量子化

维基百科,自由的百科全书
跳转至: 导航搜索

物理學裏,量子化是一種從經典場論建構出量子場論的程序。使用這程序,時常可以直接地將經典力學裏的理論量身打造成嶄新的量子力學理論。物理學家所談到的場量子化,指的就是電磁場的量子化。在這裡,他們會將光子分類為一種場量子(例如,稱呼光子為光量子)。對於粒子物理學核子物理學固態物理學量子光學等等學術領域內的理論,量子化是它們的基礎程序。

量子化方法[编辑]

量子化方法將經典場轉換成量子算符,專門作用於量子場論的量子態能級最低的量子態稱為真空態vacuum state)。這真空態可能會很複雜。將一個經典理論量子化的原因,主要是藉著計算量子幅,來分析與了解物質、物體或粒子的屬性。這計算會牽涉到某些微妙的問題,稱為重整化。假若,我們忽略了重整化,這會引導出不正確的結果,像無窮大數值的出現於量子幅的計算結果。一個量子化程序的完整設定必須給出一套重整化的方法。

正則量子化[编辑]

場論的正則量子化類比於從經典力學的衍生出量子力學。將經典場視為動力學變數,稱為正則坐標,其共軛是正則動量。這兩個變數的對易關係,與量子力學內粒子的位置和動量的對易關係,類似相同。從這些算符,可以求得創生算符消滅算符。這兩種算符,稱為階梯算符,都是作用於量子態的場算符,有共同的本徵態。經過一番運算,可以得到最低能級的本徵態,稱為真空態。再稍加運算,就可得到其它的本徵態和伴隨的能級。整個程序又稱為二次量子化

正則量子化可以應用於任何場論的量子化,不管是費米子玻色子,以及任何內部對稱。但是,它引領出一個相當簡單的真空態的繪景,並不能很容易地適用於某些量子場論,像量子色動力學。在量子色力學裏,時常會出現擁有很多不同冷凝液condensate)的複雜的真空,。

對於一些比較簡單的問題,正則量子化的程序並不是很困難。但是,對於很多其它狀況,別種量子化方法比較容易得到量子答案。雖然如此,在量子場論裏,正則量子化是一種非常重要的方法。

共變正則量子化[编辑]

物理學家又發現了一種方法來將經典系統正則量子化,不需要訴諸於非共變途徑,葉狀化時空和選擇哈密頓量。這方法建立於經典作用量,但是與泛函積分的解法不同。

這方法並不能應用於所有可能的作用量(例如,非因果架構的作用量,或規範流作用量 (action with gauge flow) )。從所有定義於組態空間光滑泛函的經典代數開始,將此代數商去歐拉-拉格朗日方程式生成的理想。然後,藉著從作用量導引出來的帕松代數Poisson algebra) ,稱為 (Peierls bracket) ,將商代數轉換為帕松代數。如同正則量子化的做法,再將約化普朗克常數\hbar加入帕松代數,就可完成共變正則量子化的程序。

另外地,還有一種方法可以量子化規範流作用量。這方法涉及巴塔林-維爾可維斯基代數,是BRST形式論BRST formalism) 的延伸。

路徑積分量子化[编辑]

應用作用量,取對於作用量的泛函變分的極值為容許的組態,這樣,可以給出經典力學理論。通過路徑積分表述path integral formulation) 的方法,可以從系統的作用量,製造出對應於經典系統的量子力學描述。

參閱[编辑]

參考文獻[编辑]

  • Abraham, R. & Marsden (1985): Foundations of Mechanics, ed. Addison-Wesley, ISBN 0-8053-0102-X.
  • M. Peskin, D. Schroeder, An Introduction to Quantum Field Theory (Westview Press, 1995) [ISBN 0-201-50397-2]
  • Weinberg, Steven, The Quantum Theory of Fields(3 volumes)

外部連結[编辑]