冠状病毒:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
无编辑摘要
无编辑摘要
第12行: 第12行:
| image2_alt = Illustration of a SARS-CoV-2 virion
| image2_alt = Illustration of a SARS-CoV-2 virion
| image2_size = 5px
| image2_size = 5px
| image2_caption = 冠狀病毒示意圖<ref name="NYT-SpikyBlob">{{Cite news |url=https://www.nytimes.com/2020/04/01/health/coronavirus-illustration-cdc.html |title=The Spiky Blob Seen Around the World |date=1 April 2020 |work=[[The New York Times]] |access-date=6 April 2020 |vauthors=Giaimo C |name-list-format=vanc |archive-url=https://web.archive.org/web/20200402012708/https://www.nytimes.com/2020/04/01/health/coronavirus-illustration-cdc.html |archive-date=2 April 2020 }}</ref>{{leftlegend|#b73332|紅色:刺突蛋白(S)}}{{leftlegend|#cec4c0|灰色:外膜}}{{leftlegend|#faee71|黃色:外膜蛋白(E)}}{{leftlegend|#fe8354|橘色:膜蛋白(M)}}
| image2_caption = 冠狀病毒示意圖<ref name="NYT-SpikyBlob">{{Cite news |url=https://www.nytimes.com/2020/04/01/health/coronavirus-illustration-cdc.html |title=The Spiky Blob Seen Around the World |date=1 April 2020 |work=[[New York Times]] |access-date=6 April 2020 |vauthors=Giaimo C |name-list-format=vanc |archive-url=https://web.archive.org/web/20200402012708/https://www.nytimes.com/2020/04/01/health/coronavirus-illustration-cdc.html |archive-date=2 April 2020 }}</ref>{{leftlegend|#b73332|紅色:刺突蛋白(S)}}{{leftlegend|#cec4c0|灰色:外膜}}{{leftlegend|#faee71|黃色:外膜蛋白(E)}}{{leftlegend|#fe8354|橘色:膜蛋白(M)}}
| taxon = Orthocoronavirinae
| taxon = Orthocoronavirinae
| authority =
| authority =
第26行: 第26行:
}}
}}


'''正{{zy|冠|-{zh-cn:guān;zh-sg:guān;zh-hk:gun1;zh-tw:ㄍㄨㄢ¯}-}}狀病毒亞科'''([[學名]]:{{lang|la|''Orthocoronavirinae''}})通称'''{{zy|冠|-{zh-cn:guān;zh-sg:guān;zh-hk:gun1;zh-tw:ㄍㄨㄢ¯}-}}状病毒'''({{lang-en|Coronavirus}}),是一类在动物与人类之间传播的[[人畜共通傳染病|人畜共患]]的单链[[RNA病毒]]。冠状病毒可感染[[哺乳动物]]與[[鸟类]],部分病毒可感染家畜或家禽,造成養殖業的經濟損失。已知可感染人类的冠状病毒共有7种,其中有4種可引发[[普通感冒]],另外3種--[[严重急性呼吸道综合征冠状病毒]](SARS-CoV)、[[中東呼吸症候群冠狀病毒]](MERS)與[[严重急性呼吸系统综合征冠状病毒2]](SARS-CoV-2)可導致嚴重疾病,曾分別在全球各地造成疫情。
'''正{{zy|冠|-{zh-cn:guān;zh-sg:guān;zh-hk:gun1;zh-tw:ㄍㄨㄢ¯}-}}狀病毒亞科'''([[學名]]:{{lang|la|''Orthocoronavirinae''}})通称'''{{zy|冠|-{zh-cn:guān;zh-sg:guān;zh-hk:gun1;zh-tw:ㄍㄨㄢ¯}-}}状病毒'''({{lang-en|Coronavirus}}),是一类在动物与人类之间传播的[[人畜共通傳染病|人畜共患]]的单链[[RNA病毒]]。冠状病毒可感染[[哺乳动物]]與[[鸟类]],部分病毒可感染家畜或家禽,造成養殖業的經濟損失。已知可感染人类的冠状病毒共有7种,其中有4種可引发[[普通感冒]],另外3種[[严重急性呼吸道综合征冠状病毒]](SARS-CoV)、[[中東呼吸症候群冠狀病毒]](MERS)與[[严重急性呼吸系统综合征冠状病毒2]](SARS-CoV-2),皆會導致嚴重疾病,曾分別在全球各地造成疫情。


正冠狀病毒亞科属于[[網巢病毒目|网巢病毒目]][[冠状病毒科]]<ref name="FanZhao2019">{{cite journal | vauthors = Fan Y, Zhao K, Shi ZL, Zhou P | title = Bat Coronaviruses in China | journal = Viruses | volume = 11 | issue = 3 | pages = 210 | date = March 2019 | pmid = 30832341 | pmc = 6466186 | doi = 10.3390/v11030210 }}</ref><ref name="OrthocoronavirinaeICTV" />,為具有[[病毒包膜|包膜]]的[[正單鏈RNA病毒]]<ref>{{cite book | vauthors = Cherry J, Demmler-Harrison GJ, Kaplan SL, Steinbach WJ, Hotez PJ |title=Feigin and Cherry's Textbook of Pediatric Infectious Diseases |date=2017 |publisher=Elsevier Health Sciences |isbn=978-0-323-39281-5 |page=PT6615 |url=https://books.google.com/books?id=z-ZIDwAAQBAJ&pg=PT6615 |language=en}}</ref>,其[[基因組]]大小介於26000與32000[[核鹼基|nt]]之間,是[[RNA病毒]]中基因組最大的一類病毒之一<ref name=":1">{{cite journal | vauthors = Woo PC, Huang Y, Lau SK, Yuen KY | title = Coronavirus genomics and bioinformatics analysis | journal = Viruses | volume = 2 | issue = 8 | pages = 1804–20 | date = August 2010 | pmid = 21994708 | pmc = 3185738 | doi = 10.3390/v2081803 | quote = Coronaviruses possess the largest genomes [26.4 kb (ThCoV HKU12) to 31.7 kb (SW1)] among all known RNA viruses (Figure 1) [2,13,16]. }}</ref>,其表面具有由刺突蛋白組成的棒狀突起,是此類病毒顯著的特徵。
正冠狀病毒亞科属于[[網巢病毒目|网巢病毒目]][[冠状病毒科]]<ref name="FanZhao2019">{{cite journal | vauthors = Fan Y, Zhao K, Shi ZL, Zhou P | title = Bat Coronaviruses in China | journal = Viruses | volume = 11 | issue = 3 | pages = 210 | date = March 2019 | pmid = 30832341 | pmc = 6466186 | doi = 10.3390/v11030210 }}</ref><ref name="OrthocoronavirinaeICTV" />,為具有[[病毒包膜|包膜]]的[[正單鏈RNA病毒]]<ref>{{cite book | vauthors = Cherry J, Demmler-Harrison GJ, Kaplan SL, Steinbach WJ, Hotez PJ |title=Feigin and Cherry's Textbook of Pediatric Infectious Diseases |date=2017 |publisher=Elsevier Health Sciences |isbn=978-0-323-39281-5 |page=PT6615 |url=https://books.google.com/books?id=z-ZIDwAAQBAJ&pg=PT6615 |language=en}}</ref>,其[[基因組]]大小介於26000與32000[[核鹼基|nt]]之間,是[[RNA病毒]]中基因組最大的一類病毒之一<ref name=":1">{{cite journal | vauthors = Woo PC, Huang Y, Lau SK, Yuen KY | title = Coronavirus genomics and bioinformatics analysis | journal = Viruses | volume = 2 | issue = 8 | pages = 1804–20 | date = August 2010 | pmid = 21994708 | pmc = 3185738 | doi = 10.3390/v2081803 | quote = Coronaviruses possess the largest genomes [26.4 kb (ThCoV HKU12) to 31.7 kb (SW1)] among all known RNA viruses (Figure 1) [2,13,16]. }}</ref>,其表面具有由刺突蛋白組成的棒狀突起,是此類病毒顯著的特徵。
第37行: 第37行:
==研究歷史==
==研究歷史==
[[File:TEM of coronavirus OC43.jpg|thumb|電子顯微鏡下的[[人類冠狀病毒OC43]]]]
[[File:TEM of coronavirus OC43.jpg|thumb|電子顯微鏡下的[[人類冠狀病毒OC43]]]]
冠狀病毒感染動物最早的紀錄是1920年代晚期,美國飼養的[[]]隻出現急性呼吸道感染<ref>{{Cite journal| vauthors = Estola T |date=1970|title=Coronaviruses, a New Group of Animal RNA Viruses|journal=Avian Diseases|volume=14|issue=2|pages=330–336|doi=10.2307/1588476|jstor=1588476|pmid=4316767|issn=0005-2086}}</ref>,1931年有科學家發表了對[[北達科他州]]雞隻呼吸道感染的詳細報告,指出被感染的小雞有喘氣與倦怠的症狀,且具有40%至90%的高死亡率<ref>{{Cite journal |last=Fabricant |first=Julius | name-list-format = vanc |date=1998|title=The Early History of Infectious Bronchitis|journal=Avian Diseases|volume=42|issue=4|pages=648–650|doi=10.2307/1592697|jstor=1592697|pmid=9876830 |issn=0005-2086}}</ref>。1933年造成此感染的病毒被成功分離<ref name=":22">{{Cite journal|vauthors=Bushnell LD, Brandly CA|date=1933|title=Laryngotracheitis in chicks|journal=Poultry Science|language=en|volume=12|issue=1|pages=55–60|doi=10.3382/ps.0120055}}</ref>,即[[傳染性支氣管炎病毒]](IBV),1937年研究人員首度成功在實驗室培養此病毒<ref name=":11">{{cite encyclopedia |last=Decaro|first=Nicola |title=Gammacoronavirus‡: Coronaviridae | name-list-format = vanc |entry=Gammacoronavirus|date=2011 |encyclopedia =The Springer Index of Viruses|pages=403–413|editor-last=Tidona|editor-first=Christian |editor2-last=Darai |editor2-first=Gholamreza |publisher=Springer|language=en|doi=10.1007/978-0-387-95919-1_58|isbn=978-0-387-95919-1|pmc=7176155 }}</ref>。1940年代晚期,有兩種感染[[鼠類]]的冠狀病毒毒株被發現,即[[鼠冠狀病毒|JHM株系]]與[[鼠肝炎病毒]],分別感染老鼠的[[腦]]與[[肝]]<ref name=":3">{{Cite book| vauthors = McIntosh K |title=Current Topics in Microbiology and Immunology / Ergebnisse der Mikrobiologie und Immunitätsforschung|date=1974| veditors = Arber W, Haas R, Henle W, Hofschneider PH, Jerne NK, Koldovský P, Koprowski H, Maaløe O, Rott R |chapter=Coronaviruses: A Comparative Review|series=Current Topics in Microbiology and Immunology / Ergebnisse der Mikrobiologie und Immunitätsforschung|language=en|location=Berlin, Heidelberg |publisher=Springer |pages=87 |doi=10.1007/978-3-642-65775-7_3 |isbn=978-3-642-65775-7 }}</ref>,當時尚不知這兩種病毒與IBV有關聯<ref name=":02" />。
冠狀病毒感染動物最早的紀錄是1920年代晚期,美國飼養的[[]]隻出現急性呼吸道感染<ref>{{Cite journal| vauthors = Estola T |date=1970|title=Coronaviruses, a New Group of Animal RNA Viruses|journal=Avian Diseases|volume=14|issue=2|pages=330–336|doi=10.2307/1588476|jstor=1588476|pmid=4316767|issn=0005-2086}}</ref>,1931年有科學家發表了對[[北達科他州]]雞隻呼吸道感染的詳細報告,指出被感染的小雞有喘氣與倦怠的症狀,且具有40%至90%的高死亡率<ref>{{Cite journal |last=Fabricant |first=Julius | name-list-format = vanc |date=1998|title=The Early History of Infectious Bronchitis|journal=Avian Diseases|volume=42|issue=4|pages=648–650|doi=10.2307/1592697|jstor=1592697|pmid=9876830 |issn=0005-2086}}</ref>。1933年造成此感染的病毒被成功分離<ref name=":22">{{Cite journal|vauthors=Bushnell LD, Brandly CA|date=1933|title=Laryngotracheitis in chicks|journal=Poultry Science|language=en|volume=12|issue=1|pages=55–60|doi=10.3382/ps.0120055}}</ref>,即[[傳染性支氣管炎病毒]](IBV),1937年研究人員首度成功在實驗室培養此病毒<ref name=":11">{{cite encyclopedia |last=Decaro|first=Nicola |title=Gammacoronavirus‡: Coronaviridae | name-list-format = vanc |entry=Gammacoronavirus|date=2011 |encyclopedia =The Springer Index of Viruses|pages=403–413|editor-last=Tidona|editor-first=Christian |editor2-last=Darai |editor2-first=Gholamreza |publisher=Springer|language=en|doi=10.1007/978-0-387-95919-1_58|isbn=978-0-387-95919-1|pmc=7176155 }}</ref>。1940年代晚期,有兩種感染[[鼠類]]的冠狀病毒毒株被發現,即[[鼠冠狀病毒|JHM株系]]與[[鼠肝炎病毒]],分別感染老鼠的[[腦]]與[[肝]]<ref name=":3">{{Cite book| vauthors = McIntosh K |title=Current Topics in Microbiology and Immunology / Ergebnisse der Mikrobiologie und Immunitätsforschung|date=1974| veditors = Arber W, Haas R, Henle W, Hofschneider PH, Jerne NK, Koldovský P, Koprowski H, Maaløe O, Rott R |chapter=Coronaviruses: A Comparative Review|series=Current Topics in Microbiology and Immunology / Ergebnisse der Mikrobiologie und Immunitätsforschung|language=en|location=Berlin, Heidelberg |publisher=Springer |pages=87 |doi=10.1007/978-3-642-65775-7_3 |isbn=978-3-642-65775-7 }}</ref>,當時尚不知這兩種病毒與IBV有關聯<ref name=":02" />。


1960年代,感染人類的冠狀病毒漸被發現<ref>{{cite journal | vauthors = Kahn JS, McIntosh K | title = History and recent advances in coronavirus discovery | journal = The Pediatric Infectious Disease Journal | volume = 24 | issue = 11 Suppl | pages = S223–7, discussion S226 | date = November 2005 | pmid = 16378050 | doi = 10.1097/01.inf.0000188166.17324.60 }}</ref><ref>{{cite journal | vauthors = Mahase E | title = The BMJ in 1965 | journal = BMJ | volume = 369 | pages = m1547 | date = April 2020 | pmid = 32299810 | doi = 10.1136/bmj.m1547 | url = https://www.bmj.com/content/369/bmj.m1547 }}</ref>。1961年,{{le|大衛·泰瑞爾|David Tyrrell}}等[[英國醫學研究委員會]]{{le|感冒研究單位|Common Cold Unit}}的研究人員發現了造成[[普通感冒]]的一新病毒株,將其命名為B814<ref name=":9">{{cite journal | vauthors = Kendall EJ, Bynoe ML, Tyrrell DA | title = Virus isolations from common colds occurring in a residential school | journal = British Medical Journal | volume = 2 | issue = 5297 | pages = 82–6 | date = July 1962 | pmid = 14455113 | pmc = 1925312 | doi = 10.1136/bmj.2.5297.82 }}</ref><ref>{{cite journal |last=Richmond |first=Caroline | name-list-format = vanc |date=2005-06-18|title=David Tyrrell|journal=BMJ : British Medical Journal |volume=330 |issue=7505 |pages=1451 |doi=10.1136/bmj.330.7505.1451 |pmc=558394 }}</ref><ref>{{cite journal |date=1969-06-28 |title=Obituary Notices: Malcom Byone |url=https://www.bmj.com/content/2/5660/827 |journal=British Medical Journal |language=en |volume=2 |issue=5660 |pages=827–829 |doi=10.1136/bmj.2.5660.827 }}</ref>,但用培養[[腺病毒]]與[[鼻病毒]]等其他感冒病毒的方法試圖培養該病毒時卻告失敗,後來使用由{{le|器官培養|Organ culture}}技術建立的人類胚胎[[氣管]]組織才成功培養此病毒<ref>{{cite journal | vauthors = Tyrrell DA, Bynoe ML | title = Cultivation of a Novel Type of Common-Cold Virus in Organ Cultures | journal = British Medical Journal | volume = 1 | issue = 5448 | pages = 1467–70 | date = June 1965 | pmid = 14288084 | pmc = 2166670 | doi = 10.1136/bmj.1.5448.1467 }}</ref>。1962年又有科學家在[[芝加哥大學]]分離了新的感冒病毒毒株,於1966年發表,即為[[人類冠狀病毒229E]]<ref name=Hamre>{{cite journal | vauthors = Hamre D, Procknow JJ | title = A new virus isolated from the human respiratory tract | journal = Proceedings of the Society for Experimental Biology and Medicine | volume = 121 | issue = 1 | pages = 190–3 | date = January 1966 | pmid = 4285768 | doi = 10.3181/00379727-121-30734 }}</ref>。B814病毒與229E病毒皆能在自願的受試者中造成感冒,且經[[醚]]處理後即失去活性,顯示它們具有[[病毒包膜|包膜]]<ref name=Hamre/><ref name=":9" />。
1960年代,感染人類的冠狀病毒漸被發現<ref>{{cite journal | vauthors = Kahn JS, McIntosh K | title = History and recent advances in coronavirus discovery | journal = The Pediatric Infectious Disease Journal | volume = 24 | issue = 11 Suppl | pages = S223–7, discussion S226 | date = November 2005 | pmid = 16378050 | doi = 10.1097/01.inf.0000188166.17324.60 }}</ref><ref>{{cite journal | vauthors = Mahase E | title = The BMJ in 1965 | journal = BMJ | volume = 369 | pages = m1547 | date = April 2020 | pmid = 32299810 | doi = 10.1136/bmj.m1547 | url = https://www.bmj.com/content/369/bmj.m1547 }}</ref>。1961年,{{le|大衛·泰瑞爾|David Tyrrell}}等[[英國醫學研究委員會]]{{le|感冒研究單位|Common Cold Unit}}的研究人員發現了造成[[普通感冒]]的一新病毒株,將其命名為B814<ref name=":9">{{cite journal | vauthors = Kendall EJ, Bynoe ML, Tyrrell DA | title = Virus isolations from common colds occurring in a residential school | journal = British Medical Journal | volume = 2 | issue = 5297 | pages = 82–6 | date = July 1962 | pmid = 14455113 | pmc = 1925312 | doi = 10.1136/bmj.2.5297.82 }}</ref><ref>{{cite journal |last=Richmond |first=Caroline | name-list-format = vanc |date=2005-06-18|title=David Tyrrell|journal=BMJ : British Medical Journal |volume=330 |issue=7505 |pages=1451 |doi=10.1136/bmj.330.7505.1451 |pmc=558394 }}</ref><ref>{{cite journal |date=1969-06-28 |title=Obituary Notices: Malcom Byone |url=https://www.bmj.com/content/2/5660/827 |journal=British Medical Journal |language=en |volume=2 |issue=5660 |pages=827–829 |doi=10.1136/bmj.2.5660.827 }}</ref>,但用培養[[腺病毒]]與[[鼻病毒]]等其他感冒病毒的方法試圖培養該病毒時卻告失敗,後來使用由{{le|器官培養|Organ culture}}技術建立的人類胚胎[[氣管]]組織才成功培養此病毒<ref>{{cite journal | vauthors = Tyrrell DA, Bynoe ML | title = Cultivation of a Novel Type of Common-Cold Virus in Organ Cultures | journal = British Medical Journal | volume = 1 | issue = 5448 | pages = 1467–70 | date = June 1965 | pmid = 14288084 | pmc = 2166670 | doi = 10.1136/bmj.1.5448.1467 }}</ref>。1962年又有科學家在[[芝加哥大學]]分離了新的感冒病毒毒株,於1966年發表,即為[[人類冠狀病毒229E]]<ref name=Hamre>{{cite journal | vauthors = Hamre D, Procknow JJ | title = A new virus isolated from the human respiratory tract | journal = Proceedings of the Society for Experimental Biology and Medicine | volume = 121 | issue = 1 | pages = 190–3 | date = January 1966 | pmid = 4285768 | doi = 10.3181/00379727-121-30734 }}</ref>。B814病毒與229E病毒皆能在自願的受試者中造成感冒,且經[[醚]]處理後即失去活性,顯示它們具有[[病毒包膜|包膜]]<ref name=Hamre/><ref name=":9" />。
第43行: 第43行:
1967年,[[倫敦]][[聖湯瑪士醫院]]的病毒學家{{le|瓊·阿爾梅達|June Almeida}}和大衛·泰瑞爾合作,用[[電子顯微鏡]]觀察IBV、B814與229E等病毒的外形結構<ref>{{Cite news|url=https://www.bbc.com/news/uk-scotland-52278716|title=The woman who discovered the first coronavirus}}</ref><ref>{{Cite journal|last=Almeida|first=Joyce | name-list-format = vanc |date=2008-06-26|title=June Almeida (née Hart)|journal=BMJ|language=en|volume=336|issue=7659|pages=1511.1–1511|doi=10.1136/bmj.a434|pmc=2440895|issn=0959-8138}}</ref>,發現它們表面均具有特別的棒狀突起<ref>{{cite journal | vauthors = Almeida JD, Tyrrell DA | title = The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture | journal = The Journal of General Virology | volume = 1 | issue = 2 | pages = 175–8 | date = April 1967 | pmid = 4293939 | doi = 10.1099/0022-1317-1-2-175 }}</ref>。同年[[美國國家衛生院]]的團隊發現了另一種造成感冒的新病毒株[[人類冠狀病毒OC43]]<ref>{{cite journal | vauthors = McIntosh K, Becker WB, Chanock RM | title = Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 58 | issue = 6 | pages = 2268–73 | date = December 1967 | pmid = 4298953 | pmc = 223830 | doi = 10.1073/pnas.58.6.2268 | bibcode = 1967PNAS...58.2268M }}</ref>,此病毒株的表面亦具有棒狀突起<ref>{{cite journal | vauthors = McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM | title = Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 57 | issue = 4 | pages = 933–40 | date = April 1967 | pmid = 5231356 | pmc = 224637 | doi = 10.1073/pnas.57.4.933 | bibcode = 1967PNAS...57..933M }}</ref><ref>{{Cite news|last=Times|first=Harold M. Schmeck Jr Special To the New York|url=https://www.nytimes.com/1967/05/05/archives/six-newly-discovered-viruses-may-explain-cold-strains-are-similar.html|title=Six Newly Discovered Viruses May Explain Cold; Strains Are Similar to Germ That Causes a Bronchial Infection in Chickens Believed to Be New Group|date=1967-05-05|work=The New York Times|access-date=2020-04-25|language=en-US|issn=0362-4331}}</ref>,{{le|補體結合試驗|Complement fixation test}}結果顯示其與鼠肝炎病毒關係接近<ref name=":3" /> ,於是這些病毒被合稱為「冠狀病毒」<ref name=":2" />。後來人們又發現了[[人類冠狀病毒NL63]]與[[人類冠狀病毒HKU1]]兩個造成感冒的冠狀病毒,但B814病毒株今已佚失<ref>{{cite journal | vauthors = Corman VM, Jores J, Meyer B, Younan M, Liljander A, Said MY, Gluecks I, Lattwein E, Bosch BJ, Drexler JF, Bornstein S, Drosten C, Müller MA | display-authors = 6 | title = Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013 | journal = Emerging Infectious Diseases | volume = 20 | issue = 8 | pages = 1319–22 | date = August 2014 | pmc = 7122465 | doi = 10.1007/978-1-4899-7448-8_10 | pmid = 25075637 | isbn = 978-1-4899-7447-1 | quote = The other OC strains and B814 that could not be adapted to mouse brain resisted adaptation to cell culture as well; these distinct viruses have since been lost and may actually have been rediscovered recently. }}</ref>。除此之外也有許多感染其他動物的冠狀病毒被發現<ref name="groot">{{Cite book|title=Ninth Report of the International Committee on Taxonomy of Viruses|vauthors=de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE, Holmes KV, Perlman S, Poon L, Rottier PJ, Talbot PJ, Woo PC, Ziebuhr J|publisher=Elsevier|year=2011|isbn=978-0-12-384684-6|veditors=King AM, Lefkowitz E, Adams MJ, Carstens EB, ((International Committee on Taxonomy of Viruses)), ((International Union of Microbiological Societies. Virology Division))|location=Oxford|pages=806–28|chapter=Family ''Coronaviridae''|doi=10.1016/B978-0-12-384684-6.00068-9|author-link2=Susan Baker (virologist)|chapter-url=https://www.sciencedirect.com/science/article/pii/B9780123846846000689}}</ref>。
1967年,[[倫敦]][[聖湯瑪士醫院]]的病毒學家{{le|瓊·阿爾梅達|June Almeida}}和大衛·泰瑞爾合作,用[[電子顯微鏡]]觀察IBV、B814與229E等病毒的外形結構<ref>{{Cite news|url=https://www.bbc.com/news/uk-scotland-52278716|title=The woman who discovered the first coronavirus}}</ref><ref>{{Cite journal|last=Almeida|first=Joyce | name-list-format = vanc |date=2008-06-26|title=June Almeida (née Hart)|journal=BMJ|language=en|volume=336|issue=7659|pages=1511.1–1511|doi=10.1136/bmj.a434|pmc=2440895|issn=0959-8138}}</ref>,發現它們表面均具有特別的棒狀突起<ref>{{cite journal | vauthors = Almeida JD, Tyrrell DA | title = The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture | journal = The Journal of General Virology | volume = 1 | issue = 2 | pages = 175–8 | date = April 1967 | pmid = 4293939 | doi = 10.1099/0022-1317-1-2-175 }}</ref>。同年[[美國國家衛生院]]的團隊發現了另一種造成感冒的新病毒株[[人類冠狀病毒OC43]]<ref>{{cite journal | vauthors = McIntosh K, Becker WB, Chanock RM | title = Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 58 | issue = 6 | pages = 2268–73 | date = December 1967 | pmid = 4298953 | pmc = 223830 | doi = 10.1073/pnas.58.6.2268 | bibcode = 1967PNAS...58.2268M }}</ref>,此病毒株的表面亦具有棒狀突起<ref>{{cite journal | vauthors = McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM | title = Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 57 | issue = 4 | pages = 933–40 | date = April 1967 | pmid = 5231356 | pmc = 224637 | doi = 10.1073/pnas.57.4.933 | bibcode = 1967PNAS...57..933M }}</ref><ref>{{Cite news|last=Times|first=Harold M. Schmeck Jr Special To the New York|url=https://www.nytimes.com/1967/05/05/archives/six-newly-discovered-viruses-may-explain-cold-strains-are-similar.html|title=Six Newly Discovered Viruses May Explain Cold; Strains Are Similar to Germ That Causes a Bronchial Infection in Chickens Believed to Be New Group|date=1967-05-05|work=The New York Times|access-date=2020-04-25|language=en-US|issn=0362-4331}}</ref>,{{le|補體結合試驗|Complement fixation test}}結果顯示其與鼠肝炎病毒關係接近<ref name=":3" /> ,於是這些病毒被合稱為「冠狀病毒」<ref name=":2" />。後來人們又發現了[[人類冠狀病毒NL63]]與[[人類冠狀病毒HKU1]]兩個造成感冒的冠狀病毒,但B814病毒株今已佚失<ref>{{cite journal | vauthors = Corman VM, Jores J, Meyer B, Younan M, Liljander A, Said MY, Gluecks I, Lattwein E, Bosch BJ, Drexler JF, Bornstein S, Drosten C, Müller MA | display-authors = 6 | title = Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013 | journal = Emerging Infectious Diseases | volume = 20 | issue = 8 | pages = 1319–22 | date = August 2014 | pmc = 7122465 | doi = 10.1007/978-1-4899-7448-8_10 | pmid = 25075637 | isbn = 978-1-4899-7447-1 | quote = The other OC strains and B814 that could not be adapted to mouse brain resisted adaptation to cell culture as well; these distinct viruses have since been lost and may actually have been rediscovered recently. }}</ref>。除此之外也有許多感染其他動物的冠狀病毒被發現<ref name="groot">{{Cite book|title=Ninth Report of the International Committee on Taxonomy of Viruses|vauthors=de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE, Holmes KV, Perlman S, Poon L, Rottier PJ, Talbot PJ, Woo PC, Ziebuhr J|publisher=Elsevier|year=2011|isbn=978-0-12-384684-6|veditors=King AM, Lefkowitz E, Adams MJ, Carstens EB, ((International Committee on Taxonomy of Viruses)), ((International Union of Microbiological Societies. Virology Division))|location=Oxford|pages=806–28|chapter=Family ''Coronaviridae''|doi=10.1016/B978-0-12-384684-6.00068-9|author-link2=Susan Baker (virologist)|chapter-url=https://www.sciencedirect.com/science/article/pii/B9780123846846000689}}</ref>。


2002年底,中國[[廣東]]爆發了[[非典型肺炎]],演變成為期近一年的[[SARS事件]],疫情擴散至29個國家,超過8000人感染,其中774人死亡<ref>{{Cite web|title=How SARS terrified the world in 2003, infecting more than 8,000 people and killing 774|url=https://www.businessinsider.com/deadly-sars-virus-history-2003-in-photos-2020-2|accessdate=|author=|date=2020年2月21日|last=Pasley|first=James|format=|work=Business Insider}}</ref>。此感染為新發現的冠狀病毒[[SARS病毒]]造成,疑似是由市場中的[[果子貍SARS病毒|果子貍]]傳染給人類,但後續研究顯示[[蝙蝠]]才是SARS病毒的[[自然宿主]]。2012年,[[沙烏地阿拉伯]]爆發了[[中東呼吸綜合症疫情]],為另一新種冠狀病毒[[中東呼吸症候群冠狀病毒]](MERS)造成,可能經[[駱駝]]傳染給人類,疫情隨後擴散至西亞其他國家與[[2015年中東呼吸綜合症韓國疫情|韓國]],共造成超過1000人感染,約400人死亡<ref>{{cite web | url=http://www.who.int/csr/don/11-march-2015-mers-saudi-arabia/en/ | title=Middle East respiratory syndrome coronavirus (MERS-CoV) – Saudi Arabia | publisher=''[[World Health Organization]]'' | date=2015-03-10 | accessdate=2015-03-12 | archive-url=https://web.archive.org/web/20150316042445/http://www.who.int/csr/don/11-march-2015-mers-saudi-arabia/en/ | archive-date=2015-03-16 | dead-url=no }}</ref>。2019年12月,新型冠狀病毒[[SARS-CoV-2]]在中國[[武]]造成不明肺炎[[2019冠状病毒病疫情|疫情]],並於2020年迅速擴散至世界各國,造成嚴重的[[全球大流行]],截至2021年1月,染病人數已逾一億,超過200萬人死亡<ref>{{cite web|url=https://covid19.who.int|title=WHO Coronavirus Disease (COVID-19) Dashboard|publisher=World Health organization|date=2021-01-28}}</ref>。
2002年底,中國[[广东省]]爆發了[[非典型肺炎]],演變成為期近一年的[[SARS事件]],疫情擴散至29個國家,超過8000人感染,其中774人死亡<ref name=SARSstat>{{Cite web|title=How SARS terrified the world in 2003, infecting more than 8,000 people and killing 774|url=https://www.businessinsider.com/deadly-sars-virus-history-2003-in-photos-2020-2|accessdate=|author=|date=2020年2月21日|last=Pasley|first=James|format=|work=Business Insider}}</ref>。此感染為新發現的冠狀病毒[[SARS病毒]]造成,疑似是由市場中的[[果子貍SARS病毒|果子貍]]傳染給人類,但後續研究顯示[[蝙蝠]]才是SARS病毒的[[自然宿主]]。2012年,[[沙烏地阿拉伯]]爆發了[[中東呼吸綜合症疫情]],為另一新種冠狀病毒[[中東呼吸症候群冠狀病毒]](MERS)造成,可能經[[駱駝]]傳染給人類,疫情隨後擴散至西亞其他國家與[[2015年中東呼吸綜合症韓國疫情|韓國]],共造成超過1000人感染,約400人死亡<ref name=mersstat>{{cite web | url=http://www.who.int/csr/don/11-march-2015-mers-saudi-arabia/en/ | title=Middle East respiratory syndrome coronavirus (MERS-CoV) – Saudi Arabia | publisher=''[[世界卫生组织|World Health Organization]]'' | date=2015-03-10 | accessdate=2015-03-12 | archive-url=https://web.archive.org/web/20150316042445/http://www.who.int/csr/don/11-march-2015-mers-saudi-arabia/en/ | archive-date=2015-03-16 | dead-url=no }}</ref>。2019年12月,新型冠狀病毒[[严重急性呼吸系统综合征冠状病毒2]]在中國[[武汉市]]造成不明肺炎[[2019冠状病毒病疫情|疫情]],並於2020年迅速擴散至世界各國,造成嚴重的[[全球大流行]],截至2021年1月,染病人數已逾一億,超過200萬人死亡<ref name=covidstat>{{cite web|url=https://covid19.who.int|title=WHO Coronavirus Disease (COVID-19) Dashboard|publisher=World Health organization|date=2021-01-28}}</ref>。


==病毒學==
==病毒學==
===結構===
===結構===
[[File:3D medical animation coronavirus structure.jpg|alt=Cross-sectional model of a coronavirus|thumb|冠狀病毒的切面模型]]
[[File:3D medical animation coronavirus structure.jpg|alt=Cross-sectional model of a coronavirus|thumb|冠狀病毒的切面模型]]
冠狀病毒的外型大致呈球體<ref>{{cite journal | vauthors = Goldsmith CS, Tatti KM, Ksiazek TG, Rollin PE, Comer JA, Lee WW, Rota PA, Bankamp B, Bellini WJ, Zaki SR | display-authors = 6 | title = Ultrastructural characterization of SARS coronavirus | journal = Emerging Infectious Diseases | volume = 10 | issue = 2 | pages = 320–6 | date = February 2004 | pmid = 15030705 | pmc = 3322934 | doi = 10.3201/eid1002.030913 | quote = Virions acquired an envelope by budding into the cisternae and formed mostly spherical, sometimes pleomorphic, particles that averaged 78 nm in diameter (Figure 1A). }}</ref>,大小因種類而異,直徑一般介於80與120[[奈米]]之間,但也有小至50奈米與大至200奈米者<ref name=":21">{{cite journal | vauthors = Masters PS | title = The molecular biology of coronaviruses | journal = Advances in Virus Research | volume = 66 | pages = 193–292 | date = 2006 | pmid = 16877062 | pmc = 7112330 | doi = 10.1016/S0065-3527(06)66005-3 | isbn = 9780120398690 }}</ref> ,分子量約為40000[[原子質量單位|kDa]],具有外膜蛋白(E)、[[刺突蛋白]](S)、膜蛋白(M)與[[衣殼|衣殼蛋白]](N)等四種結構蛋白,外圍有[[磷脂雙分子層|脂雙層]]構成的[[病毒包膜|外膜]]<ref name=":20">{{Cite journal| vauthors = Lalchhandama K |date=2020|title=The chronicles of coronaviruses: the electron microscope, the doughnut, and the spike |journal=Science Vision|language=en|volume=20|issue=2|pages=78–92|doi=10.33493/scivis.20.02.03}}</ref>,在電子顯微鏡下為一電子密度高的殼狀結構<ref>{{cite journal | vauthors = Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, Milligan RA, Yeager M, Buchmeier MJ | display-authors = 6 | title = Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy | journal = Journal of Virology | volume = 80 | issue = 16 | pages = 7918–28 | date = August 2006 | pmid = 16873249 | pmc = 1563832 | doi = 10.1128/JVI.00645-06 | quote = Particle diameters ranged from 50 to 150 nm, excluding the spikes, with mean particle diameters of 82 to 94 nm; Also See Figure{{nbsp}}1 for double shell. }}</ref><ref name="Fehr_2015" />,外膜蛋白、[[刺突蛋白]]與膜蛋白均位於外膜上<ref name="Lai_1997">{{cite journal | vauthors = Lai MM, Cavanagh D | title = The molecular biology of coronaviruses | journal = Advances in Virus Research | volume = 48 | pages = 1–100 | date = 1997 | pmid = 9233431 | pmc = 7130985 | doi = 10.1016/S0065-3527(08)60286-9 | isbn = 9780120398485 }}</ref>,三種蛋白的數量比例約為1:20:300<ref>{{cite journal | vauthors = Cavanagh D, Mawditt K, Sharma M, Drury SE, Ainsworth HL, Britton P, Gough RE | title = Detection of a coronavirus from turkey poults in Europe genetically related to infectious bronchitis virus of chickens | journal = Avian Pathology | volume = 30 | issue = 4 | pages = 355–68 | date = August 2001 | pmid = 19184921 | pmc = 7123520 | doi = 10.1007/3-7643-7339-3_1 | publisher = Birkhäuser | isbn = 978-3-7643-7339-9 | veditors = Schmidt A, Weber O, Wolff MH | series = Birkhäuser Advances in Infectious Diseases BAID }}</ref>,外膜蛋白與膜蛋白為{{tsl|en|Viral structural protein|病毒結構蛋白|結構蛋白}},負責維持病毒包膜的結構與大小<ref name="Fehr_2015" />,S蛋白可與宿主細胞表面的受體結合,為病毒感染細胞所需(某些病毒的膜蛋白可能也能與宿主細胞結合<ref>{{cite journal | vauthors = Naskalska A, Dabrowska A, Szczepanski A, Milewska A, Jasik KP, Pyrc K | title = Membrane Protein of Human Coronavirus NL63 Is Responsible for Interaction with the Adhesion Receptor | journal = Journal of Virology | volume = 93 | issue = 19 | date = October 2019 | pmid = 31315999 | pmc = 6744225 | doi = 10.1128/JVI.00355-19 }}</ref>),衣殼蛋白則位於膜的內部,包覆病毒的遺傳物質[[RNA]]。當病毒不在細胞內時,外膜、膜蛋白與衣殼蛋白均有保護病毒的功能<ref>{{cite journal | vauthors = Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, Droese B, Klaus JP, Makino S, Sawicki SG, Siddell SG, Stamou DG, Wilson IA, Kuhn P, Buchmeier MJ | display-authors = 6 | title = A structural analysis of M protein in coronavirus assembly and morphology | journal = Journal of Structural Biology | volume = 174 | issue = 1 | pages = 11–22 | date = April 2011 | pmid = 21130884 | pmc = 4486061 | doi = 10.1016/j.jsb.2010.11.021 | quote = See Figure 10. }}</ref>。
冠狀病毒的外型大致呈球體<ref>{{cite journal | vauthors = Goldsmith CS, Tatti KM, Ksiazek TG, Rollin PE, Comer JA, Lee WW, Rota PA, Bankamp B, Bellini WJ, Zaki SR | display-authors = 6 | title = Ultrastructural characterization of SARS coronavirus | journal = Emerging Infectious Diseases | volume = 10 | issue = 2 | pages = 320–6 | date = February 2004 | pmid = 15030705 | pmc = 3322934 | doi = 10.3201/eid1002.030913 | quote = Virions acquired an envelope by budding into the cisternae and formed mostly spherical, sometimes pleomorphic, particles that averaged 78 nm in diameter (Figure 1A). }}</ref>,大小因種類而異,直徑一般介於80與120[[奈米]]之間,但也有小至50奈米與大至200奈米者<ref name=":21">{{cite journal | vauthors = Masters PS | title = The molecular biology of coronaviruses | journal = Advances in Virus Research | volume = 66 | pages = 193–292 | date = 2006 | pmid = 16877062 | pmc = 7112330 | doi = 10.1016/S0065-3527(06)66005-3 | isbn = 9780120398690 }}</ref> ,分子量約為40000[[原子質量單位|kDa]],具有外膜蛋白(E)、[[刺突蛋白]](S)、膜蛋白(M)與[[衣殼|衣殼蛋白]](N)等四種結構蛋白,外圍有[[磷脂雙分子層|脂雙層]]構成的[[病毒包膜|外膜]]<ref name=":20">{{Cite journal| vauthors = Lalchhandama K |date=2020|title=The chronicles of coronaviruses: the electron microscope, the doughnut, and the spike |journal=Science Vision|language=en|volume=20|issue=2|pages=78–92|doi=10.33493/scivis.20.02.03}}</ref>,在電子顯微鏡下為一電子密度高的殼狀結構<ref>{{cite journal | vauthors = Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, Milligan RA, Yeager M, Buchmeier MJ | display-authors = 6 | title = Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy | journal = Journal of Virology | volume = 80 | issue = 16 | pages = 7918–28 | date = August 2006 | pmid = 16873249 | pmc = 1563832 | doi = 10.1128/JVI.00645-06 | quote = Particle diameters ranged from 50 to 150 nm, excluding the spikes, with mean particle diameters of 82 to 94 nm; Also See Figure{{nbsp}}1 for double shell. }}</ref><ref name="Fehr_2015" />,外膜蛋白、[[刺突蛋白]]與膜蛋白均位於外膜上<ref name="Lai_1997">{{cite journal | vauthors = Lai MM, Cavanagh D | title = The molecular biology of coronaviruses | journal = Advances in Virus Research | volume = 48 | pages = 1–100 | date = 1997 | pmid = 9233431 | pmc = 7130985 | doi = 10.1016/S0065-3527(08)60286-9 | isbn = 9780120398485 }}</ref>,三種蛋白的數量比例約為1:20:300<ref>{{cite journal | vauthors = Cavanagh D, Mawditt K, Sharma M, Drury SE, Ainsworth HL, Britton P, Gough RE | title = Detection of a coronavirus from turkey poults in Europe genetically related to infectious bronchitis virus of chickens | journal = Avian Pathology | volume = 30 | issue = 4 | pages = 355–68 | date = August 2001 | pmid = 19184921 | pmc = 7123520 | doi = 10.1007/3-7643-7339-3_1 | publisher = Birkhäuser | isbn = 978-3-7643-7339-9 | veditors = Schmidt A, Weber O, Wolff MH | series = Birkhäuser Advances in Infectious Diseases BAID }}</ref>,外膜蛋白與膜蛋白為{{tsl|en|Viral structural protein|病毒結構蛋白|結構蛋白}},負責維持病毒包膜的結構與大小<ref name="Fehr_2015" />,S蛋白可與宿主細胞表面的受體結合,為病毒感染細胞所需(某些病毒的膜蛋白可能也能與宿主細胞結合<ref>{{cite journal | vauthors = Naskalska A, Dabrowska A, Szczepanski A, Milewska A, Jasik KP, Pyrc K | title = Membrane Protein of Human Coronavirus NL63 Is Responsible for Interaction with the Adhesion Receptor | journal = Journal of Virology | volume = 93 | issue = 19 | date = October 2019 | pmid = 31315999 | pmc = 6744225 | doi = 10.1128/JVI.00355-19 }}</ref>),衣殼蛋白則位於膜的內部,包覆病毒的遺傳物質[[核糖核酸]]。當病毒不在細胞內時,外膜、膜蛋白與衣殼蛋白均有保護病毒的功能<ref>{{cite journal | vauthors = Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, Droese B, Klaus JP, Makino S, Sawicki SG, Siddell SG, Stamou DG, Wilson IA, Kuhn P, Buchmeier MJ | display-authors = 6 | title = A structural analysis of M protein in coronavirus assembly and morphology | journal = Journal of Structural Biology | volume = 174 | issue = 1 | pages = 11–22 | date = April 2011 | pmid = 21130884 | pmc = 4486061 | doi = 10.1016/j.jsb.2010.11.021 | quote = See Figure 10. }}</ref>。


膜蛋白(M)是冠狀病毒包膜上主要的結構蛋白,屬於{{le|第三型膜蛋白|Bitopic protein}},由218至263個[[胺基酸]]組成<ref name=":20" />,可分為[[N端]]的{{le|胞外域|Ectodomain}}、跨膜三次的[[跨膜結構域]]與[[C端]]的胞內域等三個[[結構域]],其中後者可形成網狀結構以加固包膜,因病毒種類而異,膜蛋白的N端可能有[[醣基化|醣基]]修飾。膜蛋白對病毒的組裝、出芽、外膜形成與侵染細胞均相當重要<ref>{{cite journal | vauthors = Schoeman D, Fielding BC | title = Coronavirus envelope protein: current knowledge | journal = Virology Journal | volume = 16 | issue = 1 | pages = 69 | date = May 2019 | pmid = 31133031 | pmc = 6537279 | doi = 10.1186/s12985-019-1182-0 }}</ref>。
膜蛋白(M)是冠狀病毒包膜上主要的結構蛋白,屬於{{le|第三型膜蛋白|Bitopic protein}},由218至263個[[胺基酸]]組成<ref name=":20" />,可分為[[N端]]的{{le|胞外域|Ectodomain}}、跨膜三次的[[跨膜結構域]]與[[C端]]的胞內域等三個[[結構域]],其中後者可形成網狀結構以加固包膜,因病毒種類而異,膜蛋白的N端可能有[[醣基化|醣基]]修飾。膜蛋白對病毒的組裝、出芽、外膜形成與侵染細胞均相當重要<ref>{{cite journal | vauthors = Schoeman D, Fielding BC | title = Coronavirus envelope protein: current knowledge | journal = Virology Journal | volume = 16 | issue = 1 | pages = 69 | date = May 2019 | pmid = 31133031 | pmc = 6537279 | doi = 10.1186/s12985-019-1182-0 }}</ref>。
第58行: 第58行:
[[乙型冠狀病毒屬]]支序A的病毒([[乙型冠狀病毒1型]]、[[鼠冠狀病毒]]與[[人類冠狀病毒HKU1]]等)除膜蛋白、外膜蛋白與刺突蛋白外,在外膜上還有另一種蛋白{{le|血細胞凝集素酯酶|Hemagglutinin esterase}}(HE)<ref name="groot" />,此蛋白是由兩個相同的次單元組成的二聚體,包含約400個胺基酸,為病毒表面比刺突短的突起,長約5至7奈米,可協助病毒與宿主細胞的結合<ref>{{cite journal | vauthors = Zeng Q, Langereis MA, van Vliet AL, Huizinga EG, de Groot RJ | title = Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 105 | issue = 26 | pages = 9065–9 | date = July 2008 | pmid = 18550812 | pmc = 2449365 | doi = 10.1073/pnas.0800502105 }}</ref>。
[[乙型冠狀病毒屬]]支序A的病毒([[乙型冠狀病毒1型]]、[[鼠冠狀病毒]]與[[人類冠狀病毒HKU1]]等)除膜蛋白、外膜蛋白與刺突蛋白外,在外膜上還有另一種蛋白{{le|血細胞凝集素酯酶|Hemagglutinin esterase}}(HE)<ref name="groot" />,此蛋白是由兩個相同的次單元組成的二聚體,包含約400個胺基酸,為病毒表面比刺突短的突起,長約5至7奈米,可協助病毒與宿主細胞的結合<ref>{{cite journal | vauthors = Zeng Q, Langereis MA, van Vliet AL, Huizinga EG, de Groot RJ | title = Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 105 | issue = 26 | pages = 9065–9 | date = July 2008 | pmid = 18550812 | pmc = 2449365 | doi = 10.1073/pnas.0800502105 }}</ref>。


包膜內部為許多衣殼蛋白(N)組成的[[衣殼]],衣殼蛋白與病毒的[[基因組]]正鏈單股[[RNA]]結合,如同珠子與絲線結合般,將其包覆於衣殼內部<ref name="Fehr_2015">{{cite book | vauthors = Fehr AR, Perlman S | title = Coronaviruses | chapter = Coronaviruses: an overview of their replication and pathogenesis | series = Methods in Molecular Biology | volume = 1282 | pages = 1–23 | date = 2015 | pmid = 25720466 | pmc = 4369385 | doi = 10.1007/978-1-4939-2438-7_1 | publisher = Springer | isbn = 978-1-4939-2438-7 | quote = See section: Virion Structure. | veditors = Maier HJ, Bickerton E, Britton P }}</ref><ref>{{cite journal | vauthors = Chang CK, Hou MH, Chang CF, Hsiao CD, Huang TH | title = The SARS coronavirus nucleocapsid protein—forms and functions | journal = Antiviral Research | volume = 103 | pages = 39–50 | date = March 2014 | pmid = 24418573 | doi = 10.1016/j.antiviral.2013.12.009 | pmc = 7113676 | quote = See Figure 4c. }}</ref> 。衣殼蛋白為一[[磷蛋白]],可分成三個結構域,其中結構域1與結構域2組成其主要部分,包含許多帶正電的[[精胺酸]]與[[離胺酸]],結構域3則較小,位於C端,因包含較多酸性胺基酸,所帶的淨電荷為負<ref name=":21" />。
包膜內部為許多衣殼蛋白(N)組成的[[衣殼]],衣殼蛋白與病毒的[[基因組]]正鏈單股[[核糖核酸]]結合,如同珠子與絲線結合般,將其包覆於衣殼內部<ref name="Fehr_2015">{{cite book | vauthors = Fehr AR, Perlman S | title = Coronaviruses | chapter = Coronaviruses: an overview of their replication and pathogenesis | series = Methods in Molecular Biology | volume = 1282 | pages = 1–23 | date = 2015 | pmid = 25720466 | pmc = 4369385 | doi = 10.1007/978-1-4939-2438-7_1 | publisher = Springer | isbn = 978-1-4939-2438-7 | quote = See section: Virion Structure. | veditors = Maier HJ, Bickerton E, Britton P }}</ref><ref>{{cite journal | vauthors = Chang CK, Hou MH, Chang CF, Hsiao CD, Huang TH | title = The SARS coronavirus nucleocapsid protein—forms and functions | journal = Antiviral Research | volume = 103 | pages = 39–50 | date = March 2014 | pmid = 24418573 | doi = 10.1016/j.antiviral.2013.12.009 | pmc = 7113676 | quote = See Figure 4c. }}</ref> 。衣殼蛋白為一[[磷蛋白]],可分成三個結構域,其中結構域1與結構域2組成其主要部分,包含許多帶正電的[[精胺酸]]與[[離胺酸]],結構域3則較小,位於C端,因包含較多酸性胺基酸,所帶的淨電荷為負<ref name=":21" />。


===基因組===
===基因組===
[[File:SARS Coronavirus Genome Organization.png|thumb|[[SARS病毒]]的基因組]]
[[File:SARS Coronavirus Genome Organization.png|thumb|[[SARS病毒]]的基因組]]
冠狀病毒的[[基因組]]為[[正單鏈RNA病毒|正單鏈RNA]],基因組長度介於26400至31700[[核鹼基|nt]]之間<ref name=":1" />,是[[RNA病毒]]中基因組最大的一類病毒之一,且與細胞生物的[[mRNA]]一樣具有[[5′端帽]]和[[3’端聚線苷酸尾|3′端聚線苷酸尾]]<ref name="Fehr_2015" />。其基因組基本結構為[[5′非轉譯區]](5'UTR)-複製酶(ORF1a/b)-刺突蛋白(S)-外膜蛋白(E)-膜蛋白(M)-衣殼蛋白(N)-[[3'UTR|3′非轉譯區]](3'UTR)-3′端聚線苷酸尾。編碼複製酶的[[開放閱讀框]]ORF1a/b占了基因組總長的2/3,可[[轉譯]]出一個多聚蛋白(polyprotein),此多聚蛋白有自我切割的活性,可自行切割成16個{{tsl|en|Viral nonstructural protein|病毒的非結構蛋白|非結構蛋白}}(nsp1-nsp16)<ref name="Fehr_2015" />。基因組後方則是編碼S、E、M與N四種結構蛋白的開放閱讀框<ref>{{cite journal | vauthors = Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, Gorbalenya AE | display-authors = 6 | title = Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage | journal = Journal of Molecular Biology | volume = 331 | issue = 5 | pages = 991–1004 | date = August 2003 | pmid = 12927536 | doi = 10.1016/S0022-2836(03)00865-9 | pmc = 7159028 | quote = See Figure 1. }}</ref>,其間可能穿插有其他編碼輔助蛋白的[[開放閱讀框]],輔助蛋白開放閱讀框的種類、數目與位置均因病毒種類不同而異<ref name="Fehr_2015" />。
冠狀病毒的[[基因組]]為[[正單鏈RNA病毒|正單鏈RNA]],基因組長度介於26400至31700[[核鹼基|nt]]之間<ref name=":1" />,是[[RNA病毒]]中基因組最大的一類病毒之一,且與細胞生物的[[信使核糖核酸]]一樣具有[[5′端帽]]和[[3’端聚線苷酸尾|3′端聚線苷酸尾]]<ref name="Fehr_2015" />。其基因組基本結構為[[5′非轉譯區]](5'UTR)-複製酶(ORF1a/b)-刺突蛋白(S)-外膜蛋白(E)-膜蛋白(M)-衣殼蛋白(N)-[[3'非轉譯區]](3'UTR)-3′端聚線苷酸尾。編碼複製酶的[[開放閱讀框]]ORF1a/b占了基因組總長的2/3,可[[轉譯]]出一個多聚蛋白(polyprotein),此多聚蛋白有自我切割的活性,可自行切割成16個{{tsl|en|Viral nonstructural protein|病毒的非結構蛋白|非結構蛋白}}(nsp1-nsp16)<ref name="Fehr_2015" />。基因組後方則是編碼S、E、M與N四種結構蛋白的開放閱讀框<ref>{{cite journal | vauthors = Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, Gorbalenya AE | display-authors = 6 | title = Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage | journal = Journal of Molecular Biology | volume = 331 | issue = 5 | pages = 991–1004 | date = August 2003 | pmid = 12927536 | doi = 10.1016/S0022-2836(03)00865-9 | pmc = 7159028 | quote = See Figure 1. }}</ref>,其間可能穿插有其他編碼輔助蛋白的[[開放閱讀框]],輔助蛋白開放閱讀框的種類、數目與位置均因病毒種類不同而異<ref name="Fehr_2015" />。


===複製週期===
===複製週期===
第70行: 第70行:


====轉譯====
====轉譯====
進入宿主細胞後,冠狀病毒衣殼會被降解,使其基因組RNA進入宿主的[[細胞質]],因其RNA和真核生物的[[mRNA]]一樣具有[[5′端帽]]和[[3’端聚線苷酸尾|3′端聚線苷酸尾]],可被宿主的[[核糖體]][[轉譯]]產生[[蛋白質]]。冠狀病毒編碼複製酶的[[開放閱讀框]]ORF1ab中間(ORF1a的末端)有一段{{le|滑動序列|slippery sequence}}(UUUAAAC)與一個[[假結結構|假結]],核糖體轉譯至此時可能發生{{tsl|en|Ribosomal frameshift|核糖體移碼|-1核糖體移碼}},使其繼續轉譯ORF1b的序列,而形成多聚蛋白pp1ab,若未發生核醣體移碼則轉譯在ORF1a結束後即停止,形成多聚蛋白pp1a<ref name="Fehr_2015" /><ref>{{cite journal|vauthors=Masters PS|date=2006-01-01|title=The molecular biology of coronaviruses|journal=Advances in Virus Research|publisher=Academic Press|volume=66|pages=193–292|doi=10.1016/S0065-3527(06)66005-3|isbn=9780120398690|pmid=16877062|pmc=7112330|quote=See Figure 8.}}</ref>。
進入宿主細胞後,冠狀病毒衣殼會被降解,使其基因組RNA進入宿主的[[細胞質]],因其RNA和真核生物的[[信使核糖核酸]]一樣具有[[5′端帽]]和[[3’端聚線苷酸尾|3′端聚線苷酸尾]],可被宿主的[[核糖體]][[轉譯]]產生[[蛋白質]]。冠狀病毒編碼複製酶的[[開放閱讀框]]ORF1ab中間(ORF1a的末端)有一段{{le|滑動序列|slippery sequence}}(UUUAAAC)與一個[[假結結構|假結]],核糖體轉譯至此時可能發生{{tsl|en|Ribosomal frameshift|核糖體移碼|-1核糖體移碼}},使其繼續轉譯ORF1b的序列,而形成多聚蛋白pp1ab,若未發生核醣體移碼則轉譯在ORF1a結束後即停止,形成多聚蛋白pp1a<ref name="Fehr_2015" /><ref>{{cite journal|vauthors=Masters PS|date=2006-01-01|title=The molecular biology of coronaviruses|journal=Advances in Virus Research|publisher=Academic Press|volume=66|pages=193–292|doi=10.1016/S0065-3527(06)66005-3|isbn=9780120398690|pmid=16877062|pmc=7112330|quote=See Figure 8.}}</ref>。


多聚蛋白pp1ab與pp1a皆包含[[蛋白酶]]PLpro(nsp3)與{{tsl|en|3C-like protease|3C樣蛋白酶|3CLpro}}(nsp5),可分別將pp1ab切割成16個(nsp1-nsp16)與11個(nsp1-nsp11){{tsl|en|Viral nonstructural protein|病毒的非結構蛋白|非結構蛋白}}(nsp1-nsp16)<ref>{{cite web|url=https://viralzone.expasy.org/30?outline=all_by_species|title=Coronaviridae|publisher=ViralZone}}</ref>,其中許多為病毒RNA複製所需的蛋白,如[[RNA複製酶]](nsp12)、[[螺旋酶|RNA螺旋酶]](nsp13)與[[核糖核酸外切酶|RNA外切酶]](nsp14)<ref name="Fehr_2015" />。
多聚蛋白pp1ab與pp1a皆包含[[蛋白酶]]PLpro(nsp3)與{{tsl|en|3C-like protease|3C樣蛋白酶|3CLpro}}(nsp5),可分別將pp1ab切割成16個(nsp1-nsp16)與11個(nsp1-nsp11){{tsl|en|Viral nonstructural protein|病毒的非結構蛋白|非結構蛋白}}(nsp1-nsp16)<ref>{{cite web|url=https://viralzone.expasy.org/30?outline=all_by_species|title=Coronaviridae|publisher=ViralZone}}</ref>,其中許多為病毒RNA複製所需的蛋白,如[[RNA複製酶]](nsp12)、[[螺旋酶|RNA螺旋酶]](nsp13)與[[核糖核酸外切酶|RNA外切酶]](nsp14)<ref name="Fehr_2015" />。
第111行: 第111行:
乙型冠状病毒屬的[[亞屬]]''Embecovirus''(包含[[乙型冠狀病毒1型]]、[[鼠冠狀病毒]]、[[人類冠狀病毒HKU1]]等)可能是起源於鼠類,而非蝙蝠<ref name=":8">{{cite journal | vauthors = Forni D, Cagliani R, Clerici M, Sironi M | title = Molecular Evolution of Human Coronavirus Genomes | journal = Trends in Microbiology | volume = 25 | issue = 1 | pages = 35–48 | date = January 2017 | pmid = 27743750 | pmc = 7111218 | doi = 10.1016/j.tim.2016.09.001 | quote = Specifically, all HCoVs are thought to have a bat origin, with the exception of lineage A beta-CoVs, which may have reservoirs in rodents [2]. }}</ref><ref>{{cite journal | vauthors = Lau SK, Woo PC, Li KS, Tsang AK, Fan RY, Luk HK, Cai JP, Chan KH, Zheng BJ, Wang M, Yuen KY | display-authors = 6 | title = Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A | journal = Journal of Virology | volume = 89 | issue = 6 | pages = 3076–92 | date = March 2015 | pmid = 25552712 | pmc = 4337523 | doi = 10.1128/JVI.02420-14 }}</ref>。1890年左右乙型冠狀病毒1型中的[[人類冠狀病毒OC43]]和[[牛冠狀病毒]]分支,前者跨越物種障礙,獲得感染人類的能力<ref name="Vijgen2005">{{cite journal | vauthors = Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, Vandamme AM, Van Ranst M | display-authors = 6 | title = Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event | journal = Journal of Virology | volume = 79 | issue = 3 | pages = 1595–604 | date = February 2005 | pmid = 15650185 | pmc = 544107 | doi = 10.1128/jvi.79.3.1595-1604.2005 }}</ref><ref name=":7">{{cite journal | vauthors = Bidokhti MR, Tråvén M, Krishna NK, Munir M, Belák S, Alenius S, Cortey M | title = Evolutionary dynamics of bovine coronaviruses: natural selection pattern of the spike gene implies adaptive evolution of the strains | journal = The Journal of General Virology | volume = 94 | issue = Pt 9 | pages = 2036–2049 | date = September 2013 | pmid = 23804565 | doi = 10.1099/vir.0.054940-0 | quote = See Table 1 }}</ref>,有學者認為[[1889–1890年流感大流行]]即是此溢出事件的冠狀病毒造成,而非[[流感病毒]]所致<ref>{{cite journal | vauthors = Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, Vandamme AM, Van Ranst M | display-authors = 6 | title = Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event | journal = Journal of Virology | volume = 79 | issue = 3 | pages = 1595–604 | date = February 2005 | pmid = 15650185 | pmc = 544107 | doi = 10.1128/JVI.79.3.1595-1604.2005 | quote = However, it is tempting to speculate about an alternative hypothesis, that the 1889-1890 pandemic may have been the result of interspecies transmission of bovine coronaviruses to humans, resulting in the subsequent emergence of HCoV-OC43. }}</ref>。
乙型冠状病毒屬的[[亞屬]]''Embecovirus''(包含[[乙型冠狀病毒1型]]、[[鼠冠狀病毒]]、[[人類冠狀病毒HKU1]]等)可能是起源於鼠類,而非蝙蝠<ref name=":8">{{cite journal | vauthors = Forni D, Cagliani R, Clerici M, Sironi M | title = Molecular Evolution of Human Coronavirus Genomes | journal = Trends in Microbiology | volume = 25 | issue = 1 | pages = 35–48 | date = January 2017 | pmid = 27743750 | pmc = 7111218 | doi = 10.1016/j.tim.2016.09.001 | quote = Specifically, all HCoVs are thought to have a bat origin, with the exception of lineage A beta-CoVs, which may have reservoirs in rodents [2]. }}</ref><ref>{{cite journal | vauthors = Lau SK, Woo PC, Li KS, Tsang AK, Fan RY, Luk HK, Cai JP, Chan KH, Zheng BJ, Wang M, Yuen KY | display-authors = 6 | title = Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A | journal = Journal of Virology | volume = 89 | issue = 6 | pages = 3076–92 | date = March 2015 | pmid = 25552712 | pmc = 4337523 | doi = 10.1128/JVI.02420-14 }}</ref>。1890年左右乙型冠狀病毒1型中的[[人類冠狀病毒OC43]]和[[牛冠狀病毒]]分支,前者跨越物種障礙,獲得感染人類的能力<ref name="Vijgen2005">{{cite journal | vauthors = Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, Vandamme AM, Van Ranst M | display-authors = 6 | title = Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event | journal = Journal of Virology | volume = 79 | issue = 3 | pages = 1595–604 | date = February 2005 | pmid = 15650185 | pmc = 544107 | doi = 10.1128/jvi.79.3.1595-1604.2005 }}</ref><ref name=":7">{{cite journal | vauthors = Bidokhti MR, Tråvén M, Krishna NK, Munir M, Belák S, Alenius S, Cortey M | title = Evolutionary dynamics of bovine coronaviruses: natural selection pattern of the spike gene implies adaptive evolution of the strains | journal = The Journal of General Virology | volume = 94 | issue = Pt 9 | pages = 2036–2049 | date = September 2013 | pmid = 23804565 | doi = 10.1099/vir.0.054940-0 | quote = See Table 1 }}</ref>,有學者認為[[1889–1890年流感大流行]]即是此溢出事件的冠狀病毒造成,而非[[流感病毒]]所致<ref>{{cite journal | vauthors = Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, Vandamme AM, Van Ranst M | display-authors = 6 | title = Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event | journal = Journal of Virology | volume = 79 | issue = 3 | pages = 1595–604 | date = February 2005 | pmid = 15650185 | pmc = 544107 | doi = 10.1128/JVI.79.3.1595-1604.2005 | quote = However, it is tempting to speculate about an alternative hypothesis, that the 1889-1890 pandemic may have been the result of interspecies transmission of bovine coronaviruses to humans, resulting in the subsequent emergence of HCoV-OC43. }}</ref>。


==人类冠状病毒==
==感染==
[[File:Coronavirus virion structure.svg|thumb|[[嚴重急性呼吸系統綜合症相關冠狀病毒]]示意圖]]
目前已有七个已知的人类冠状病毒[[物种|种类]]。其中,[[嚴重急性呼吸系統綜合症冠狀病毒]](SARS-CoV)、[[中東呼吸綜合症冠狀病毒]](MERS-CoV)及[[嚴重急性呼吸系統綜合症冠狀病毒2型]](SARS-CoV-2)三种可引起致命的[[呼吸系統]]疾病。其餘四種冠状病毒是人类感冒的常见病原体,通常不会造成严重疾病,只限於可能會在少数免疫力差的患者身上出现[[肺炎]]等[[并发症]]。
冠狀病毒感染造成的人類疾病嚴重程度不一,嚴重者如[[中東呼吸綜合症冠狀病毒]](MERS-CoV)感染的死亡率超過30%,輕微者則只造成[[發燒]]、[[咽喉痛]]等較不嚴重的[[普通感冒]]症狀<ref name="Fehr_2015" /><ref>{{cite journal | vauthors = Liu P, Shi L, Zhang W, He J, Liu C, Zhao C, Kong SK, Loo JF, Gu D, Hu L | display-authors = 6 | title = Prevalence and genetic diversity analysis of human coronaviruses among cross-border children | language = En | journal = Virology Journal | volume = 14 | issue = 1 | pages = 230 | date = November 2017 | pmid = 29166910 | pmc = 5700739 | doi = 10.1186/s12985-017-0896-0 }}</ref>。冠狀病毒一般感染人類的[[呼吸道]],可能造成[[肺炎]]、[[支氣管炎]]等併發症<ref name="pmid19199189">{{cite journal | vauthors = Forgie S, Marrie TJ | title = Healthcare-associated atypical pneumonia | journal = Seminars in Respiratory and Critical Care Medicine | volume = 30 | issue = 1 | pages = 67–85 | date = February 2009 | pmid = 19199189 | doi = 10.1055/s-0028-1119811 }}</ref>。


目前已知7種冠狀病毒病毒株可感染人類,其中有兩個病毒株屬於同個[[物種]]。有四種冠狀病毒會造成症狀輕微的普通感冒,有學者認為它們以前的毒力較強,可能曾造成嚴重疫情,經數十年的演化後才成為現今毒力較弱的病毒<ref name="King2020">{{cite journal|last1=King|first1=Anthony|title=An uncommon cold|journal=New Scientist|volume=246|issue=3280|year=2020|pages=32–35|issn=02624079|doi=10.1016/S0262-4079(20)30862-9}}</ref>。
#[[人类冠状病毒229E]](HCoV-229E)

#[[人类冠状病毒OC43]](HCoV-OC43)
*[[人类冠状病毒229E]](HCoV-229E),屬甲型冠狀病毒
#[[嚴重急性呼吸系統綜合症冠狀病毒]](SARS-CoV):2003年[[世界卫生组织]]发布新闻稿,指出在亚洲爆发的[[严重急性呼吸系统综合症]](SARS)的病原体是一种新的冠状病毒,也就是[[嚴重急性呼吸系統綜合症冠狀病毒]](SARS-CoV)。超过8,000人被感染,死亡率约为10%。
#[[人类冠状病毒NL63]](HCoV-NL63)
*[[人类冠状病毒OC43]](HCoV-OC43),屬乙型冠狀病毒
#[[人类冠状病毒HKU1]](HCoV-HKU1)
*[[人类冠状病毒NL63]](HCoV-NL63),屬甲型冠狀病毒
*[[人类冠状病毒HKU1]](HCoV-HKU1),屬乙型冠狀病毒
#[[中東呼吸綜合症冠狀病毒]](MERS-CoV):人类通过与受感染的单峰骆驼直接或间接接触而受到感染。在中东、非洲和南亚一些国家的单峰骆驼中检出此病毒。<ref>{{Cite web|title=中东呼吸综合征冠状病毒|url=https://www.who.int/zh/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov)|accessdate=2020-02-05|work=www.who.int|language=zh|archive-date=2020-11-11|archive-url=https://web.archive.org/web/20201111200103/https://www.who.int/zh/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov)|dead-url=no}}</ref>截止2019年12月,[[中东呼吸综合征]](MERS)确诊2,468例,死亡851例,死亡率约为34.5%。

#[[嚴重急性呼吸系統綜合症冠狀病毒2型]](SARS-CoV-2):2019年12月,[[华人民共和国|中国]][[武汉]]爆肺炎疫情<ref name="NYT-20200129">{{cite news |author=The Editorial Board |title=Is the World Ready for the Coronavirus?—Distrust in science and institutions could be a major problem if the outbreak worsens |url=https://www.nytimes.com/2020/01/29/opinion/coronavirus-outbreak.html |date=2020-01-29 |work=[[The New York Times]] |access-date=2020-01-30 |archive-date=2020-01-30 |archive-url=https://web.archive.org/web/20200130005006/https://www.nytimes.com/2020/01/29/opinion/coronavirus-outbreak.html |dead-url=no }}</ref>2019年12月31日疫情被追溯到新型冠病毒<ref name="WHO9Jan2020">{{Cite web |url=https://www.who.int/china/news/detail/09-01-2020-who-statement-regarding-cluster-of-pneumonia-cases-in-wuhan-china |title=WHO Statement Regarding Cluster of Pneumonia Cases in Wuhan, China |date=2020-01-09 |website=www.who.int |language=en |dead-url=no |access-date=2020-01-10 |archive-url=https://web.archive.org/web/20200114133102/https://www.who.int/china/news/detail/09-01-2020-who-statement-regarding-cluster-of-pneumonia-cases-in-wuhan-china |archive-date=2020-01-14 }}</ref>,世界卫生组织将其临时命名2019-nCoV<ref name="WHO20200110&quot;">{{Cite web|url=https://apps.who.int/iris/bitstream/handle/10665/330374/WHO-2019-nCoV-laboratory-2020.1-eng.pdf|title=Laboratory testing of human suspected cases of novel coronavirus (nCoV) infection. Interim guidance, 10 January 2020|access-date=2020-01-14|archive-url=https://web.archive.org/web/20200120043516/https://apps.who.int/iris/bitstream/handle/10665/330374/WHO-2019-nCoV-laboratory-2020.1-eng.pdf|archive-date=2020-01-20|dead-url=no}}</ref><ref name="CDC20200113">{{Cite web|url=https://www.cdc.gov/coronavirus/2019-ncov/index.html|title=Novel Coronavirus 2019, Wuhan, China|date=2020-01-23|website=www.cdc.gov (CDC)|access-date=2020-01-23|archive-url=https://web.archive.org/web/20200120144040/https://www.cdc.gov/coronavirus/2019-ncov/index.html|archive-date=2020-01-20|dead-url=no}}</ref><ref>{{Cite web |url=https://www.canada.ca/en/public-health/services/diseases/2019-novel-coronavirus-infection.html |title=2019 Novel Coronavirus infection (Wuhan, China): Outbreak update |website=Canada.ca |date=2020-01-21 |accessdate=2020-01-26 |archive-date=2020-05-07 |archive-url=https://web.archive.org/web/20200507200419/https://www.canada.ca/en/public-health/services/diseases/2019-novel-coronavirus-infection.html |dead-url=no }}</ref>,[[國際病毒分類委員會]]则于2月11日正式该病毒命名SARS-CoV-2」(Severe Acute Respiratory Syndrome Coronavirus 2)此病毒属于[[乙型冠狀病毒屬|β属]]有[[毒包膜|包膜]]颗粒呈圆形或椭圆形,常为多形性,直径60-140nm<sub>。</sub>其基因特征与SARSr-CoV和MERSr-CoV有明显区别。目前研究显示与[[蝙蝠]]SARS样冠状病毒(bat-SL-CoVZC45)同源性达85%以上。体外分离培养时,2019-nCoV 96个小时左右即可在呼吸道上皮细胞内发现,而在VeroE6和Huh-7细胞系中分离培养需约6天。<ref>{{Cite web|title=关于印发新型冠状病毒感染的肺炎诊疗方案(试行第五版)的通知_卫生_中国政府网|url=http://www.gov.cn/zhengce/zhengceku/2020-02/05/content_5474791.htm|accessdate=2020-02-05|work=www.gov.cn|archive-date=2020-02-05|archive-url=https://web.archive.org/web/20200205121636/http://www.gov.cn/zhengce/zhengceku/2020-02/05/content_5474791.htm|dead-url=no}}</ref>
另外三種冠狀病毒則會導致嚴重的疾病,皆曾在世界各地引起嚴重疫情:
{{Coronavirus characteristics comparison}}
*[[中東呼吸綜合症冠狀病毒]](MERS-CoV)
*[[严重急性呼吸道综合征冠状病毒]](SARS-CoV)
*[[严重急性呼吸系统综合征冠状病毒2]](SARS-CoV-2)

===感冒病毒===
{{main|普通感冒}}
[[人类冠状病毒229E]]、[[人类冠状病毒OC43]]、[[人类冠状病毒NL63]]與[[人类冠状病毒HKU1]]可造成[[普通感冒]],這四種病毒在人群中已廣泛流傳<ref name="pmid29551135">{{cite journal | vauthors = Corman VM, Muth D, Niemeyer D, Drosten C | title = Hosts and Sources of Endemic Human Coronaviruses | journal = Advances in Virus Research | volume = 100 | pages = 163–188 | date = 2018 | pmid = 29551135 | doi = 10.1016/bs.aivir.2018.01.001 | isbn = 978-0-12-815201-0 }}</ref>,造成的症狀較輕微,有統計顯示15%的感冒是這四種病毒感染引起<ref>{{cite book|last=Pelczar|name-list-format=vanc|url=https://books.google.com/books?id=xnClBCuo71IC&pg=PA656|title=Microbiology: Application Based Approach|year=2010|isbn=978-0-07-015147-5|page=656|archive-url=https://web.archive.org/web/20160516134615/https://books.google.com/books?id=xnClBCuo71IC&pg=PA656|archive-date=16 May 2016}}</ref>{{Notetag|1=有近50%的[[普通感冒]]為[[鼻病毒]]感染引起<ref name="CecilGoldman2012">{{cite book|first1=Russell La Fayette|last1=Cecil|first2=Lee|last2=Goldman|first3=Andrew I.|last3=Schafer|name-list-format=vanc|title=Goldman's Cecil Medicine, Expert Consult Premium Edition|url=https://books.google.com/books?id=Qd-vvNh0ee0C&pg=PA2103|pages=2103–|year=2012|archive-url=https://web.archive.org/web/20160504202334/https://books.google.com/books?id=Qd-vvNh0ee0C&pg=PA2103|edition=24|publisher=Elsevier Health Sciences|isbn=978-1-4377-1604-7|archive-date=4 May 2016}}</ref>。}}。在[[溫帶地區]],這些病毒的感染多在冬天發生<ref>{{cite journal | vauthors = Charlton CL, Babady E, Ginocchio CC, Hatchette TF, Jerris RC, Li Y, Loeffelholz M, McCarter YS, Miller MB, Novak-Weekley S, Schuetz AN, Tang YW, Widen R, Drews SJ | display-authors = 6 | title = Practical Guidance for Clinical Microbiology Laboratories: Viruses Causing Acute Respiratory Tract Infections | journal = Clinical Microbiology Reviews | volume = 32 | issue = 1 | date = January 2019 | pmid = 30541871 | doi = 10.1128/CMR.00042-18 | pmc = 6302358 | quote = See Figure 1. }}</ref><ref>{{cite journal | vauthors = Monto AS, DeJonge P, Callear AP, Bazzi LA, Capriola S, Malosh RE, Martin ET, Petrie JG | display-authors = 6 | title = Coronavirus occurrence and transmission over 8 years in the HIVE cohort of households in Michigan | journal = The Journal of Infectious Diseases | pages = 9–16 | date = April 2020 | volume = 222 | pmid = 32246136 | doi = 10.1093/infdis/jiaa161 | pmc = 7184402 }}</ref>,在[[熱帶地區]]則沒有明顯差別<ref name="Abdul-Rasool_2010">{{cite journal | vauthors = Abdul-Rasool S, Fielding BC | title = Understanding Human Coronavirus HCoV-NL63 | journal = The Open Virology Journal | volume = 4 | pages = 76–84 | date = May 2010 | pmid = 20700397 | pmc = 2918871 | doi = 10.2174/1874357901004010076 }}</ref>。

===嚴重急性呼吸系統綜合症(SARS)===
{{main|嚴重急性呼吸系統綜合症}}
2002年底,在中國[[广东省]]爆發了[[非典型肺炎]],演變成為期近一年的[[SARS事件]],疫情擴散至29個國家,超過8000人感染,其中774人死亡<ref name=SARSstat/><ref>{{Cite web|last=Pasley|first=James|title=How SARS terrified the world in 2003, infecting more than 8,000 people and killing 774|url=https://www.businessinsider.com/deadly-sars-virus-history-2003-in-photos-2020-2|access-date=2020-11-08|website=Business Insider}}</ref>。2003年3月[[世界衛生組織]]正式將此疾病命名為SARS,同時許多科學家研究發現疫情是冠狀病毒造成,為首個被發現引起嚴重疾病的冠狀病毒。

===中東呼吸綜合症(MERS)===
{{main|中東呼吸綜合症}}
2012年[[沙烏地阿拉伯]]有病人出現嚴重的呼吸道症狀,其[[肺]]中分離出了一種新型冠狀病毒,即中東呼吸綜合症冠狀病毒(MERS-CoV)<ref name="NPR">{{Cite news |url=https://www.npr.org/blogs/health/2012/09/25/161770135/scientists-go-deep-on-genes-of-sars-like-virus |title=Scientists Go Deep On Genes Of SARS-Like Virus |last=Doucleef |first=Michaeleen | name-list-format = vanc |date=26 September 2012 |agency=Associated Press |access-date=27 September 2012 |archive-url=https://web.archive.org/web/20120927043755/http://www.npr.org/blogs/health/2012/09/25/161770135/scientists-go-deep-on-genes-of-sars-like-virus |archive-date=27 September 2012 }}</ref><ref>{{Cite news |url=http://thechart.blogs.cnn.com/2012/09/24/new-sars-like-virus-poses-medical-mystery/?hpt=he_c2 |title=New SARS-like virus poses medical mystery |last=Falco |first=Miriam | name-list-format = vanc |date=24 September 2012 |work=CNN Health |access-date=16 March 2013 |archive-url=https://web.archive.org/web/20131101042029/http://thechart.blogs.cnn.com/2012/09/24/new-sars-like-virus-poses-medical-mystery/?hpt=he_c2 |archive-date=1 November 2013}}</ref>,可能經[[駱駝]]傳染給人類,疫情隨後擴散至西亞其他國家,2015年疫情擴散至[[2015年中東呼吸綜合症韓國疫情|韓國]]<ref name=mersstat/>。

===2019冠状病毒病===
{{main|2019冠状病毒病}}
2019年12月,中[[武汉]]爆發不明原因的肺炎疫情<ref name="NYT-20200129">{{cite news |author=The Editorial Board |title=Is the World Ready for the Coronavirus?—Distrust in science and institutions could be a major problem if the outbreak worsens|url=https://www.nytimes.com/2020/01/29/opinion/coronavirus-outbreak.html |date=29 January 2020 |work=[[纽约时报|New York Times]] |access-date=30 January 2020}}</ref>,經研究於12月31日發現疫情一新型冠病毒造成<ref name="WHO9Jan2020">{{Cite web |url=https://www.who.int/china/news/detail/09-01-2020-who-statement-regarding-cluster-of-pneumonia-cases-in-wuhan-china |title=WHO Statement Regarding Cluster of Pneumonia Cases in Wuhan, China |date=9 January 2020 |website=www.who.int |language=en |access-date=10 January 2020 |archive-url=https://web.archive.org/web/20200114133102/https://www.who.int/china/news/detail/09-01-2020-who-statement-regarding-cluster-of-pneumonia-cases-in-wuhan-china |archive-date=14 January 2020}}</ref>,命名為[[2019新型冠状病毒]]<ref name="WHO20200110&quot;">{{Cite web|url=https://apps.who.int/iris/bitstream/handle/10665/330374/WHO-2019-nCoV-laboratory-2020.1-eng.pdf|title=Laboratory testing of human suspected cases of novel coronavirus (nCoV) infection. Interim guidance, 10 January 2020|access-date=14 January 2020|archive-url=https://web.archive.org/web/20200120043516/https://apps.who.int/iris/bitstream/handle/10665/330374/WHO-2019-nCoV-laboratory-2020.1-eng.pdf|archive-date=20 January 2020}}</ref><ref name="CDC20200113">{{Cite web|url=https://www.cdc.gov/coronavirus/2019-ncov/index.html|title=Novel Coronavirus 2019, Wuhan, China |date=23 January 2020|website=www.cdc.gov (CDC)|access-date=23 January 2020|archive-url=https://web.archive.org/web/20200120144040/https://www.cdc.gov/coronavirus/2019-ncov/index.html|archive-date=20 January 2020}}</ref><ref>{{Cite web |url=https://www.canada.ca/en/public-health/services/diseases/2019-novel-coronavirus-infection.html |title=2019 Novel Coronavirus infection (Wuhan, China): Outbreak update |website=Canada.ca|date=21 January 2020}}</ref>,[[國際病毒分類委員會]]其成為SARS-CoV-2。2020年疫情迅速擴散至世界各國截至2021年1月染人數已逾一億超過200萬死亡<ref name=covidstat/>


==动物冠状病毒==
==动物冠状病毒==
第144行: 第166行:
* 死亡率很高的可导致欧洲幼兔肠道疾病和腹泻的冠状病毒。
* 死亡率很高的可导致欧洲幼兔肠道疾病和腹泻的冠状病毒。


==註腳==

{{Notefoot}}


==参考文献==
==参考文献==

2021年1月29日 (五) 21:37的版本

冠状病毒
電子顯微鏡下的禽類傳染性支氣管炎病毒
Illustration of a SARS-CoV-2 virion
冠狀病毒示意圖[1]
  紅色:刺突蛋白(S)
  灰色:外膜
  黃色:外膜蛋白(E)
  橘色:膜蛋白(M)
病毒分類 编辑
(未分级) 病毒 Virus
域: 核糖病毒域 Riboviria
界: 正核糖病毒界 Orthornavirae
门: 小核糖病毒门 Pisuviricota
纲: 小南嵌套病毒纲 Pisoniviricetes
目: 套式病毒目 Nidovirales
科: 冠状病毒科 Coronaviridae
亚科: 正冠状病毒亚科 Orthocoronavirinae
異名[2][3]
  • Coronavirinae

guān狀病毒亞科學名Orthocoronavirinae)通称guān状病毒(英語:Coronavirus),是一类在动物与人类之间传播的人畜共患的单链RNA病毒。冠状病毒可感染哺乳动物鸟类,部分病毒可感染家畜或家禽,造成養殖業的經濟損失。已知可感染人类的冠状病毒共有7种,其中有4種可引发普通感冒,另外3種為严重急性呼吸道综合征冠状病毒(SARS-CoV)、中東呼吸症候群冠狀病毒(MERS)與严重急性呼吸系统综合征冠状病毒2(SARS-CoV-2),皆會導致嚴重疾病,曾分別在全球各地造成疫情。

正冠狀病毒亞科属于网巢病毒目冠状病毒科[4][3],為具有包膜正單鏈RNA病毒[5],其基因組大小介於26000與32000nt之間,是RNA病毒中基因組最大的一類病毒之一[6],其表面具有由刺突蛋白組成的棒狀突起,是此類病毒顯著的特徵。

詞源

冠狀病毒的學名Coronavirus為最早研究人類冠狀病毒的英國病毒學家瓊·阿爾梅達英语June Almeida大衛·泰瑞爾英语David Tyrrell所取[7],最早見於1968年《自然》的一篇文章[8]。此名源於拉丁文corona,意指「皇冠」或「花環」,這個詞本身則來自希臘文κορώνη(korṓnē),意指「花環」[9][10]。以Corona稱呼此類病毒的原因是在電子顯微鏡下觀察時,可見其病毒顆粒表面由刺突蛋白(spike protein)所構成、形似光暈的棒狀突起[7][11]

1971年,國際病毒命名委員會(現已改名為國際病毒分類委員會)將冠狀病毒(Coronavirus)接受為一[12],隨著發現的病毒數量日益增多,該屬於2009年被細分成甲型冠狀病毒屬乙型冠狀病毒屬丙型冠狀病毒屬丁型冠狀病毒屬等四個屬[13]

研究歷史

電子顯微鏡下的人類冠狀病毒OC43

冠狀病毒感染動物最早的紀錄是1920年代晚期,美國飼養的隻出現急性呼吸道感染[14],1931年有科學家發表了對北達科他州雞隻呼吸道感染的詳細報告,指出被感染的小雞有喘氣與倦怠的症狀,且具有40%至90%的高死亡率[15]。1933年造成此感染的病毒被成功分離[16],即傳染性支氣管炎病毒(IBV),1937年研究人員首度成功在實驗室培養此病毒[17]。1940年代晚期,有兩種感染鼠類的冠狀病毒毒株被發現,即JHM株系鼠肝炎病毒,分別感染老鼠的[18],當時尚不知這兩種病毒與IBV有關聯[12]

1960年代,感染人類的冠狀病毒漸被發現[19][20]。1961年,大衛·泰瑞爾英语David Tyrrell英國醫學研究委員會感冒研究單位英语Common Cold Unit的研究人員發現了造成普通感冒的一新病毒株,將其命名為B814[21][22][23],但用培養腺病毒鼻病毒等其他感冒病毒的方法試圖培養該病毒時卻告失敗,後來使用由器官培養英语Organ culture技術建立的人類胚胎氣管組織才成功培養此病毒[24]。1962年又有科學家在芝加哥大學分離了新的感冒病毒毒株,於1966年發表,即為人類冠狀病毒229E[25]。B814病毒與229E病毒皆能在自願的受試者中造成感冒,且經處理後即失去活性,顯示它們具有包膜[25][21]

1967年,倫敦聖湯瑪士醫院的病毒學家瓊·阿爾梅達英语June Almeida和大衛·泰瑞爾合作,用電子顯微鏡觀察IBV、B814與229E等病毒的外形結構[26][27],發現它們表面均具有特別的棒狀突起[28]。同年美國國家衛生院的團隊發現了另一種造成感冒的新病毒株人類冠狀病毒OC43[29],此病毒株的表面亦具有棒狀突起[30][31]補體結合試驗英语Complement fixation test結果顯示其與鼠肝炎病毒關係接近[18] ,於是這些病毒被合稱為「冠狀病毒」[8]。後來人們又發現了人類冠狀病毒NL63人類冠狀病毒HKU1兩個造成感冒的冠狀病毒,但B814病毒株今已佚失[32]。除此之外也有許多感染其他動物的冠狀病毒被發現[33]

2002年底,中國广东省爆發了非典型肺炎,演變成為期近一年的SARS事件,疫情擴散至29個國家,超過8000人感染,其中774人死亡[34]。此感染為新發現的冠狀病毒SARS病毒造成,疑似是由市場中的果子貍傳染給人類,但後續研究顯示蝙蝠才是SARS病毒的自然宿主。2012年,沙烏地阿拉伯爆發了中東呼吸綜合症疫情,為另一新種冠狀病毒中東呼吸症候群冠狀病毒(MERS)造成,可能經駱駝傳染給人類,疫情隨後擴散至西亞其他國家與韓國,共造成超過1000人感染,約400人死亡[35]。2019年12月,新型冠狀病毒严重急性呼吸系统综合征冠状病毒2在中國武汉市造成不明肺炎疫情,並於2020年迅速擴散至世界各國,造成嚴重的全球大流行,截至2021年1月,染病人數已逾一億,超過200萬人死亡[36]

病毒學

結構

Cross-sectional model of a coronavirus
冠狀病毒的切面模型

冠狀病毒的外型大致呈球體[37],大小因種類而異,直徑一般介於80與120奈米之間,但也有小至50奈米與大至200奈米者[38] ,分子量約為40000kDa,具有外膜蛋白(E)、刺突蛋白(S)、膜蛋白(M)與衣殼蛋白(N)等四種結構蛋白,外圍有脂雙層構成的外膜[39],在電子顯微鏡下為一電子密度高的殼狀結構[40][41],外膜蛋白、刺突蛋白與膜蛋白均位於外膜上[42],三種蛋白的數量比例約為1:20:300[43],外膜蛋白與膜蛋白為結構蛋白英语Viral structural protein,負責維持病毒包膜的結構與大小[41],S蛋白可與宿主細胞表面的受體結合,為病毒感染細胞所需(某些病毒的膜蛋白可能也能與宿主細胞結合[44]),衣殼蛋白則位於膜的內部,包覆病毒的遺傳物質核糖核酸。當病毒不在細胞內時,外膜、膜蛋白與衣殼蛋白均有保護病毒的功能[45]

膜蛋白(M)是冠狀病毒包膜上主要的結構蛋白,屬於第三型膜蛋白英语Bitopic protein,由218至263個胺基酸組成[39],可分為N端胞外域英语Ectodomain、跨膜三次的跨膜結構域C端的胞內域等三個結構域,其中後者可形成網狀結構以加固包膜,因病毒種類而異,膜蛋白的N端可能有醣基修飾。膜蛋白對病毒的組裝、出芽、外膜形成與侵染細胞均相當重要[46]

外膜蛋白(E)也位於冠狀病毒的包膜上,是次要的結構蛋白,在不同病毒間的變異較大,一個冠狀病毒中約僅有20個外膜蛋白,由76至109個胺基酸組成.[38],為四種結構蛋白中最小的,屬於嵌在脂雙層中的整合蛋白,可分為跨膜結構域與C端的膜外域兩個結構域。外膜蛋白大部分由α螺旋組成,某些冠狀病毒的數個外膜蛋白聚合時可能在膜上形成離子通道。外膜蛋白與病毒組裝、感染細胞後胞內物質的運輸英语Intracellular transport與出芽有關[47]

刺突(spike)為冠狀病毒表面的棒狀突起,是此類病毒最明顯的特徵,一個冠狀病毒平均有74個刺突[48],刺突長約20奈米,為3個刺突蛋白組成的三聚體。刺突蛋白屬於第一型膜融合蛋白英语Membrane fusion protein,r可與宿主細胞表面的受體結合,並使外膜和宿主細胞膜融合英语Lipid bilayer fusion,此蛋白也具有許多醣基修飾,可分為S1與S2兩個次單元,S1位於刺突蛋白的頂部,具有與宿主受體結合的受體結合結構域(receptor binding domain, RBD);S2則位於刺突蛋白基部,將刺突蛋白固定在膜上,並在被組織蛋白酶跨膜丝氨酸蛋白酶2等宿主蛋白酶切割活化後介導膜融合。

乙型冠狀病毒屬支序A的病毒(乙型冠狀病毒1型鼠冠狀病毒人類冠狀病毒HKU1等)除膜蛋白、外膜蛋白與刺突蛋白外,在外膜上還有另一種蛋白血細胞凝集素酯酶英语Hemagglutinin esterase(HE)[33],此蛋白是由兩個相同的次單元組成的二聚體,包含約400個胺基酸,為病毒表面比刺突短的突起,長約5至7奈米,可協助病毒與宿主細胞的結合[49]

包膜內部為許多衣殼蛋白(N)組成的衣殼,衣殼蛋白與病毒的基因組正鏈單股核糖核酸結合,如同珠子與絲線結合般,將其包覆於衣殼內部[41][50] 。衣殼蛋白為一磷蛋白,可分成三個結構域,其中結構域1與結構域2組成其主要部分,包含許多帶正電的精胺酸離胺酸,結構域3則較小,位於C端,因包含較多酸性胺基酸,所帶的淨電荷為負[38]

基因組

SARS病毒的基因組

冠狀病毒的基因組正單鏈RNA,基因組長度介於26400至31700nt之間[6],是RNA病毒中基因組最大的一類病毒之一,且與細胞生物的信使核糖核酸一樣具有5′端帽3′端聚線苷酸尾[41]。其基因組基本結構為5′非轉譯區(5'UTR)-複製酶(ORF1a/b)-刺突蛋白(S)-外膜蛋白(E)-膜蛋白(M)-衣殼蛋白(N)-3'非轉譯區(3'UTR)-3′端聚線苷酸尾。編碼複製酶的開放閱讀框ORF1a/b占了基因組總長的2/3,可轉譯出一個多聚蛋白(polyprotein),此多聚蛋白有自我切割的活性,可自行切割成16個非結構蛋白英语Viral nonstructural protein(nsp1-nsp16)[41]。基因組後方則是編碼S、E、M與N四種結構蛋白的開放閱讀框[51],其間可能穿插有其他編碼輔助蛋白的開放閱讀框,輔助蛋白開放閱讀框的種類、數目與位置均因病毒種類不同而異[41]

複製週期

冠狀病毒的複製週期

進入細胞

感染細胞時,冠狀病毒的刺突蛋白和細胞表面的受體結合,隨後宿主的蛋白酶組織蛋白酶跨膜丝氨酸蛋白酶2等)會切割刺突蛋白而將其活化,因蛋白酶種類而異,活化後的病毒可以內吞作用或直接和宿主細胞膜融合而進入細胞[52]

轉譯

進入宿主細胞後,冠狀病毒衣殼會被降解,使其基因組RNA進入宿主的細胞質,因其RNA和真核生物的信使核糖核酸一樣具有5′端帽3′端聚線苷酸尾,可被宿主的核糖體轉譯產生蛋白質。冠狀病毒編碼複製酶的開放閱讀框ORF1ab中間(ORF1a的末端)有一段滑動序列英语slippery sequence(UUUAAAC)與一個假結,核糖體轉譯至此時可能發生-1核糖體移碼,使其繼續轉譯ORF1b的序列,而形成多聚蛋白pp1ab,若未發生核醣體移碼則轉譯在ORF1a結束後即停止,形成多聚蛋白pp1a[41][53]

多聚蛋白pp1ab與pp1a皆包含蛋白酶PLpro(nsp3)與3CLpro(nsp5),可分別將pp1ab切割成16個(nsp1-nsp16)與11個(nsp1-nsp11)非結構蛋白英语Viral nonstructural protein(nsp1-nsp16)[54],其中許多為病毒RNA複製所需的蛋白,如RNA複製酶(nsp12)、RNA螺旋酶(nsp13)與RNA外切酶(nsp14)[41]

RNA複製與轉錄

冠狀病毒的複製酶複合體
次基因組RNA英语Subgenomic mRNA轉錄
長度各異的次基因組RNA

許多由pp1ab切割而成的非結構蛋白共同組合成一個複製酶複合體以進行冠狀病毒RNA的複製與轉錄,其中最重要的蛋白為RNA複製酶(RdRP),直接催化RNA合成,其他蛋白則各有不同的輔助功能,例如RNA外切酶提供了校對功能,可將誤配的核苷酸移除,增進RNA複製與轉錄的準確度[55]。RNA複製時,RNA複製酶以正鏈的基因組RNA為模板,合成完整的負鏈的RNA,亦可以負鏈RNA為模板合成完整正鏈RNA[41];轉錄時,RNA複製酶以正鏈RNA為模板合成負鏈RNA,但合成至序列的中間即停止,跳過剩餘的序列而直接跳轉至最末端的5′非轉譯區,形成次基因組RNA英语Subgenomic mRNA(subgenomic RNA),再以此為模板合成正鏈的次基因組RNA[41],次基因組RNA因跳轉發生的位置不同而長度各異,但皆不含有ORF1ab的序列[56]

另外,當細胞中具有兩個以上的病毒RNA時,複製酶複合體可能可以在複製時切換模板,而造成病毒的基因重組[56]。基因重組是造成冠狀病毒多樣性的重要機制,可能造成病毒序列的變異,使病毒得以跨越物種障礙感染其他物種,但其具體機制尚不明朗[57]

組裝與釋放

RNA複製所合成的完整正鏈RNA為病毒的遺傳物質,被衣殼蛋白包覆組成衣殼;次基因組RNA則包含四種結構蛋白的開放閱讀框,可在細胞的內質網中由核糖體轉譯出結構蛋白與輔助蛋白[41],其中刺突蛋白、膜蛋白與外膜蛋白可隨宿主細胞的內膜系統移動至内质网-高尔基体中间体英语Vesicular-tubular cluster(ERGIC),在此與衣殼組裝成完整的病毒經由高基氏體胞吐作用自細胞膜離開細胞,再進而感染其他細胞[58]

傳播

被病毒感染的個體可以將其散播至環境中,病毒的組織特異性英语Tissue tropism感染力宿主特異性英语Host tropism由其刺突蛋白和宿主細胞受體的結合決定[59][60]。冠狀病毒多感染上皮細胞[33],可能以氣溶膠英语Bioaerosol物品糞口路徑傳染給其他個體[61]

已知的人類冠狀病毒大多感染呼吸道,例如SARS病毒與細胞表面的血管紧张素转化酶2(ACE2)受體結合造成感染[62];其他動物的冠狀病毒則有許多感染消化道[33],例如豬傳染性胃腸炎病毒(TGEV)主要感染途徑為糞口傳染[61],以丙胺酸胺肽酶英语alanine aminopeptidase(APN)為受體感染豬腸道的上皮細胞[41]

分類

冠狀病毒是冠狀病毒科的兩個亞科之一[33][63],該科的另一個亞科為勒托病毒亚科,目前僅有姬蛙甲型勒托病毒一型一種,為感染魚類的病毒[64][65]。冠狀病毒亞科下分甲型冠状病毒属、乙型冠状病毒属、丙型冠状病毒属與丁型冠状病毒属等四個屬,前兩者主要感染哺乳動物,後兩者則主要感染鳥類[66][67]

演化

數種冠狀病毒可能的起源

有研究顯示冠狀病毒的最近共同祖先(MRCA)約於公元前8000年出現,但也有研究認為共祖早在5500萬年前就已出現,與蝙蝠鳥類發生了長期的共演化[75]。甲型冠状病毒屬、乙型冠状病毒屬、丙型冠状病毒屬與丁型冠状病毒屬的共祖可能分別在2400BCE、3300BCE、2800BCE與3000BCE出現。蝙蝠與鳥類(溫血的飛行動物)是冠狀病毒很好的自然宿主,兩者在全世界廣泛的分布和龐大的族群使冠狀病毒得以大量演化、傳播[76]

大多數人類冠狀病毒都是由蝙蝠而來[77]。例如造成感冒的人類冠狀病毒NL63肯亞波斯葉鼻蝠屬體內的BtKYNL63-9a、BtKYNL63-9b與BtKYNL63-15病毒關係接近[78]人類冠狀病毒229E則與肯亞蹄蝠屬蝙蝠的BtKY229E-1與BtKY229E-8病毒關係接近[78]SARS病毒中東呼吸症候群冠狀病毒(MERS)可能也是源於蝙蝠,再分別經與果子貍駱駝傳染給人類[79][80][81]

乙型冠状病毒屬的亞屬Embecovirus(包含乙型冠狀病毒1型鼠冠狀病毒人類冠狀病毒HKU1等)可能是起源於鼠類,而非蝙蝠[77][82]。1890年左右乙型冠狀病毒1型中的人類冠狀病毒OC43牛冠狀病毒分支,前者跨越物種障礙,獲得感染人類的能力[83][84],有學者認為1889–1890年流感大流行即是此溢出事件的冠狀病毒造成,而非流感病毒所致[85]

感染人類

嚴重急性呼吸系統綜合症相關冠狀病毒示意圖

冠狀病毒感染造成的人類疾病嚴重程度不一,嚴重者如中東呼吸綜合症冠狀病毒(MERS-CoV)感染的死亡率超過30%,輕微者則只造成發燒咽喉痛等較不嚴重的普通感冒症狀[41][86]。冠狀病毒一般感染人類的呼吸道,可能造成肺炎支氣管炎等併發症[87]

目前已知7種冠狀病毒病毒株可感染人類,其中有兩個病毒株屬於同個物種。有四種冠狀病毒會造成症狀輕微的普通感冒,有學者認為它們以前的毒力較強,可能曾造成嚴重疫情,經數十年的演化後才成為現今毒力較弱的病毒[88]

另外三種冠狀病毒則會導致嚴重的疾病,皆曾在世界各地引起嚴重疫情:

MERS-CoV、SARS-CoV與SARS-CoV-2病毒造成的疾病比較
MERS-CoV SARS-CoV SARS-CoV-2
疾病 MERS SARS COVID-19
疫情 2012年2015年2018年英语2018 Middle East respiratory syndrome coronavirus outbreak SARS疫情 COVID-19疫情
首例時間 2012年6月 2002年11月 2019年12月[89]
首例地點 沙烏地阿拉伯吉达 中國廣東顺德 中國湖北武汉
平均年齡 56 44[90][a] 56[91]
性別比(男:女) 3.3:1 0.8:1[92] 1.6:1[91]
確診數 2494 8096[93] 676,609,955
死亡數 858 774[93] 6,881,955
死亡率 37% 9.2% 1.01%
症狀
發燒 98% 99–100% 87.9%[94]
乾咳 47% 29–75% 67.7%[94]
呼吸困难 72% 40–42% 18.6%[94]
腹瀉 26% 20–25% 3.7%[94]
喉嚨痛 21% 13–25% 13.9%[94]
呼吸机使用 24.5%[95] 14–20% 4.1%[96]

  1. ^ 基於香港的病例統計資料

感冒病毒

人类冠状病毒229E人类冠状病毒OC43人类冠状病毒NL63人类冠状病毒HKU1可造成普通感冒,這四種病毒在人群中已廣泛流傳[97],造成的症狀較輕微,有統計顯示15%的感冒是這四種病毒感染引起[98][註 1]。在溫帶地區,這些病毒的感染多在冬天發生[100][101],在熱帶地區則沒有明顯差別[102]

嚴重急性呼吸系統綜合症(SARS)

2002年底,在中國广东省爆發了非典型肺炎,演變成為期近一年的SARS事件,疫情擴散至29個國家,超過8000人感染,其中774人死亡[34][103]。2003年3月世界衛生組織正式將此疾病命名為SARS,同時許多科學家研究發現疫情是冠狀病毒造成,為首個被發現引起嚴重疾病的冠狀病毒。

中東呼吸綜合症(MERS)

2012年沙烏地阿拉伯有病人出現嚴重的呼吸道症狀,其中分離出了一種新型冠狀病毒,即中東呼吸綜合症冠狀病毒(MERS-CoV)[104][105],可能經駱駝傳染給人類,疫情隨後擴散至西亞其他國家,2015年疫情擴散至韓國[35]

2019冠状病毒病

2019年12月,中國武汉市爆發不明原因的肺炎疫情[106],經研究於12月31日發現疫情是一新型冠狀病毒造成[107],命名為2019新型冠状病毒[108][109][110]國際病毒分類委員會則將其成為SARS-CoV-2。2020年疫情迅速擴散至世界各國,截至2021年1月染病人數已逾一億,超過200萬人死亡[36]

动物冠状病毒

1970年代初期,确认冠状病毒可以在动物间传播。症状主要为禽类的传染性支气管炎,还有肠胃疾病相关症状。

由冠状病毒引起的动物疾病

冠状病毒主要传染哺乳动物和鸟类的上呼吸道肠道。 目前有七个已知的冠状病毒可以传染给人类。人类中大部分的感冒是由冠状病毒引起。冠状病毒引起感冒主要症状包括发烧,喉咙肿胀,多发于冬季和春季。

冠状病毒可能导致肺炎,包括病毒性肺炎细菌性肺炎支气管炎。广受大众关注的SARS具有独特的发病机理英语etiology,因为它会同时导致上层和下呼吸道感染。冠状病毒的重要性和对经济的影响是难以评估的,且与人类鼻病毒(另一个种导致普通感冒的病毒)不同,感染人类的冠状病毒通常很难在实验室环境里培养。

冠状病毒也会在家畜和宠物中传播,有时会对农畜业造成重大的打击。禽類傳染性支氣管炎病毒(IBV),不仅会攻击禽类的呼吸系统,还会引起泌尿生殖系统疾病,病毒会在禽类体内不同的器官间传播。豬傳染性胃腸炎病毒(TGE)、豬流行性腹瀉病毒(PEDV)等多種冠狀病毒均可導致幼年猪类腹泻與死亡。冠状病毒也可引发猫类动物、貂类动物、犬类动物以及鼠类动物相关疾病。

一种与菊頭蝠冠狀病毒HKU2(Bat-CoV HKU2)有关、源自于蝙蝠的猪急性腹泻综合征冠状病毒(SADS-CoV;SADS冠状病毒)可导致猪类腹泻疫情。

家畜冠状病毒列表

  • 传染性支气管炎病毒(IBV)导致 禽类传染性支气管炎.
  • 猪冠状病毒(传染性肠胃炎的冠状病毒)。
  • 家畜冠状病毒(BCV),导致牛犊严重肠炎。
  • 猫科动物冠状病毒(FCoV)可导致轻微炎症,和十分严重的猫科动物传染性腹膜炎(与FCoV相似的变种病毒)。
  • 两种狗冠状病毒(CCoV)(一种造成肠炎,另一种导致呼吸系统疾病)。
  • 火鸡冠状病毒(TCV)导致火鸡肠炎。
  • 可导致雪貂肠炎的冠状病毒
  • 死亡率很高的可导致欧洲幼兔肠道疾病和腹泻的冠状病毒。

註腳

  1. ^ 有近50%的普通感冒鼻病毒感染引起[99]

参考文献

  1. ^ Giaimo C. The Spiky Blob Seen Around the World. New York Times. 1 April 2020 [6 April 2020]. (原始内容存档于2 April 2020). 
  2. ^ 2017.012-015S. International Committee on Taxonomy of Viruses (ICTV). October 2018 [24 January 2020]. (原始内容 (xlsx)存档于14 May 2019). 
  3. ^ 3.0 3.1 ICTV Taxonomy history: Orthocoronavirinae. International Committee on Taxonomy of Viruses (ICTV). [24 January 2020]. 
  4. ^ Fan Y, Zhao K, Shi ZL, Zhou P. Bat Coronaviruses in China. Viruses. March 2019, 11 (3): 210. PMC 6466186可免费查阅. PMID 30832341. doi:10.3390/v11030210. 
  5. ^ Cherry J, Demmler-Harrison GJ, Kaplan SL, Steinbach WJ, Hotez PJ. Feigin and Cherry's Textbook of Pediatric Infectious Diseases. Elsevier Health Sciences. 2017: PT6615. ISBN 978-0-323-39281-5 (英语). 
  6. ^ 6.0 6.1 Woo PC, Huang Y, Lau SK, Yuen KY. Coronavirus genomics and bioinformatics analysis. Viruses. August 2010, 2 (8): 1804–20. PMC 3185738可免费查阅. PMID 21994708. doi:10.3390/v2081803. Coronaviruses possess the largest genomes [26.4 kb (ThCoV HKU12) to 31.7 kb (SW1)] among all known RNA viruses (Figure 1) [2,13,16]. 
  7. ^ 7.0 7.1 Tyrrell DA, Fielder M. Cold Wars: The Fight Against the Common Cold. Oxford University Press. 2002: 96. ISBN 978-0-19-263285-2 (英语). We looked more closely at the appearance of the new viruses and noticed that they had a kind of halo surrounding them. Recourse to a dictionary produced the Latin equivalent, corona, and so the name coronavirus was born. 
  8. ^ 8.0 8.1 Almeida JD, Berry DM, Cunningham CH, Hamre D, Hofstad MS, Mallucci L, McIntosh K, Tyrrell DA. Virology: Coronaviruses. Nature. November 1968, 220 (5168): 650. Bibcode:1968Natur.220..650.. doi:10.1038/220650b0. [T]here is also a characteristic "fringe" of projections 200 A long, which are rounded or petal shaped ... This appearance, recalling the solar corona, is shared by mouse hepatitis virus and several viruses recently recovered from man, namely strain B814, 229E and several others. 
  9. ^ Definition of Coronavirus by Merriam-Webster. Merriam-Webster. [24 March 2020]. (原始内容存档于23 March 2020). 
  10. ^ Definition of Corona by Merriam-Webster. Merriam-Webster. [24 March 2020]. (原始内容存档于24 March 2020). 
  11. ^ Sturman LS, Holmes KV. Lauffer MA, Maramorosch K , 编. The molecular biology of coronaviruses. Advances in Virus Research. 1983-01-01, 28: 35–112. ISBN 9780120398287. PMC 7131312可免费查阅. PMID 6362367. doi:10.1016/s0065-3527(08)60721-6. [T]hese viruses displayed a characteristic fringe of large, distinctive, petal-shaped peplomers or spikes which resembled a crown, like the corona spinarum in religious art; hence the name coronaviruses. 
  12. ^ 12.0 12.1 Lalchhandama K. The chronicles of coronaviruses: the bronchitis, the hepatitis and the common cold. Science Vision. 2020, 20 (1): 43–53. doi:10.33493/scivis.20.01.04 (英语). 
  13. ^ Carstens EB. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009). Archives of Virology. 2010, 155 (1): 133–46. PMC 7086975可免费查阅. PMID 19960211. doi:10.1007/s00705-009-0547-x. 
  14. ^ Estola T. Coronaviruses, a New Group of Animal RNA Viruses. Avian Diseases. 1970, 14 (2): 330–336. ISSN 0005-2086. JSTOR 1588476. PMID 4316767. doi:10.2307/1588476. 
  15. ^ Fabricant J. The Early History of Infectious Bronchitis. Avian Diseases. 1998, 42 (4): 648–650. ISSN 0005-2086. JSTOR 1592697. PMID 9876830. doi:10.2307/1592697. 
  16. ^ Bushnell LD, Brandly CA. Laryngotracheitis in chicks. Poultry Science. 1933, 12 (1): 55–60. doi:10.3382/ps.0120055 (英语). 
  17. ^ Decaro N. Gammacoronavirus‡: Coronaviridae. Tidona C, Darai G (编). The Springer Index of Viruses. Springer: 403–413. 2011. ISBN 978-0-387-95919-1. PMC 7176155可免费查阅. doi:10.1007/978-0-387-95919-1_58 (英语).  |entry=|title=只需其一 (帮助)
  18. ^ 18.0 18.1 McIntosh K. Coronaviruses: A Comparative Review. Arber W, Haas R, Henle W, Hofschneider PH, Jerne NK, Koldovský P, Koprowski H, Maaløe O, Rott R (编). Current Topics in Microbiology and Immunology / Ergebnisse der Mikrobiologie und Immunitätsforschung. Current Topics in Microbiology and Immunology / Ergebnisse der Mikrobiologie und Immunitätsforschung. Berlin, Heidelberg: Springer. 1974: 87. ISBN 978-3-642-65775-7. doi:10.1007/978-3-642-65775-7_3 (英语). 
  19. ^ Kahn JS, McIntosh K. History and recent advances in coronavirus discovery. The Pediatric Infectious Disease Journal. November 2005, 24 (11 Suppl): S223–7, discussion S226. PMID 16378050. doi:10.1097/01.inf.0000188166.17324.60. 
  20. ^ Mahase E. The BMJ in 1965. BMJ. April 2020, 369: m1547. PMID 32299810. doi:10.1136/bmj.m1547. 
  21. ^ 21.0 21.1 Kendall EJ, Bynoe ML, Tyrrell DA. Virus isolations from common colds occurring in a residential school. British Medical Journal. July 1962, 2 (5297): 82–6. PMC 1925312可免费查阅. PMID 14455113. doi:10.1136/bmj.2.5297.82. 
  22. ^ Richmond C. David Tyrrell. BMJ : British Medical Journal. 2005-06-18, 330 (7505): 1451. PMC 558394可免费查阅. doi:10.1136/bmj.330.7505.1451. 
  23. ^ Obituary Notices: Malcom Byone. British Medical Journal. 1969-06-28, 2 (5660): 827–829. doi:10.1136/bmj.2.5660.827 (英语). 
  24. ^ Tyrrell DA, Bynoe ML. Cultivation of a Novel Type of Common-Cold Virus in Organ Cultures. British Medical Journal. June 1965, 1 (5448): 1467–70. PMC 2166670可免费查阅. PMID 14288084. doi:10.1136/bmj.1.5448.1467. 
  25. ^ 25.0 25.1 Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract. Proceedings of the Society for Experimental Biology and Medicine. January 1966, 121 (1): 190–3. PMID 4285768. doi:10.3181/00379727-121-30734. 
  26. ^ The woman who discovered the first coronavirus. 
  27. ^ Almeida J. June Almeida (née Hart). BMJ. 2008-06-26, 336 (7659): 1511.1–1511. ISSN 0959-8138. PMC 2440895可免费查阅. doi:10.1136/bmj.a434 (英语). 
  28. ^ Almeida JD, Tyrrell DA. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. The Journal of General Virology. April 1967, 1 (2): 175–8. PMID 4293939. doi:10.1099/0022-1317-1-2-175. 
  29. ^ McIntosh K, Becker WB, Chanock RM. Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease. Proceedings of the National Academy of Sciences of the United States of America. December 1967, 58 (6): 2268–73. Bibcode:1967PNAS...58.2268M. PMC 223830可免费查阅. PMID 4298953. doi:10.1073/pnas.58.6.2268. 
  30. ^ McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proceedings of the National Academy of Sciences of the United States of America. April 1967, 57 (4): 933–40. Bibcode:1967PNAS...57..933M. PMC 224637可免费查阅. PMID 5231356. doi:10.1073/pnas.57.4.933. 
  31. ^ Times, Harold M. Schmeck Jr Special To the New York. Six Newly Discovered Viruses May Explain Cold; Strains Are Similar to Germ That Causes a Bronchial Infection in Chickens Believed to Be New Group. The New York Times. 1967-05-05 [2020-04-25]. ISSN 0362-4331 (美国英语). 
  32. ^ Corman VM, Jores J, Meyer B, Younan M, Liljander A, Said MY, et al. Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013. Emerging Infectious Diseases. August 2014, 20 (8): 1319–22. ISBN 978-1-4899-7447-1. PMC 7122465可免费查阅. PMID 25075637. doi:10.1007/978-1-4899-7448-8_10. The other OC strains and B814 that could not be adapted to mouse brain resisted adaptation to cell culture as well; these distinct viruses have since been lost and may actually have been rediscovered recently. 
  33. ^ 33.0 33.1 33.2 33.3 33.4 de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE, Holmes KV, Perlman S, Poon L, Rottier PJ, Talbot PJ, Woo PC, Ziebuhr J. Family Coronaviridae. King AM, Lefkowitz E, Adams MJ, Carstens EB, International Committee on Taxonomy of Viruses, International Union of Microbiological Societies. Virology Division (编). Ninth Report of the International Committee on Taxonomy of Viruses. Oxford: Elsevier. 2011: 806–28. ISBN 978-0-12-384684-6. doi:10.1016/B978-0-12-384684-6.00068-9. 
  34. ^ 34.0 34.1 Pasley, James. How SARS terrified the world in 2003, infecting more than 8,000 people and killing 774. Business Insider. 2020年2月21日. 
  35. ^ 35.0 35.1 Middle East respiratory syndrome coronavirus (MERS-CoV) – Saudi Arabia. World Health Organization. 2015-03-10 [2015-03-12]. (原始内容存档于2015-03-16). 
  36. ^ 36.0 36.1 WHO Coronavirus Disease (COVID-19) Dashboard. World Health organization. 2021-01-28. 
  37. ^ Goldsmith CS, Tatti KM, Ksiazek TG, Rollin PE, Comer JA, Lee WW, et al. Ultrastructural characterization of SARS coronavirus. Emerging Infectious Diseases. February 2004, 10 (2): 320–6. PMC 3322934可免费查阅. PMID 15030705. doi:10.3201/eid1002.030913. Virions acquired an envelope by budding into the cisternae and formed mostly spherical, sometimes pleomorphic, particles that averaged 78 nm in diameter (Figure 1A). 
  38. ^ 38.0 38.1 38.2 Masters PS. The molecular biology of coronaviruses. Advances in Virus Research. 2006, 66: 193–292. ISBN 9780120398690. PMC 7112330可免费查阅. PMID 16877062. doi:10.1016/S0065-3527(06)66005-3. 
  39. ^ 39.0 39.1 Lalchhandama K. The chronicles of coronaviruses: the electron microscope, the doughnut, and the spike. Science Vision. 2020, 20 (2): 78–92. doi:10.33493/scivis.20.02.03 (英语). 
  40. ^ Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, et al. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. Journal of Virology. August 2006, 80 (16): 7918–28. PMC 1563832可免费查阅. PMID 16873249. doi:10.1128/JVI.00645-06. Particle diameters ranged from 50 to 150 nm, excluding the spikes, with mean particle diameters of 82 to 94 nm; Also See Figure 1 for double shell. 
  41. ^ 41.00 41.01 41.02 41.03 41.04 41.05 41.06 41.07 41.08 41.09 41.10 41.11 41.12 Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Maier HJ, Bickerton E, Britton P (编). Coronaviruses. Methods in Molecular Biology 1282. Springer. 2015: 1–23. ISBN 978-1-4939-2438-7. PMC 4369385可免费查阅. PMID 25720466. doi:10.1007/978-1-4939-2438-7_1. See section: Virion Structure. 
  42. ^ Lai MM, Cavanagh D. The molecular biology of coronaviruses. Advances in Virus Research. 1997, 48: 1–100. ISBN 9780120398485. PMC 7130985可免费查阅. PMID 9233431. doi:10.1016/S0065-3527(08)60286-9. 
  43. ^ Cavanagh D, Mawditt K, Sharma M, Drury SE, Ainsworth HL, Britton P, Gough RE. Schmidt A, Weber O, Wolff MH , 编. Detection of a coronavirus from turkey poults in Europe genetically related to infectious bronchitis virus of chickens. Avian Pathology. Birkhäuser Advances in Infectious Diseases BAID (Birkhäuser). August 2001, 30 (4): 355–68. ISBN 978-3-7643-7339-9. PMC 7123520可免费查阅. PMID 19184921. doi:10.1007/3-7643-7339-3_1. 
  44. ^ Naskalska A, Dabrowska A, Szczepanski A, Milewska A, Jasik KP, Pyrc K. Membrane Protein of Human Coronavirus NL63 Is Responsible for Interaction with the Adhesion Receptor. Journal of Virology. October 2019, 93 (19). PMC 6744225可免费查阅. PMID 31315999. doi:10.1128/JVI.00355-19. 
  45. ^ Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. A structural analysis of M protein in coronavirus assembly and morphology. Journal of Structural Biology. April 2011, 174 (1): 11–22. PMC 4486061可免费查阅. PMID 21130884. doi:10.1016/j.jsb.2010.11.021. See Figure 10. 
  46. ^ Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virology Journal. May 2019, 16 (1): 69. PMC 6537279可免费查阅. PMID 31133031. doi:10.1186/s12985-019-1182-0. 
  47. ^ Schoeman, Dewald; Fielding, Burtram C. Coronavirus envelope protein: current knowledge. Virology Journal. 2019, 16 (1). ISSN 1743-422X. doi:10.1186/s12985-019-1182-0. 
  48. ^ Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. A structural analysis of M protein in coronavirus assembly and morphology. Journal of Structural Biology. April 2011, 174 (1): 11–22. PMC 4486061可免费查阅. PMID 21130884. doi:10.1016/j.jsb.2010.11.021. 
  49. ^ Zeng Q, Langereis MA, van Vliet AL, Huizinga EG, de Groot RJ. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proceedings of the National Academy of Sciences of the United States of America. July 2008, 105 (26): 9065–9. PMC 2449365可免费查阅. PMID 18550812. doi:10.1073/pnas.0800502105. 
  50. ^ Chang CK, Hou MH, Chang CF, Hsiao CD, Huang TH. The SARS coronavirus nucleocapsid protein—forms and functions. Antiviral Research. March 2014, 103: 39–50. PMC 7113676可免费查阅. PMID 24418573. doi:10.1016/j.antiviral.2013.12.009. See Figure 4c. 
  51. ^ Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. Journal of Molecular Biology. August 2003, 331 (5): 991–1004. PMC 7159028可免费查阅. PMID 12927536. doi:10.1016/S0022-2836(03)00865-9. See Figure 1. 
  52. ^ Simmons G, Zmora P, Gierer S, Heurich A, Pöhlmann S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Research. December 2013, 100 (3): 605–14. PMC 3889862可免费查阅. PMID 24121034. doi:10.1016/j.antiviral.2013.09.028. See Figure 2. 
  53. ^ Masters PS. The molecular biology of coronaviruses. Advances in Virus Research (Academic Press). 2006-01-01, 66: 193–292. ISBN 9780120398690. PMC 7112330可免费查阅. PMID 16877062. doi:10.1016/S0065-3527(06)66005-3. See Figure 8. 
  54. ^ Coronaviridae. ViralZone. 
  55. ^ Sexton NR, Smith EC, Blanc H, Vignuzzi M, Peersen OB, Denison MR. Homology-Based Identification of a Mutation in the Coronavirus RNA-Dependent RNA Polymerase That Confers Resistance to Multiple Mutagens. Journal of Virology. August 2016, 90 (16): 7415–28. PMC 4984655可免费查阅. PMID 27279608. doi:10.1128/JVI.00080-16. Finally, these results, combined with those from previous work (33, 44), suggest that CoVs encode at least three proteins involved in fidelity (nsp12-RdRp, nsp14-ExoN, and nsp10), supporting the assembly of a multiprotein replicase-fidelity complex, as described previously (38). 
  56. ^ 56.0 56.1 Payne S. Chapter 17 - Family Coronaviridae. Viruses. Academic Press. 2017-01-01: 149–158. ISBN 978-0-12-803109-4. doi:10.1016/B978-0-12-803109-4.00017-9 (英语). 
  57. ^ Su S, Wong G, Shi W, Liu J, Lai AC, Zhou J, Liu W, Bi Y, Gao GF. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology. June 2016, 24 (6): 490–502. PMC 7125511可免费查阅. PMID 27012512. doi:10.1016/j.tim.2016.03.003. 
  58. ^ Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Maier HJ, Bickerton E, Britton P (编). Coronaviruses. Methods in Molecular Biology 1282. Springer. 2015: 1–23. ISBN 978-1-4939-2438-7. PMC 4369385可免费查阅. PMID 25720466. doi:10.1007/978-1-4939-2438-7_1. See section: Coronavirus Life Cycle—Assembly and Release 
  59. ^ Masters PS. The molecular biology of coronaviruses. Advances in Virus Research (Academic Press). 1 January 2006, 66: 193–292. ISBN 978-0120398690. PMC 7112330可免费查阅. PMID 16877062. doi:10.1016/S0065-3527(06)66005-3. Nevertheless, the interaction between S protein and receptor remains the principal, if not sole, determinant of coronavirus host species range and tissue tropism. 
  60. ^ Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nature Reviews. Microbiology. March 2019, 17 (3): 181–92. PMC 7097006可免费查阅. PMID 30531947. doi:10.1038/s41579-018-0118-9. Different SARS-CoV strains isolated from several hosts vary in their binding affinities for human ACE2 and consequently in their infectivity of human cells 76, 78 (Fig. 6b) 
  61. ^ 61.0 61.1 Decaro N. Tidona C, Darai G , 编. Alphacoronavirus. Springer. 2011: 371–383. ISBN 978-0-387-95919-1. PMC 7176201可免费查阅. doi:10.1007/978-0-387-95919-1_56 (英语).  |journal=被忽略 (帮助)
  62. ^ Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. September 2005, 309 (5742): 1864–68. Bibcode:2005Sci...309.1864L. PMID 16166518. doi:10.1126/science.1116480. 
  63. ^ International Committee on Taxonomy of Viruses. ICTV Master Species List 2009—v10 (xls). 24 August 2010. 
  64. ^ Bukhari, Khulud; Mulley, Geraldine; Gulyaeva, Anastasia A.; Zhao, Lanying; Shu, Guocheng; Jiang, Jianping; Neuman, Benjamin W. Description and initial characterization of metatranscriptomic nidovirus-like genomes from the proposed new family Abyssoviridae, and from a sister group to the Coronavirinae, the proposed genus Alphaletovirus. Virology. 2018, 524: 160–171. ISSN 0042-6822. doi:10.1016/j.virol.2018.08.010. 
  65. ^ Gideon J Mordecai, Kristina M Miller, Emiliano Di Cicco, Angela D Schulze, Karia H Kaukinen, Tobi J Ming, Shaorong Li, Amy Tabata, Amy Teffer, David A Patterson, Hugh W Ferguson, Curtis A Suttle. Endangered wild salmon infected by newly discovered viruses (PDF). eLIFE. 2019, 8: e47615. doi:10.7554/eLife.47615.001. 
  66. ^ Wertheim JO, Chu DK, Peiris JS, Kosakovsky Pond SL, Poon LL. A case for the ancient origin of coronaviruses. Journal of Virology. June 2013, 87 (12): 7039–45. PMC 3676139可免费查阅. PMID 23596293. doi:10.1128/JVI.03273-12. Alphacoronaviruses and betacoronaviruses are found exclusively in mammals, whereas gammacoronaviruses and deltacoronaviruses primarily infect birds. 
  67. ^ Nextstrain, phylogenetic tree of Beta-CoV
  68. ^ 马亦林. 冠状病毒的特性及其致病性研究进展. 中华临床感染病杂志. 2018, 11 (4): 305–315 [2020-01-21]. doi:10.3760/cma.j.issn.1674-2397.2018.04.011. (原始内容存档于2020-05-06). 
  69. ^ Cruz JL, Sola I, Becares M, Alberca B, Plana J, Enjuanes L, Zuñiga S. Coronavirus gene 7 counteracts host defenses and modulates virus virulence. PLoS Pathogens. June 2011, 7 (6): e1002090. PMC 3111541可免费查阅. PMID 21695242. doi:10.1371/journal.ppat.1002090. 
  70. ^ Cruz JL, Becares M, Sola I, Oliveros JC, Enjuanes L, Zúñiga S. Alphacoronavirus protein 7 modulates host innate immune response. Journal of Virology. September 2013, 87 (17): 9754–67. PMC 3754097可免费查阅. PMID 23824792. doi:10.1128/JVI.01032-13. 
  71. ^ Gorbalenya, Alexander E. Severe acute respiratory syndrome-related coronavirus – The species and its viruses, a statement of the Coronavirus Study Group. bioRxiv. 2020-02-11: 2020.02.07.937862 [2020-02-12]. doi:10.1101/2020.02.07.937862. (原始内容存档于2020-02-11) (英语). 
  72. ^ Jon Cohen,"Mining coronavirus genomes for clues to the outbreak’s origins"[1]页面存档备份,存于互联网档案馆),AAAS-Science,Jan.31,2020,6:20PM.
  73. ^ "Taxonomy browser (Munia coronavirus HKU13)"[2]页面存档备份,存于互联网档案馆),NCBI taxonomy database,retrieved Feb 11, 2020.
  74. ^ "Taxonomy browser (Thrush coronavirus HKU12)"[3]页面存档备份,存于互联网档案馆),NCBI taxonomy database,retrieved Feb 11, 2020.
  75. ^ Wertheim JO, Chu DK, Peiris JS, Kosakovsky Pond SL, Poon LL. A case for the ancient origin of coronaviruses. Journal of Virology. June 2013, 87 (12): 7039–45. PMC 3676139可免费查阅. PMID 23596293. doi:10.1128/JVI.03273-12. 
  76. ^ Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. Journal of Virology. April 2012, 86 (7): 3995–4008. PMC 3302495可免费查阅. PMID 22278237. doi:10.1128/JVI.06540-11. 
  77. ^ 77.0 77.1 Forni D, Cagliani R, Clerici M, Sironi M. Molecular Evolution of Human Coronavirus Genomes. Trends in Microbiology. January 2017, 25 (1): 35–48. PMC 7111218可免费查阅. PMID 27743750. doi:10.1016/j.tim.2016.09.001. Specifically, all HCoVs are thought to have a bat origin, with the exception of lineage A beta-CoVs, which may have reservoirs in rodents [2]. 
  78. ^ 78.0 78.1 Tao, Ying; Shi, Mang; Chommanard, Christina; Queen, Krista; Zhang, Jing; Markotter, Wanda; Kuzmin, Ivan V.; Holmes, Edward C.; Tong, Suxiang; Perlman, Stanley. Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History. Journal of Virology. 2017, 91 (5). ISSN 0022-538X. doi:10.1128/JVI.01953-16. 
  79. ^ Gouilh MA, Puechmaille SJ, Gonzalez JP, Teeling E, Kittayapong P, Manuguerra JC. SARS-Coronavirus ancestor's foot-prints in South-East Asian bat colonies and the refuge theory. Infection, Genetics and Evolution. October 2011, 11 (7): 1690–702. PMC 7106191可免费查阅. PMID 21763784. doi:10.1016/j.meegid.2011.06.021. 
  80. ^ Cui J, Han N, Streicker D, Li G, Tang X, Shi Z, et al. Evolutionary relationships between bat coronaviruses and their hosts. Emerging Infectious Diseases. October 2007, 13 (10): 1526–32. PMC 2851503可免费查阅. PMID 18258002. doi:10.3201/eid1310.070448. 
  81. ^ Forni D, Cagliani R, Clerici M, Sironi M. Molecular Evolution of Human Coronavirus Genomes. Trends in Microbiology. January 2017, 25 (1): 35–48. PMC 7111218可免费查阅. PMID 27743750. doi:10.1016/j.tim.2016.09.001. 
  82. ^ Lau SK, Woo PC, Li KS, Tsang AK, Fan RY, Luk HK, et al. Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A. Journal of Virology. March 2015, 89 (6): 3076–92. PMC 4337523可免费查阅. PMID 25552712. doi:10.1128/JVI.02420-14. 
  83. ^ Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, et al. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. Journal of Virology. February 2005, 79 (3): 1595–604. PMC 544107可免费查阅. PMID 15650185. doi:10.1128/jvi.79.3.1595-1604.2005. 
  84. ^ Bidokhti MR, Tråvén M, Krishna NK, Munir M, Belák S, Alenius S, Cortey M. Evolutionary dynamics of bovine coronaviruses: natural selection pattern of the spike gene implies adaptive evolution of the strains. The Journal of General Virology. September 2013, 94 (Pt 9): 2036–2049. PMID 23804565. doi:10.1099/vir.0.054940-0. See Table 1 
  85. ^ Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, et al. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. Journal of Virology. February 2005, 79 (3): 1595–604. PMC 544107可免费查阅. PMID 15650185. doi:10.1128/JVI.79.3.1595-1604.2005. However, it is tempting to speculate about an alternative hypothesis, that the 1889-1890 pandemic may have been the result of interspecies transmission of bovine coronaviruses to humans, resulting in the subsequent emergence of HCoV-OC43. 
  86. ^ Liu P, Shi L, Zhang W, He J, Liu C, Zhao C, et al. Prevalence and genetic diversity analysis of human coronaviruses among cross-border children. Virology Journal. November 2017, 14 (1): 230. PMC 5700739可免费查阅. PMID 29166910. doi:10.1186/s12985-017-0896-0 (英语). 
  87. ^ Forgie S, Marrie TJ. Healthcare-associated atypical pneumonia. Seminars in Respiratory and Critical Care Medicine. February 2009, 30 (1): 67–85. PMID 19199189. doi:10.1055/s-0028-1119811. 
  88. ^ King, Anthony. An uncommon cold. New Scientist. 2020, 246 (3280): 32–35. ISSN 0262-4079. doi:10.1016/S0262-4079(20)30862-9. 
  89. ^ Wang, Chen; Horby, Peter W; Hayden, Frederick G; Gao, George F. A novel coronavirus outbreak of global health concern. The Lancet. 2020-02, 395 (10223): 470–473. PMC 7135038可免费查阅. PMID 31986257. doi:10.1016/S0140-6736(20)30185-9 (英语). 
  90. ^ Lau, Eric HY; Hsiung, C Agnes; Cowling, Benjamin J; Chen, Chang-Hsun; Ho, Lai-Ming; Tsang, Thomas; Chang, Chiu-Wen; Donnelly, Christl A; Leung, Gabriel M. A comparative epidemiologic analysis of SARS in Hong Kong, Beijing and Taiwan. BMC Infectious Diseases. 2010-12, 10 (1): 50. ISSN 1471-2334. PMC 2846944可免费查阅. PMID 20205928. doi:10.1186/1471-2334-10-50 (英语). 
  91. ^ 91.0 91.1 Old age, sepsis tied to poor COVID-19 outcomes, death. CIDRAP英语CIDRAP, University of Minnesota. [29 March 2020]. 
  92. ^ Karlberg, J. Do Men Have a Higher Case Fatality Rate of Severe Acute Respiratory Syndrome than Women Do?. American Journal of Epidemiology. 2004-02-01, 159 (3): 229–231. ISSN 0002-9262. PMC 7110237可免费查阅. PMID 14742282. doi:10.1093/aje/kwh056 (英语). 
  93. ^ 93.0 93.1 Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. World Health Organization. April 2004. 
  94. ^ 94.0 94.1 94.2 94.3 94.4 Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) (PDF). World Health Organization. February 2020. 
  95. ^ Oh, Myoung-don; Park, Wan Beom; Park, Sang-Won; Choe, Pyoeng Gyun; Bang, Ji Hwan; Song, Kyoung-Ho; Kim, Eu Suk; Kim, Hong Bin; Kim, Nam Joong. Middle East respiratory syndrome: what we learned from the 2015 outbreak in the Republic of Korea. The Korean Journal of Internal Medicine. 2018-02-27, 33 (2): 233–246. ISSN 1226-3303. PMC 5840604可免费查阅. PMID 29506344. doi:10.3904/kjim.2018.031 (英语). 
  96. ^ Ñamendys-Silva, Silvio A. Respiratory support for patients with COVID-19 infection. The Lancet Respiratory Medicine. 2020-04, 8 (4): e18. PMC 7129706可免费查阅. PMID 32145829. doi:10.1016/S2213-2600(20)30110-7 (英语). 
  97. ^ Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and Sources of Endemic Human Coronaviruses. Advances in Virus Research. 2018, 100: 163–188. ISBN 978-0-12-815201-0. PMID 29551135. doi:10.1016/bs.aivir.2018.01.001. 
  98. ^ Pelczar. Microbiology: Application Based Approach. 2010: 656. ISBN 978-0-07-015147-5. (原始内容存档于16 May 2016). 
  99. ^ Cecil RL, Goldman L, Schafer AI. Goldman's Cecil Medicine, Expert Consult Premium Edition 24. Elsevier Health Sciences. 2012: 2103–. ISBN 978-1-4377-1604-7. (原始内容存档于4 May 2016). 
  100. ^ Charlton CL, Babady E, Ginocchio CC, Hatchette TF, Jerris RC, Li Y, et al. Practical Guidance for Clinical Microbiology Laboratories: Viruses Causing Acute Respiratory Tract Infections. Clinical Microbiology Reviews. January 2019, 32 (1). PMC 6302358可免费查阅. PMID 30541871. doi:10.1128/CMR.00042-18. See Figure 1. 
  101. ^ Monto AS, DeJonge P, Callear AP, Bazzi LA, Capriola S, Malosh RE, et al. Coronavirus occurrence and transmission over 8 years in the HIVE cohort of households in Michigan. The Journal of Infectious Diseases. April 2020, 222: 9–16. PMC 7184402可免费查阅. PMID 32246136. doi:10.1093/infdis/jiaa161. 
  102. ^ Abdul-Rasool S, Fielding BC. Understanding Human Coronavirus HCoV-NL63. The Open Virology Journal. May 2010, 4: 76–84. PMC 2918871可免费查阅. PMID 20700397. doi:10.2174/1874357901004010076. 
  103. ^ Pasley, James. How SARS terrified the world in 2003, infecting more than 8,000 people and killing 774. Business Insider. [2020-11-08]. 
  104. ^ Doucleef M. Scientists Go Deep On Genes Of SARS-Like Virus. Associated Press. 26 September 2012 [27 September 2012]. (原始内容存档于27 September 2012). 
  105. ^ Falco M. New SARS-like virus poses medical mystery. CNN Health. 24 September 2012 [16 March 2013]. (原始内容存档于1 November 2013). 
  106. ^ The Editorial Board. Is the World Ready for the Coronavirus?—Distrust in science and institutions could be a major problem if the outbreak worsens. New York Times. 29 January 2020 [30 January 2020]. 
  107. ^ WHO Statement Regarding Cluster of Pneumonia Cases in Wuhan, China. www.who.int. 9 January 2020 [10 January 2020]. (原始内容存档于14 January 2020) (英语). 
  108. ^ Laboratory testing of human suspected cases of novel coronavirus (nCoV) infection. Interim guidance, 10 January 2020 (PDF). [14 January 2020]. (原始内容 (PDF)存档于20 January 2020). 
  109. ^ Novel Coronavirus 2019, Wuhan, China. www.cdc.gov (CDC). 23 January 2020 [23 January 2020]. (原始内容存档于20 January 2020). 
  110. ^ 2019 Novel Coronavirus infection (Wuhan, China): Outbreak update. Canada.ca. 21 January 2020. 

參見

外部連結