拉普拉斯展开

维基百科,自由的百科全书
跳转至: 导航搜索
线性代数
\mathbf{A} = \begin{bmatrix}
1 & 2 \\
3 & 4 \end{bmatrix}
向量 · 矩阵  · 行列式  · 线性空间

数学中,拉普拉斯展开(或称拉普拉斯公式)是一个关于行列式的展开式。将一个n×n矩阵B的行列式进行拉普拉斯展开,即是将其表示成关于矩阵B的某一行(或某一列)的n个元素的(n-1)×(n-1)余子式。行列式的拉普拉斯展开一般被简称为行列式按某一行(或按某一列的展开。由于矩阵Bnn列,它的拉普拉斯展开一共有2n种。拉普拉斯展开的推广称为拉普拉斯定理,是将一行的元素推广为关于k行的一切子式。它们的每一项和对应的代数余子式的乘积之和仍然是B的行列式。研究一些特定的展开可以减少对于矩阵B之行列式的计算,拉普拉斯公式也常用于一些抽象的推导中。

公式[编辑]

B = (bij)是一个n × n矩阵。B关于第i行第j列的余子式Mij是指B中去掉第i行第j列后得到的n−1阶子矩阵的行列式。有时可以简称为B的(ij余子式B的(ij代数余子式Cij是指B的(ij)余子式Mij与(−1)i + j的乘积:Cij = (−1)i + j Mij

拉普拉斯展开最初由范德蒙德给出,为如下公式:对于任意i,j ∈ {1, 2, ...,n}:

\begin{align}|B| & {} = b_{i1} C_{i1} + b_{i2} C_{i2} + \cdots + b_{in} C_{in} \\ & {} = b_{1j} C_{1j} + b_{2j} C_{2j} + \cdots + b_{nj} C_{nj}. \end{align}

例子[编辑]

考虑以下的矩阵:

 B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}

这个矩阵的行列式可以用沿着第一行的拉普拉斯展开式来计算:

 |B| = 1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \cdot \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}
 {} = 1 \cdot (-3) - 2 \cdot (-6) + 3 \cdot (-3) = 0

也可以用沿着第二列的拉普拉斯展开式来计算:

 |B| = -2 \cdot \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 5 \cdot \begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} - 8 \cdot \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix}
 {} = -2 \cdot (-6) + 5 \cdot (-12) - 8 \cdot (-6) = 0

很容易看到这个结果是正确的:这个矩阵是奇异的,因为它的第一列和第三列的和与第二列成比例,因此它的行列式是零。

证明[编辑]

B是一个n × n的矩阵,ij ∈ {1, 2, ..., n}。为了明确起见,将M_{ij}的系数记为(a_{st}),其中1 ≤ s,t ≤ n − 1.

考虑B的行列式|B|中的每个含有b_{ij}的项,它的形式为:

\sgn \tau\,b_{1,\tau(1)} \cdots b_{i,j} \cdots b_{n,\tau(n)}
 = \sgn \tau\,b_{ij} a_{1,\sigma(1)} \cdots a_{n-1,\sigma(n-1)}

其中的置换τ ∈ Sn使得τ(i) = j,而σ ∈ Sn-1是唯一的将除了i以外的其他元素都映射到与τ相同的像上去的置换。显然,每个τ都对应着唯一的σ,每一个σ也对应着唯一的τ。因此我们创建了Sn − 1与{τ ∈ Sn : τ(i) = j}之间的一个双射。置换τ可以经过如下方式从σ得到:

定义σ' ∈ Sn使得对于1 ≤ kn − 1,σ'(k) = σ(k)并且σ'(n) = n,于是sgn σ' = sgn σ。然后

\tau\,= (n,n-1,\ldots,i)\,\sigma'\,(j,j+1,\ldots,n)

由于两个轮换分别可以被写成n − in − j对换,因此

\sgn\tau\,= (-1)^{2n-(i+j)} \sgn\sigma'\,= (-1)^{i+j} \sgn\sigma

因此映射σ ↔ τ是双射。由此,

\sum_{\tau \in S_n:\tau(i)=j} \sgn \tau\,b_{1,\tau(1)} \cdots b_{n,\tau(n)}
= \sum_{\sigma \in S_{n-1}} (-1)^{i+j}\sgn\sigma\, b_{ij}
a_{1,\sigma(1)} \cdots a_{n-1,\sigma(n-1)}
=\ b_{ij} (-1)^{i+j} |M_{ij}|,

从而拉普拉斯展开成立。

拉普拉斯定理[编辑]

拉普拉斯在1772年的论文中给出了行列式展开的一般形式,现在称为拉普拉斯定理。拉普拉斯定理建立在子式和余子式的基础上,说明了如果将B关于某k行的每一个子式和对应的代数余子式的乘积加起来,那么得到的仍然是B的行列式。定理的证明与按一行(一列)展开的情况一样,都是通过建立置换间的双射来证明两者相等。

参考来源[编辑]