
1945年至1971年间,总共约500公吨在大气层中引爆,在1961年至1962年期间达到顶峰,当时美国和苏联在大气层中引爆了340公吨。在此高峰期间,随着两国核试验系列的百万吨级爆炸,经过专门检查,估计释放了300 吨能量的总产量。因此,据信额外3×1034个一氧化氮分子(每公吨约5,000吨,每百万吨5 × 109克)已进入平流层,而臭氧消耗量为 2.2%。1963年,下降早在1961年就开始了,据信是由其他气象影响造成的。<ref>{{Cite journal |last=Pavlovski |first=O. A. |date=1998 |editor-last=Shapiro |editor-first=Charles S. |title=Radiological Consequences of Nuclear Testing for the Population of the Former USSR (Input Information, Models, Dose, and Risk Estimates) |url=https://link.springer.com/chapter/10.1007/978-3-662-03610-5_17 |journal=Atmospheric Nuclear Tests |series=NATO ASI Series |language=en |location=Berlin, Heidelberg |publisher=Springer |doi=10.1007/978-3-662-03610-5_17 |isbn=978-3-662-03610-5}}</ref><ref>{{Cite web|title=Radioactive Fallout {{!}} Worldwide Effects of Nuclear War {{!}} Historical Documents {{!}} atomciarchive.com|url=https://www.atomicarchive.com/resources/documents/effects/wenw/chapter-2.html|access-date=2023-12-21|website=www.atomicarchive.com}}</ref><ref>{{Cite web|title=Effects of Nuclear Explosions|url=https://nuclearweaponarchive.org/Nwfaq/Nfaq5.html|access-date=2023-12-21|website=nuclearweaponarchive.org}}</ref>


1982年,记者乔纳森·谢尔在其颇受欢迎且颇具影响力的著作《地球的命运》中向公众介绍了火球产生的氮氧化物会破坏臭氧层,导致农作物因太阳紫外线辐射而歉收,然后类似地描绘了命运 地球上的植物和水生生物正在灭绝。1982年,澳大利亚物理学家布莱恩·马丁经常与约翰·汉普森通信,约翰·汉普森对氮氧化物生成的大部分研究负有重大责任,写了一篇简短的历史概要,介绍了人们对氮氧化物影响的历史感兴趣。核火球直接产生的氮氧化物,在此过程中,还概述了汉普森的其他非主流观点,特别是与任何广泛使用的反弹道导弹造成的高层大气爆炸造成更大臭氧破坏有关的观点系统。然而,马丁最终得出的结论是,“在一场重大核战争的背景下”,臭氧退化不太可能引起严重关注。马丁描述了关于潜在的臭氧损失以及由此导致的紫外线增加导致农作物广泛破坏的观点,正如乔纳森·谢尔在《地球的命运》中所主张的那样,这是极不可能的。
1982年,记者乔纳森·谢尔在其颇受欢迎且颇具影响力的著作《地球的命运》中向公众介绍了火球产生的氮氧化物会破坏臭氧层,导致农作物因太阳紫外线辐射而歉收,然后类似地描绘了命运 地球上的植物和水生生物正在灭绝。1982年,澳大利亚物理学家布莱恩·马丁经常与约翰·汉普森通信,约翰·汉普森对氮氧化物生成的大部分研究负有重大责任,写了一篇简短的历史概要,介绍了人们对氮氧化物影响的历史感兴趣。核火球直接产生的氮氧化物,在此过程中,还概述了汉普森的其他非主流观点,特别是与任何广泛使用的反弹道导弹造成的高层大气爆炸造成更大臭氧破坏有关的观点系统。然而,马丁最终得出的结论是,“在一场重大核战争的背景下”,臭氧退化不太可能引起严重关注。马丁描述了关于潜在的臭氧损失以及由此导致的紫外线增加导致农作物广泛破坏的观点,正如乔纳森·谢尔在《地球的命运》中所主张的那样,这是极不可能的。<ref>{{Cite web|title=The global health effects of nuclear war|url=https://www.bmartin.cc/pubs/82cab/|access-date=2023-12-21|website=www.bmartin.cc}}</ref><ref>{{Cite web|title=John Hampson's warnings of disaster|url=https://www.bmartin.cc/pubs/88Hampson.html|access-date=2023-12-21|website=www.bmartin.cc}}</ref>


最近关于NOx物质对臭氧层破坏潜力的最新描述远低于之前通过简单计算得出的假设,因为根据罗伯特·P·帕森的说法,据信每年会形成“约120万吨”自然和人为产生的平流层NOx在20世纪90年代。
最近关于NOx物质对臭氧层破坏潜力的最新描述远低于之前通过简单计算得出的假设,因为根据罗伯特·P·帕森的说法,据信每年会形成“约120万吨”自然和人为产生的平流层NOx在20世纪90年代。<ref>{{Cite web|last=stason.org|first=Stas Bekman: stas (at)|title=24 Will commercial supersonic aircraft damage the ozone layer?|url=https://stason.org/TULARC/science-engineering/ozone-depletion-intro/24-Will-commercial-supersonic-aircraft-damage-the-ozone-laye.html|access-date=2023-12-21|website=stason.org}}</ref>


====科幻小说====
====科幻小说====

2023年12月21日 (四) 05:50的版本

苏联科學家於1983年提出的核冬天氣候變化模型:上图为核冬天後的第40天,下图則为第243天

核冬天假说(Nuclear winter)是一個關於全球氣候變化的理論,它預測了大規模核戰爭可能產生的氣候災難。核冬天理論認為使用大量的核武器,特別是對像城市這樣的易燃目標使用核武器,會讓大量的煙和煤煙進入地球大氣層,這將可能導致非常寒冷的天氣。必须指出的是,核冬天是基于数据化模型的假设。然而,在最新的研究中,科学家更新了比上世纪更精确的计算模型,依然得出核冬天会对地球气候造成毁灭性影响的结论[1][2][3]

概述

核冬天,最初被称为“核暮光”,自20世纪80年代被视为一个科学概念,当时人们发现,早期预测火球产生的氮氧化物排放会破坏臭氧层的假设正在失去可信度。在这种背景下,火灾烟尘的气候效应成为核战争气候效应的新焦点。在这些模型场景中,假设在城市、炼油厂和更多农村导弹发射井上空形成含有不确定数量烟灰的各种烟灰云。“核冬天”一词是理查德·P·图尔科英语Richard P. Turco于1983年创造的一个新词,指的是为检验“核暮光”概念而创建的一维计算机模型。该模型预测,大量烟灰和烟雾将在空气中停留数年,导致全球范围内的气温严重下降。[4][5][6][7]

主张这一假设的主要气候学家团队对1991年科威特石油火灾的影响做出的预测失败后,十多年来没有发表关于该主题的新论文。最近,由20世纪80年代的著名建模师组成的同一团队再次开始发布计算机模型的输出。这些新模型得出了与旧模型相同的一般结论,即点燃100场火灾风暴,每场火灾的强度与1945年在广岛观察到的强度相当,可能会产生一个“小型”核冬天。这些大火将导致烟灰(特别是黑碳)注入地球平流层,产生反温室效应,降低地球表面温度。艾伦·罗伯克英语Alan Robock's模型中降温的严重程度表明,100场火灾风暴的累积产物可能会使全球气候降温约1°C,从而在很大程度上消除未来大约两三年内人为全球变暖的程度年。他的合作者模拟了其对全球粮食生产的影响,并预测将超过5Tg的烟尘注入平流层将导致持续数年的大规模粮食短缺。根据他们的模型,畜牧业畜牧业和水产食品生产将无法弥补几乎所有国家作物产量的减少,而减少食物浪费等适应措施对增加可用热量的影响有限。[8][9][10][11]

由于不需要引爆核装置来引发大火,因此“核冬天”一词有些用词不当。关于该主题发表的大多数论文都指出,在没有定性论证的情况下,核爆炸是模拟的风暴效应的原因。核冬天论文中唯一用计算机模拟的现象是风暴烟灰的气候强迫剂,这是一种可以通过多种方式点燃和形成的产品。尽管很少讨论,该假设的支持者表示,如果点燃100大规模的常规火灾风暴,也会发生相同的“核冬天”效应。[12]

20世纪80年代创造该术语的计算机建模者最初的假设是,火灾风暴的数量要大得多,达到数千次。据推测,这些可能是美苏全面战争期间大规模使用反价值空爆核武器的结果。大量的火灾风暴本身并未被建模,被认为是由于烟雾被输入各种气候模型而导致核冬季条件,严重降温的深度持续长达十年之久。在此期间,美国欧洲中国核心农业区的夏季平均气温可能下降高达20°C ,而俄罗斯则高达35°C。这种冷却是由于最初几年到达地球表面的太阳辐射减少了99%,并在几十年的过程中逐渐消失而产生的。[13][14]

在基本层面上,自从捕捉到高云的照片证据以来,人们知道火暴可以将烟尘/气溶胶注入平流层,但这些气溶胶的寿命是一个主要未知数。独立于继续发表核冬天理论模型的团队,2006年,海军研究实验室的迈克·弗洛姆通过实验发现,每次自然发生的大规模野火风暴(比广岛观察到的规模大得多)都可以产生轻微的“核冬季”的影响,持续时间短暂,大约一个月,地表温度几乎不可估量的下降,仅限于它们燃烧的半球。这有点类似于频繁的火山喷发,将硫酸盐注入平流层,从而产生轻微的、甚至可以忽略不计的火山冬季影响。[15][16][17]

一套基于卫星和飞机的火灾风暴烟灰监测仪器处于尝试准确确定这种烟雾的寿命、数量、喷射高度和光学特性的最前沿。有关所有这些特性的信息对于真正确定火风暴冷却效应的持续时间和严重程度是必要的,独立于核冬天计算机模型预测。[18][19][20][21]

目前,根据卫星跟踪数据,平流层烟雾气溶胶似乎在大约两个月的时间内消散。是否存在进入新平流层条件的临界点,在此时间范围内气溶胶不会被清除仍有待确定。[22]

機制

一架巡航约10公里的商用客机上拍摄的火积雨云照片。2002年,各种传感仪器仅在北美就检测到了17起不同的火积雨云事件。

核冬季情景假设核爆炸引发100场或更多城市的火灾风暴并且风暴通过火积雨云的运动将大量黑烟提升到对流层上层和平流层下层。在距离地球表面10-15公里的地方,吸收阳光可能会进一步加热烟雾中的烟灰,将部分或全部烟灰提升到平流层,如果没有空气,烟雾可能会持续数年,雨水将把它洗掉。这种气溶胶颗粒可以加热平流层并阻止部分太阳光到达表面,导致表面温度急剧下降。在这种情况下,地表气温将连续数月至数年与给定地区的冬季相同或更低。[23][24][25]

模拟的对流层和平流层高空之间热烟灰的稳定逆温层产生反温室效应,在1988年的论文中。被Stephen Schneider等人称为“烟圈”[26]

尽管在气候模型中考虑城市火灾风暴是很常见的,但这些不需要由核装置点燃;更传统的点火源可以代替火灾风暴的火花。在前面提到的太阳加热效应之前,烟灰的喷射高度是由火风暴燃料释放能量的速率控制的,而不是初始核爆炸的大小。例如,投放在广岛的原子弹产生的蘑菇云在几分钟内就达到了六公里的高度(对流层中部),然后因风而消散,而城市内的个别火灾则花了近三个小时才形成大火, 产生火积云,这种云被认为已达到对流层上层高度,因为在其多个小时的燃烧过程中,火焰风暴释放的能量估计是炸弹能量的1000倍。[27]

由于核爆炸的燃烧效应没有表现出任何特别的特征,据具有战略轰炸经验的人估计,由于该城市存在火灾风暴危险,因此广岛产生的同样的火灾凶猛程度和建筑物损坏将增加16倍。一架B-29轰炸机可以通过分布在城市上空的220架B-29轰炸机发射约1.2吨燃烧弹来制造千吨核弹。[28][29][30]

1945年德累斯顿广岛的大火以及东京和长崎的大规模火灾在短短几个月内就发生了,而更强烈且采用传统点燃方式的汉堡大火却发生在1943年。尽管时间上有所不同,但火势猛烈和燃烧面积不同,该假设的主要建模者指出这五场火灾可能向平流层排放的烟雾相当于现代模型中讨论的假设的100场核引发火灾的百分之五。虽然人们相信,二战时通过技术仪器可以检测到100场火灾风暴注入平流层的大量烟灰所造成的气候变冷效应,但其中5%是无法检测到的。[31]

气溶胶去除时间

苏格兰洛赫卡伦升起的烟雾被覆盖的自然低层暖空气逆温层所阻挡(2006)。

烟雾持续时间的确切时间尺度,以及烟雾到达平流层后对气候影响的严重程度,取决于化学和物理去除过程。[32]

最重要的物理清除机制是“降雨”,无论是在“火灾驱动的对流柱”阶段,在火场附近产生“黑雨”,还是在对流羽流消散后的降雨,此时烟雾不再集中,因此“湿法去除”被认为是非常有效的。然而,在Robock2007年的研究中,对流层中的这些有效去除机制被避免了,其中太阳能加热被建模为将烟灰快速提升到平流层,从火云的白色水凝结中“去除”或分离出较暗的烟灰颗粒。

一旦进入平流层,影响烟灰颗粒停留时间尺度的物理去除机制是烟灰气溶胶通过布朗运动与其他颗粒碰撞和凝结的速度,并从大气中掉落 通过重力驱动的干沉积,以及“泳动效应”将凝结颗粒移动到大气中较低水平所需的时间。无论是通过凝结还是泳动效应,一旦烟雾颗粒的气溶胶处于较低的大气水平,就可以开始播云,从而允许降水通过湿沉降机制将烟雾气溶胶从大气中冲走。

影响去除的化学过程取决于大气化学通过与臭氧和氮氧化物等氧化物质发生反应来氧化烟雾中碳质成分的能力,这两种物质存在于大气的各个层面,并且当空气被加热到高温时也会以更高的浓度发生。[33][34]

气溶胶停留时间的历史数据,尽管是不同的气溶胶混合物,在这种情况下是平流层硫气溶胶和巨型火山喷发的火山灰,似乎在一到两年的时间范围内,然而气溶胶-大气相互作用仍然知之甚少。[35][36][37]

烟灰特性

胶具有广泛的特性和复杂的形状,因此很难确定其不断变化的大气光学深度值。据信,烟灰产生过程中存在的条件对其最终性能相当重要,在更有效的燃烧效率范围内产生的烟灰几乎被认为是“元素炭黑”,而在燃烧效率较低的一端产生的烟灰,存在大量部分燃烧/氧化的燃料。这些部分燃烧的“有机物”,正如它们所知,通常在常见的低强度野火中形成焦油球和棕色碳,并且还可以覆盖更纯净的黑碳颗粒。 然而,由于最重要的烟灰是通过风暴的热对流喷射到最高高度的烟灰(火灾是由风暴力的空气风助长的),因此估计在这些条件下大部分烟灰更多是氧化黑碳。[38][39][40][41]

结果

中央情报局从1984年意大利核战争国际研讨会上获得的图表。它描述了苏联1983年以来核冬天3-D计算机模型研究的结果,尽管包含与早期西方模型类似的错误,但它是第一个3-D计算机模型。该图显示了模型对全球核交换后全球温度变化的预测。上图显示40天后的效果,下图是243天后的效果。合著者是核冬季建模先驱 Vladimir Alexandrov。Alexsandrov于1985年失踪。截至2016 年,朋友Andrew Revkin仍在不断猜测与他的工作有关的谋杀行为。

气候影响

2006年12月美国地球物理联盟年会上提出的一项研究发现,即使是小规模的区域性核战争也可能会破坏全球气候十年或更长时间。在区域性核冲突情景中,亚热带的两个对立国家将在主要人口中心各使用50枚广岛大小的核武器(每枚约15吨),研究人员估计将释放多达500万吨烟灰,这将导致北美和欧亚大陆大片地区(包括大部分粮食种植地区)降温数度。降温将持续数年,并且根据研究,可能是“灾难性的”,扰乱农业生产和粮食采集,特别是在高纬度国家。[42][43][44][45]

臭氧耗竭

核爆炸会分解周围的空气,产生大量的氮氧化物,然后它们通过热对流向上提升。当它们到达平流层时,这些氮氧化物能够催化分解该大气层中存在的臭氧。臭氧消耗将使来自太阳的有害紫外线辐射到达地面的强度要大得多。[46]

迈克尔·J·米尔斯等人2008年在《美国国家科学院院刊》上发表的一项研究发现,巴基斯坦和印度之间使用现有武库进行核武器交换可能会造成近乎全球性的臭氧空洞,从而引发人类健康问题 并造成至少十年的环境破坏。这项计算机模型研究着眼于两国之间的核战争,双方各有50个广岛大小的核装置,引发大规模城市火灾,并将多达500万吨烟灰喷射到平流层约80公里处。烟灰会吸收足够的太阳辐射来加热周围的气体,从而增加保护地球免受有害紫外线辐射的平流层臭氧层的破坏,在北部高纬度地区,臭氧损失高达70%。[47][48]

核夏天

“核夏天”是一种假设的情景,其中由于气溶胶进入大气层而导致阳光无法到达较低层或地表,造成核冬天减弱,由于二氧化碳而出现温室效应,燃烧释放的甲烷和核冬天期间冻结的尸体等有机物腐烂释放的甲烷。[49][50]

另一种更连续的假设情景是,在1-3年内大部分气溶胶沉降之后,冷却效应将被温室变暖的加热效应所克服,这将使地表温度迅速升高很多度,足以导致死亡大部分(如果不是大部分的话)在寒冷中幸存下来的生命,其中大部分更容易受到高于正常温度的影响,而不是低于正常温度的影响。核爆炸会因燃烧释放二氧化碳和其他温室气体,随后死亡有机物的腐烂会释放出更多气体。爆炸还会将氮氧化物带入平流层,从而消耗地球周围的臭氧层。[50]

核冬天可能会让位于核夏天的假设还存在其他更直接的假设版本。核火球的高温可以破坏平流层中部的臭氧气体。[51]

历史

早期工作

蘑菇云高度与地表爆炸时爆炸当量的函数关系。如图所示,至少需要百万吨级的产量才能将灰尘/沉降物提升到平流层。臭氧在海拔约25公里处达到最大浓度。另一种进入平流层的方法是高空核爆炸,其中一个例子包括苏联1961年第 88 号试验,10.5千吨,在22.7公里处引爆。美国高产高层大气试验还评估了柚木和橙子的臭氧破坏潜力。 0 = 商用飞机运行的大约高度 1 = 胖子 2 = 布拉沃城堡

1952年,在埃鲁格拉布岛进行炸弹试验前几周,人们担心爆炸产生的气溶胶可能会使地球冷却。美国空军的诺雷尔·卢勒吉少校和天文学家纳塔拉扬·维斯瓦纳坦研究了这种可能性,并在《超级武器对世界气候的影响》中报告了他们的发现,超级武器的分布受到严格控制。该报告在国防威胁降低局2013年的一份报告中被描述为“核冬天”概念的初步研究。它表明爆炸引起的气候变化的可能性不明显。[52]

1957年关于核武器影响的报告描述了太平洋试验场岛屿上多次高当量氢弹爆炸对民防的影响,例如1952年的常春藤迈克岛和1954年的布拉沃城堡。该书中题为“核弹与天气”的一节指出:“众所周知,严重的火山喷发(例如 1883 年的喀拉喀托火山喷发)所产生的尘埃会导致到达地球的阳光明显减少…… 即使是最大的核武器爆炸后,残留在大气中的(土壤或其他表面)碎片也可能不超过喀拉喀托火山喷发产生的碎片的百分之一左右。此外,太阳辐射记录显示,没有任何核辐射 迄今为止的爆炸已经导致地面上记录的直射阳光发生任何可检测到的变化。”1956年,美国气象局认为,可以想象,一场足够大规模的核战争,其表面爆炸量达到百万吨级,可能会掀起足够多的土壤,造成新的冰河时代。[53][54]

1966年兰德公司备忘录《核战争对天气和气候的影响》主要分析了地表爆炸的潜在尘埃影响,指出“除了碎片的影响外,核爆炸引发的大范围火灾可能会改变该地区的表面特征并改变当地的天气模式……但是,需要对大气有更全面的了解,以确定其确切的性质、范围和强度。”

美国国家研究委员会1975年出版的《多重核武器爆炸对全球的长期影响》一书中指出,涉及现有武库中4,000吨的核战争在平流层中沉积的灰尘可能比喀拉喀托火山少得多。火山爆发,判断灰尘和氮氧化物的影响可能是轻微的气候变冷,“可能处于正常的全球气候变化范围内,但不能排除更剧烈的气候变化的可能性”。[55][56]

在1985年的报告《一次重大核交换对大气的影响》中,核爆炸大气影响委员会认为,对1公吨地表爆炸后注入平流层尘埃量的“合理”估计为0.3太克, 其中8%在微米范围内。1992年,美国国家科学院 (NAS)的一份地球工程报告再次审视了土壤尘埃的潜在冷却作用,该报告估计,平流层注入的土壤尘埃约为1010 千克,其颗粒尺寸需要0.1至1微米来缓解大气中二氧化碳加倍造成的变暖,产生约2°C的冷却。[57][58]

1969年,Paul Crutzen 发现氮氧化物可能是破坏臭氧层/平流层臭氧的有效催化剂。对20世纪70年代平流层飞行的超音速运输飞机中发动机热量产生的氮氧化物的潜在影响进行研究后,约翰·汉普森于1974年在《自然》杂志上提出,由于核火球在大气中产生氮氧化物, 大规模的核交换可能会导致臭氧层的消耗,可能使地球遭受紫外线辐射一年或更长时间。1975年,汉普森的假设“直接导致”美国国家研究委员会在《多重核武器爆炸的长期全球影响》一书中报告了核战争后臭氧消耗模型。[59][60]

在这本1975年NRC书中有关火球产生的NOx及其造成的臭氧层损失问题的部分中,NRC介绍了20世纪70年代初期到中期使用大量多核技术对核战争影响的模型计算。百万吨级爆炸得出的结论是这可能会使北半球的臭氧水平降低50%或更多。[61]

然而,独立于1975年NRC作品中提出的计算机模型,1973年《自然》杂志上的一篇论文描述了大气试验期间全球平流层臭氧水平与核爆炸次数的叠加。作者的结论是,数据和模型都没有显示出历史大气测试中大约500公吨的量与臭氧浓度的增加或减少之间存在任何相关性。1976年,一项对影响臭氧层的早期大气核试验的实验测量的研究也发现,在当时第一个令人震惊的模型计算之后,核爆炸对消耗臭氧层的影响是无罪的。同样,1981年的一篇论文发现,一次测试中的臭氧破坏模型与所进行的物理测量不一致,因为没有观察到破坏。[62][63]

1945年至1971年间,总共约500公吨在大气层中引爆,在1961年至1962年期间达到顶峰,当时美国和苏联在大气层中引爆了340公吨。在此高峰期间,随着两国核试验系列的百万吨级爆炸,经过专门检查,估计释放了300 吨能量的总产量。因此,据信额外3×1034个一氧化氮分子(每公吨约5,000吨,每百万吨5 × 109克)已进入平流层,而臭氧消耗量为 2.2%。1963年,下降早在1961年就开始了,据信是由其他气象影响造成的。[64][65][66]

1982年,记者乔纳森·谢尔在其颇受欢迎且颇具影响力的著作《地球的命运》中向公众介绍了火球产生的氮氧化物会破坏臭氧层,导致农作物因太阳紫外线辐射而歉收,然后类似地描绘了命运 地球上的植物和水生生物正在灭绝。1982年,澳大利亚物理学家布莱恩·马丁经常与约翰·汉普森通信,约翰·汉普森对氮氧化物生成的大部分研究负有重大责任,写了一篇简短的历史概要,介绍了人们对氮氧化物影响的历史感兴趣。核火球直接产生的氮氧化物,在此过程中,还概述了汉普森的其他非主流观点,特别是与任何广泛使用的反弹道导弹造成的高层大气爆炸造成更大臭氧破坏有关的观点系统。然而,马丁最终得出的结论是,“在一场重大核战争的背景下”,臭氧退化不太可能引起严重关注。马丁描述了关于潜在的臭氧损失以及由此导致的紫外线增加导致农作物广泛破坏的观点,正如乔纳森·谢尔在《地球的命运》中所主张的那样,这是极不可能的。[67][68]

最近关于NOx物质对臭氧层破坏潜力的最新描述远低于之前通过简单计算得出的假设,因为根据罗伯特·P·帕森的说法,据信每年会形成“约120万吨”自然和人为产生的平流层NOx在20世纪90年代。[69]

科幻小说

1980年代

1990年

第一次海湾战争中的科威特油井

科威特的石油火灾不仅限于燃烧的油井(背景中可以看到其中之一),而且前景中看到的燃烧的“油湖”也产生了烟羽,尤其是其中最黑/最黑的烟羽。
1991年4月7日科威特几起石油火灾产生的烟羽。1991年2月15日至5月30日期间600多起火灾的综合烟羽的最大假定范围是可用的。在所有火灾中,只有大约10%(主要与源自“油湖”的火灾相对应)产生纯黑色烟灰填充羽流,25%的火灾发出白色至灰色羽流,而其余火灾则发出灰色和黑色之间颜色的羽流。
这张英国南部的卫星照片显示了2005年邦斯菲尔德火灾产生的黑烟,该火灾和爆炸涉及约2.5亿升化石燃料。 可以看到羽流从倒“V”形顶点的爆炸现场以两条主要气流扩散。当火被扑灭时,烟雾已经到达英吉利海峡。橙色点是一个标记,而不是实际的火灾。尽管烟羽来自单一来源,而且规模比1991年科威特单个油井火灾烟羽还要大,但邦斯菲尔德烟云仍然处于平流层之外。

最近的研究

2007年全球核战争研究

2014

2018

2019

2021

2022

2023

批评与辩论

1945年3月9日至10日,东京会议室行动燃烧弹袭击期间,1,665吨燃烧弹和高爆炸弹以小炸弹的形式投向该城市,造成超过10,000英亩的建筑物被毁,41平方公里,历史上最具破坏性和最致命的轰炸行动。

对更现代的论文的批判性回应

政策影响

美国和苏联的核库存。试图让其他人相信核冬天模型结果的影响似乎并没有减少任何一个国家在20世纪80年代的核库存,只是苏联经济的衰退和1989年至1991年间国家的解体导致了这一结果。标志着冷战的结束,“军备竞赛”的缓和似乎已经产生了效果。百万吨级到兆瓦级发电计划的影响在20世纪90年代中期也可见一斑,延续了俄罗斯减排的趋势。还提供了仅关注百万吨级弹头数量的类似图表。此外,从1983年到冷战结束,美国和俄罗斯战略武器的部署总量稳步增加。
1951年行动中的射击叔叔的威力约为13至16Kt广岛炸弹的十分之一,并在地面以下5.2m处引爆。在这次浅埋测试中,没有向周围环境排放热能的热闪蒸。爆炸导致云层上升至3.5公里。由此产生的陨石坑宽260英尺(79m),深53英尺(16m)。威力与原子爆破弹药相似。阿尔特菲尔德和辛巴拉认为,对核冬天的真正信仰可能会导致各国建立更大的此类武器库。然而,尽管由于“拨号当量”技术的出现而变得复杂,但有关这些低当量核武器的数据表明,截至2012年,它们约占美国和俄罗斯武库的十分之一,以及自1970-1990年代以来,他们所占用的库存一直在减少,而不是增加。其中一个因素是,产生约千吨能量的非常薄的装置是核武器,其核材料的利用效率非常低,例如核材料两点内爆。因此,可以用相同质量的裂变材料来构建更具心理威慑力的更高效率/更高产量的装置。

涉嫌苏联剥削

缓解技术

消防

在没有阳光的情况下生产食物

大规模粮食储备

气候工程

潜在的气候先例

动画描绘了巨大的小行星与地球的撞击以及随后撞击坑的形成。 这颗与白垩纪-古近纪灭绝事件有关的小行星估计释放了100太吨TNT的能量。相当于100,000,000吨能源,大约是冷战时期美国和苏联最大核武库总和的10,000倍。据推测,这产生了足够的地面能量耦合,从而在对映点(世界的另一侧)引起了严重的地幔柱(火山活动)。
根据流星的大小,它要么在大气层高处燃烧,要么到达较低的高度并在空气爆炸中爆炸,类似于2013年车里雅宾斯克流星,其热效应与核爆炸类似。

參考文獻

  1. ^ Robock, Alan; Oman, Luke; Stenchikov, Georgiy L. Nuclear winter revisited with a modern climate model and current nuclear arsenals: Still catastrophic consequences. Journal of Geophysical Research: Atmospheres. 2007-07-16, 112 (D13): 2006JD008235. ISSN 0148-0227. doi:10.1029/2006JD008235 (英语). 
  2. ^ Baum, Seth D. Winter-safe Deterrence: The Risk of Nuclear Winter and Its Challenge to Deterrence. Contemporary Security Policy. 2015-01-02, 36 (1): 123–148 [2021-01-24]. ISSN 1352-3260. doi:10.1080/13523260.2015.1012346. (原始内容存档于2020-02-22) (英语). 
  3. ^ Robock, Alan. Nuclear winter is a real and present danger. Nature. 2011-05-19, 473 (7347): 275–276. ISSN 0028-0836. doi:10.1038/473275a (英语). 
  4. ^ On the 8th Day - Nuclear Winter Documentary (1984), [2023-12-18] (中文(中国大陆)) 
  5. ^ WJohn Hampson's warnings of disaster. web.archive.org. 2014-11-30 [2023-12-18]. 
  6. ^ Boyer, K. R. Installation Restoration Program Phase 1: Records Search of Hanscom Air Force Base, Massachusetts. Fort Belvoir, VA. 1984-08-01. 
  7. ^ McGhan, M.; Shaw, Alan; Megill, L. R.; Sedlacek, W.; Guthals, P. R.; Fowler, M. M. Measurements of nitric oxide after a nuclear burst. Journal of Geophysical Research: Oceans. 1981-02-20, 86 (C2). ISSN 0148-0227. doi:10.1029/jc086ic02p01167. 
  8. ^ Robock, A.; Oman, L.; Stenchikov, G. L.; Toon, O. B.; Bardeen, C.; Turco, R. P. Climatic consequences of regional nuclear conflicts. Atmospheric Chemistry and Physics. 2007-04-19, 7 (8). ISSN 1680-7316. doi:10.5194/acp-7-2003-2007 (英语). 
  9. ^ Xia, Lili; Robock, Alan; Scherrer, Kim; Harrison, Cheryl S.; Bodirsky, Benjamin Leon; Weindl, Isabelle; Jägermeyr, Jonas; Bardeen, Charles G.; Toon, Owen B.; Heneghan, Ryan. Global food insecurity and famine from reduced crop, marine fishery and livestock production due to climate disruption from nuclear war soot injection. Nature Food. 2022-08, 3 (8). ISSN 2662-1355. doi:10.1038/s43016-022-00573-0 (英语). 
  10. ^ Jägermeyr, Jonas; Robock, Alan; Elliott, Joshua; Müller, Christoph; Xia, Lili; Khabarov, Nikolay; Folberth, Christian; Schmid, Erwin; Liu, Wenfeng; Zabel, Florian; Rabin, Sam S. A regional nuclear conflict would compromise global food security. Proceedings of the National Academy of Sciences. 2020-03-31, 117 (13). ISSN 0027-8424. PMC 7132296可免费查阅. PMID 32179678. doi:10.1073/pnas.1919049117 (英语). 
  11. ^ Small Nuclear War Could Reverse Global Warming for Years?. web.archive.org. 2014-09-16 [2023-12-18]. 
  12. ^ Stochastic optimization provides key to combatting increasing frequency and intensity of wildfires. ORMS Multimedia Group. 2022-01-21 [2023-12-18]. 
  13. ^ Climatic Consequences of Nuclear Conflict. web.archive.org. 2011-09-28 [2023-12-18]. 
  14. ^ Robock, Alan; Oman, Luke; Stenchikov, Georgiy L. Nuclear winter revisited with a modern climate model and current nuclear arsenals: Still catastrophic consequences. Journal of Geophysical Research: Atmospheres. 2007-07-16, 112 (D13). ISSN 0148-0227. doi:10.1029/2006JD008235 (英语). 
  15. ^ Fromm, Michael; Tupper, Andrew; Rosenfeld, Daniel; Servranckx, René; McRae, Rick. Violent pyro‐convective storm devastates Australia's capital and pollutes the stratosphere. Geophysical Research Letters. 2006-03, 33 (5). ISSN 0094-8276. doi:10.1029/2005GL025161 (英语). 
  16. ^ Russian Firestorm: Finding a Fire Cloud from Space. earthobservatory.nasa.gov. 2010-08-31 [2023-12-18] (英语). 
  17. ^ Aftermath of the San Francisco Fire. Scientific American. 1906-08-18, 95 (7). ISSN 0036-8733. doi:10.1038/scientificamerican08181906-110a. 
  18. ^ Wildfires Smoke Crosses the Atlantic. earthobservatory.nasa.gov. 2013-07-02 [2023-12-18] (英语). 
  19. ^ Jacob, D. J.; Crawford, J. H.; Maring, H.; Clarke, A. D.; Dibb, J. E.; Emmons, L. K.; Ferrare, R. A.; Hostetler, C. A.; Russell, P. B.; Singh, H. B.; Thompson, A. M. The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results. Atmospheric Chemistry and Physics. 2010-06-14, 10 (11). ISSN 1680-7316. doi:10.5194/acp-10-5191-2010 (英语). 
  20. ^ Zveryaev, Igor I. Interdecadal changes in the links between European precipitation and atmospheric circulation during boreal spring and fall. Tellus A. 2009-01. ISSN 1600-0870. doi:10.3402/tellusa.v61i1.15523. 
  21. ^ NASA to study how pollution, storms and climate mix. ScienceDaily. [2023-12-18] (英语). 
  22. ^ Fromm, Michael; Lindsey, Daniel T.; Servranckx, René; Yue, Glenn; Trickl, Thomas; Sica, Robert; Doucet, Paul; Godin-Beekmann, Sophie. The Untold Story of Pyrocumulonimbus. Bulletin of the American Meteorological Society. 2010-09-01, 91 (9). ISSN 0003-0007. doi:10.1175/2010BAMS3004.1 (英语). 
  23. ^ 98/03334 Analysis and elimination of trace organic compounds in smoke from burning coal. Fuel and Energy Abstracts. 1998-07, 39 (4). ISSN 0140-6701. doi:10.1016/s0140-6701(98)96859-x. 
  24. ^ Self-assured destruction: The climate impacts of nuclear war - Alan Robock, Owen Brian Toon, 2012. web.archive.org. 2021-02-24 [2023-12-18]. doi:10.1177/0096340212459127. 
  25. ^ Mills, Michael J.; Toon, Owen B.; Turco, Richard P.; Kinnison, Douglas E.; Garcia, Rolando R. Massive global ozone loss predicted following regional nuclear conflict. Proceedings of the National Academy of Sciences. 2008-04-08, 105 (14). ISSN 0027-8424. PMC 2291128可免费查阅. PMID 18391218. doi:10.1073/pnas.0710058105 (英语). 
  26. ^ Cotton, William R.; Sr, Roger A. Pielke. Human Impacts on Weather and Climate. Human Impacts on Weather and Climate. Cambridge University Press. 2007-02-01. ISBN 978-1-139-46180-1 (英语). 
  27. ^ Review of Toon et al, Spectrometric measurements of propane. 2021-01-03. doi:10.5194/acp-2020-1135-rc1. 
  28. ^ United States Strategic Bombing Survey: Summary Report (Pacific War). web.archive.org. 2008-05-16 [2023-12-18]. 
  29. ^ United States Strategic Bombing Survey: Summary Report (Pacific War). web.archive.org. 2016-03-14 [2023-12-18]. 
  30. ^ The Effects of Nuclear Weapons. web.archive.org. 2014-10-31 [2023-12-18]. 
  31. ^ Stochastic optimization provides key to combatting increasing frequency and intensity of wildfires. ORMS Multimedia Group. 2022-01-21 [2023-12-18]. 
  32. ^ Boyer, K. R. Installation Restoration Program Phase 1: Records Search of Hanscom Air Force Base, Massachusetts. Fort Belvoir, VA. 1984-08-01. 
  33. ^ Anonymous. Review of Williams et al.: Characterising the Seasonal and Geographical Variability of Tropospheric Ozone, Stratospheric Influence and Recent Changes. dx.doi.org. 2018-12-18 [2023-12-18]. 
  34. ^ - Distribution & concentration (2). web.archive.org. 2011-07-27 [2023-12-18]. 
  35. ^ Aerosols and climate. web.archive.org. 2019-01-21 [2023-12-18]. 
  36. ^ How Volcanoes Work - volcano climate effects. web.archive.org. 2011-04-23 [2023-12-18]. 
  37. ^ GACP: Global Aerosol Climatology Project. web.archive.org. 2008-05-23 [2023-12-18]. 
  38. ^ LANL study: Wildfire smoke’s effect on climate underestimated | Albuquerque Journal News. web.archive.org. 2015-06-27 [2023-12-18]. 
  39. ^ Research: wildland fire smoke, including tar balls, contribute to climate change more than previously thought | Wildfire Today. web.archive.org. 2014-07-24 [2023-12-18]. 
  40. ^ J. Jensen, Eric; Toon, Owen.B. The potential impact of soot particles from aircraft exhaust on cirrus clouds. Nucleation and Atmospheric Aerosols 1996. Elsevier. 1996: 848–851. 
  41. ^ New Insights on Wildfire Smoke Could Improve Climate Change Models | Michigan Tech News. web.archive.org. 2014-11-04 [2023-12-18]. 
  42. ^ Climatic Consequences of Nuclear Conflict. web.archive.org. 2011-09-28 [2023-12-21]. 
  43. ^ Regional Nuclear War Could Devastate Global Climate -- ScienceDaily. web.archive.org. 2018-05-16 [2023-12-21]. 
  44. ^ How would a nuclear winter impact food production?. ScienceDaily. [2023-12-21] (英语). 
  45. ^ Xia, Lili; Robock, Alan; Scherrer, Kim; Harrison, Cheryl S.; Bodirsky, Benjamin Leon; Weindl, Isabelle; Jägermeyr, Jonas; Bardeen, Charles G.; Toon, Owen B.; Heneghan, Ryan. Global food insecurity and famine from reduced crop, marine fishery and livestock production due to climate disruption from nuclear war soot injection. Nature Food. 2022-08, 3 (8). ISSN 2662-1355. doi:10.1038/s43016-022-00573-0 (英语). 
  46. ^ Kao, Chih‐Yue Jim; Glatzmaier, Gary A.; Malone, Robert C.; Turco, Richard P. Global three‐dimensional simulations of ozone depletion under postwar conditions. Journal of Geophysical Research: Atmospheres. 1990-12-20, 95 (D13). ISSN 0148-0227. doi:10.1029/JD095iD13p22495 (英语). 
  47. ^ Mills, Michael J.; Toon, Owen B.; Turco, Richard P.; Kinnison, Douglas E.; Garcia, Rolando R. Massive global ozone loss predicted following regional nuclear conflict. Proceedings of the National Academy of Sciences. 2008-04-08, 105 (14). ISSN 0027-8424. PMC 2291128可免费查阅. PMID 18391218. doi:10.1073/pnas.0710058105 (英语). 
  48. ^ Bardeen, Charles G.; Kinnison, Douglas E.; Toon, Owen B.; Mills, Michael J.; Vitt, Francis; Xia, Lili; Jägermeyr, Jonas; Lovenduski, Nicole S.; Scherrer, Kim J. N.; Clyne, Margot; Robock, Alan. Extreme Ozone Loss Following Nuclear War Results in Enhanced Surface Ultraviolet Radiation. Journal of Geophysical Research: Atmospheres. 2021-09-27, 126 (18). ISSN 2169-897X. doi:10.1029/2021JD035079 (英语). 
  49. ^ John M. Gates, Ch. 11, The Continuing Problem of Conceptual Confusion - Title. web.archive.org. 2011-08-14 [2023-12-21]. 
  50. ^ 50.0 50.1 Hot ‘N’ Cold. New Scientist. 2007-01, 193 (2586). ISSN 0262-4079. doi:10.1016/s0262-4079(07)60057-8. 
  51. ^ John M. Gates, Ch. 11, The Continuing Problem of Conceptual Confusion - Title. web.archive.org. 2011-08-14 [2023-12-21]. 
  52. ^ Castle bravo: Fifty years of legend and lore. www.wikidata.org. [2023-12-21] (英语). 
  53. ^ The effects of nuclear weapons. . - Full View | HathiTrust Digital Library | HathiTrust Digital Library. web.archive.org. 2014-08-24 [2023-12-21]. 
  54. ^ Dorries, Matthias. Politics of Atmospheric Sciences: 'Nuclear winter' and global climate change. Osiris. doi:10.1086/661272 (法语). 
  55. ^ The global health effects of nuclear war. web.archive.org. 2014-10-06 [2023-12-21]. 
  56. ^ Detonations, National Research Council (U S. ) Committee to Study the Long-Term Worldwide Effects of Multiple Nuclear-Weapons. Long-term Worldwide Effects of Multiple Nuclear-weapons Detonations. Long-term worldwide effects of multiple nuclear weapons detonations. National Academy of Sciences. 1975. ISBN 978-0-309-02418-1 (英语). 
  57. ^ Policy Implications of Greenhouse Warming. 1992-01-01. doi:10.17226/1605. 
  58. ^ Virgoe, John. International governance of a possible geoengineering intervention to combat climate change. Climatic Change. 2008-12-09, 95 (1-2). ISSN 0165-0009. doi:10.1007/s10584-008-9523-9. 
  59. ^ Hampson, John. Photochemical war on the atmosphere. Nature. 1974-07, 250 (5463). ISSN 1476-4687. doi:10.1038/250189a0 (英语). 
  60. ^ John Hampson's warnings of disaster. www.bmartin.cc. [2023-12-21]. 
  61. ^ The global health effects of nuclear war. web.archive.org. 2014-10-06 [2023-12-21]. 
  62. ^ Goldsmith, P.; Tuck, A. F.; Foot, J. S.; Simmons, E. L.; Newson, R. L. Nitrogen Oxides, Nuclear Weapon Testing, Concorde and Stratospheric Ozone. Nature. 1973-08, 244 (5418). ISSN 1476-4687. doi:10.1038/244545a0 (英语). 
  63. ^ Christie, A. D. Atmospheric ozone depletion by nuclear weapons testing. Journal of Geophysical Research. 1976-05-20, 81 (15). doi:10.1029/JC081i015p02583 (英语). 
  64. ^ Pavlovski, O. A. Shapiro, Charles S. , 编. Radiological Consequences of Nuclear Testing for the Population of the Former USSR (Input Information, Models, Dose, and Risk Estimates). Atmospheric Nuclear Tests. NATO ASI Series (Berlin, Heidelberg: Springer). 1998. ISBN 978-3-662-03610-5. doi:10.1007/978-3-662-03610-5_17 (英语). 
  65. ^ Radioactive Fallout | Worldwide Effects of Nuclear War | Historical Documents | atomciarchive.com. www.atomicarchive.com. [2023-12-21]. 
  66. ^ Effects of Nuclear Explosions. nuclearweaponarchive.org. [2023-12-21]. 
  67. ^ The global health effects of nuclear war. www.bmartin.cc. [2023-12-21]. 
  68. ^ John Hampson's warnings of disaster. www.bmartin.cc. [2023-12-21]. 
  69. ^ stason.org, Stas Bekman: stas (at). 24 Will commercial supersonic aircraft damage the ozone layer?. stason.org. [2023-12-21]. 

外部鏈接