支链α-酮酸脱氢酶复合物

本页使用了标题或全文手工转换
维基百科,自由的百科全书

支链α-酮酸脱氢酶复合物(branched-chain α-ketoacid dehydrogenase complex,BCKDC)是一种在线粒体内膜中找到的酶之多次单元复合物(multi-subunit complex)。[1] 这种酶复合物催化具支链的短链α-酮酸的氧化脱羧反应。BCKDC是α-酮酸脱氢酶复合体家族内的成员,包括丙酮酸脱氢酶复合体(pyruvate dehydrogenase)和α-酮戊二酸脱氢酶复合体(α-ketoglutarate dehydrogenase),是三羧酸循环具有重要功能的酶。

辅助因子[编辑]

这个复合物的需要下列5个辅因子(cofactor):

图1: 支链α-酮酸脱氢酶复合物所催化的全反应

生物上的功能[编辑]

在动物组织中,BCKDC催化不可逆步骤[2] ,分解代谢的支链氨基酸,即L-异亮氨酸,L-缬氨酸和L-亮氨酸及其衍生物(分别是L-α-酮-β-甲基戊酸酯,α-酮异戊酸和α-酮异己酸盐)。[3][4][5] 在细菌中,这种酶参与的支链、长链脂肪酸的合成;[6]在植物中,这种酶是参与合成支链、长链的

BCKDC催化的分解代谢之全反应示于图1

结构[编辑]

BCKDC的酶催化机制很大程度上取决于这个大型酶复合体的精细结构。这种酶复合物是由三个催化次单元组成: α-酮酸脱氢酶(alpha-ketoacid dehydrogenase)(E1部分)二氢硫辛酸转乙酰基酶(dihydrolipoyl transacylase) (E2部分),和二氢硫辛酰胺脱氢酶(dihydrolipoamide dehydrogenase)(E3部分)。在人体中的BCKDC核心中,有24个E2部分以八面体对称排列。[7]24 E2次单元聚合物分两部分,12个E1α2β2四聚体和6个E3同二聚体以非共价方式结合。除了E1/E3-结合区域,在E2次单元上,有2个其他重要的结构区域:

(i)以该蛋白质的氨基末端部分的硫辛酰-轴承结构域(lipoyl-bearing domain)

(ii)在蛋白质羧基端的内核区域(inner-core domain)。

图2:这是硫辛酰基区域如何摆荡的概图。注意,硫辛酰区域是以共价结合于E2BCKDC的次单元上,但可自由在E1、E2和E3次单元间摆荡。由"机制"一节提到,硫辛酰基可自由在BCKDC的三个活性区位上自由摆动,在催化酵素复合物的活性上扮演了重要角色。[8]

内核区域是由两个区间片段(连接子)连接到E2次单元的其他两个区域。[9]内核区域对形成酶复合物的低聚核(oligomeric core)和催化酰基转移酶的反应是必须的(由“机制”一节中所示)。[10] E2的硫辛酰区域可借由上述提到连结子的弹性构像,使其在组装好的BCKDC上之E1、E2和E3次单元的活性区位间自由摆动。(参照图2[11][12]因此就功能及结构方面来说,E2部分在BCKDC催化的整个反应扮演着重要的角色。

每个子单元的作用如下

E1次单元[编辑]

E1采用硫胺素焦磷酸(TPP)作为催化的辅助因子。 E1催化α-酮酸的脱羧反应和后来的硫辛酰结构部分,以共价结合于E2次单元的还原反应(另一催化辅因子)。

E2次单元[编辑]

E2催化酰基(acyl group)从硫辛酰部分转至的辅酶A(化学计量的辅因子,stoichiometric cofactor)。[13]

E3次单元[编辑]

在E33部分是黄素蛋白(flavoprotein),且其可作为氧化剂并利用FAD(催化辅因子)重新氧化还原E2次单元上的硫辛酰硫部分(lipoyl sulfur residues);然后FAD将这些质子和电子转移到NAD+(化学计量的辅因子,stoichiometric cofactor)以完成反应循环。

图3: α-酮异戊酸结合TPP,然后进行脱羧
图4: 将2 -甲基丙醇-TPP被氧化形成乙酰基,且同时被转移到E2中的硫辛酰辅酶。注意,TPP重新生成。
图5:酰基转移到辅酶A
图6:FAD辅酶氧化硫辛酰部分

机制[编辑]

如前面提到的,在哺乳类动物体内的BCKDC主要功能是,催化支链氨基酸分解代谢反应中的不可逆步骤。然而,BCKDC具有相对广泛的特异性,在比较比例(comparable rates)及对支链氨基酸的底物之Km值相似情况下,也可氧化4-甲硫基-2-氧代丁酸(4-methylthio-2-oxobutyrate)和2-氧代丁酸(2-oxobutyrate)。[14]BCKDC也可氧化丙酮酸(pyruvate),但这种缓慢速度下,副反应只小具生理意义。[15][16]

其反应机理如下所示。[17] 请注意,任何一种支链 α-酮酸可以作为起始原料;在这个例子中,α-酮异戊酸任意地被选作为BCKDC的底物。

注意:步骤1和2在E1区域发生。

步骤1: α-酮异戊酸结合TPP,然后进行脱羧反应(decarboxylated),适当的箭头推动机构示于图3


步骤2:将2-甲基丙醇-TPP(2-methylpropanol-TPP)被氧化形成乙酰基(acetyl group)而被同时转移到E2中的硫辛酰辅酶。注意,TPP被再生。适当的箭头推动机构示于图4


注:酰化硫辛酰臂(acylated lipoyl arm)现在离开E1,并荡到E2的活性区位,在此处发生第3步骤。

步骤3酰基(Acyl group)转移到辅酶A(CoA)。适当的箭头推动机构示于图5


注:被还原硫辛酰臂现在荡到在E3的活性区位,此处步骤4和5发生。

步骤4:将硫辛酰区域被FAD辅酶氧化,如图所示于图6

步骤5: FADH2再氧化成FAD,产生NADH:NADH::FADH2 + NAD+ --> FAD + NADH + H+

疾病相关[编辑]

缺乏任何这种复酶复合物以或复合物的抑制,会使支链氨基酸和它们有害衍生物在体内积聚。这些积累会产生有甜味的排泄物(如耳垢和尿液),及病理学常称为枫糖尿症。[18]

在原发性胆汁性肝硬化中,[一种急性肝功能衰竭(acute liver failure)],这种酶是自身抗原(autoantigen),这些抗体(antibodies)会辨识氧化的蛋白质,导致炎症免疫反应,有些发炎反应可由麸质过敏解释。[19] 其他线粒体自身抗原,可由抗线粒体抗体(anti-mitochondrial antibodies)所辨识的抗原,包括丙酮酸脱氢酶(pyruvate dehydrogenase)和支链酮戊二酸脱氢酶(oxoglutarate dehydrogenase)。

参考[编辑]

  1. ^ Indo I, Kitano A, Endo F, Akaboshi I, Matsuda, I. Altered Kinetic Properties of the Branched-Chain Alpha-Keto Acid Dehydrogenase Complex Due to Mutation of the Beta-Subunit of the Branched-Chain Alpha-Keto Acid Decarboxylase (E1) Component in Lymphoblastoid Cells Derived from Patients with Maple Syrup Urine Disease. J Clin Invest. 1987, 80 (1): 63–70. PMID 3597778. doi:10.1172/JCI113064. 
  2. ^ Yeaman SJ. The 2-oxo acid dehydrogenase complexes: recent advances.. Biochem J. 1989, 257 (3): 625–632. PMID 2649080. 
  3. ^ Broquist HP, Trupin JS. Amino Acid Metabolism. Annual Review of Biochemistry. 1966, 35: 231–247. doi:10.1146/annurev.bi.35.070166.001311. 
  4. ^ Harris RA, Paxton R, Powell SM, Goodwin GW, Kuntz MJ, Han AC. Regulation of branched-chain alpha-ketoacid dehydrogenase complex by covalent modification.. Adv Enzyme Regul. 1986, 25: 219–237. PMID 3028049. doi:10.1016/0065-2571(86)90016-6. 
  5. ^ Namba Y, Yoshizawa K, Ejima A, Hayashi T, Kaneda T. Coenzyme A- and nicotinamide adenine dinucleotide-dependent branched chain alpha-keto acid dehydrogenase. I. Purification and properties of the enzyme from Bacillus subtilis.. J Biol Chem. 1969, 244 (16): 4437–4447. PMID 4308861. 
  6. ^ Lennarz WJ; et al. The role of isoleucine in the biosynthesis of branched-chain fatty acids by micrococcus lysodeikticus.. Biochemical and Biophysical Research Communications. 1961, 6 (2): 1112–116. PMID 14463994. doi:10.1016/0006-291X(61)90395-3. 
  7. ^ Aevarsson A, Chuang JL, Wynn RM, Turley S, Chuang DT, Hol WGJ. Crystal structure of human branched-chain α-ketoacid dehydrogenase and the molecular basis of multienzyme complex deficiency in maple syrup urine disease. Structure. 2000, 8 (3): 277–291. PMID 10745006. doi:10.1016/S0969-2126(00)00105-2. 
  8. ^ Berg, Jeremy M., John L. Tymoczko, Lubert Stryer, and Lubert Stryer. Biochemistry. 6th ed. New York: W.H. Freeman, 2007. 481. Print.
  9. ^ Chuang DT. Molecular studies of mammalian branched-chain alpha-keto acid dehydrogenase complexes: domain structures, expression, and inborn errors.. Annals of the New York Academy of Sciences. 1989, 573: 137–154. PMID 2699394. doi:10.1111/j.1749-6632.1989.tb14992.x. 
  10. ^ Chuang DT, Hu CW, Ku LS, Markovitz PJ, Cox RP. Subunit structure of the dihydrolipoyl transacylase component of branched-chain alpha-keto acid dehydrogenase complex from bovine liver. Characterization of the inner transacylase core.. J Biol Chem. 1985, 260 (25): 13779–86. PMID 4055756. 
  11. ^ Reed LJ, Hackert ML. Structure-function relationships in dihydrolipoamide acyltransferases.. J Biol Chem. 1990, 265 (16): 8971–8974. PMID 2188967. 
  12. ^ Perham RN. Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein.. Biochemistry. 1991, 30 (35): 8501–8512. PMID 1888719. doi:10.1021/bi00099a001. 
  13. ^ Heffelfinger SC, Sewell ET, Danner DJ. Identification of specific subunits of highly purified bovine liver branched-chain ketoacid dehydrogenase.. Biochemistry. 1983, 22 (24): 5519–5522. PMID 6652074. doi:10.1021/bi00293a011. 
  14. ^ Jones SM, Yeaman SJ. Oxidative decarboxylation of 4-methylthio-2-oxobutyrate by branched-chain 2-oxo acid dehydrogenase complex.. Biochemistry. 1986, 237 (2): 621–623. PMC 1147032可免费查阅. PMID 3800905. 
  15. ^ Pettit FH, Yeaman SJ, Reed LJ. Purification and characterization of branched chain alpha-keto acid dehydrogenase complex of bovine kidney.. Proceedings of the National Academy of Sciences of the United States of America. 1978, 75 (10): 4881–4885. PMC 336225可免费查阅. PMID 283398. doi:10.1073/pnas.75.10.4881. 
  16. ^ Damuni Z, Merryfield ML, Humphreys JS, Reed LJ. Purification and properties of branched-chain alpha-keto acid dehydrogenase phosphatase from bovine kidney.. Proceedings of the National Academy of Sciences of the United States of America. 1984, 81 (14): 4335–4338. PMC 345583可免费查阅. PMID 6589597. doi:10.1073/pnas.81.14.4335. 
  17. ^ Berg, Jeremy M., John L. Tymoczko, Lubert Stryer, and Lubert Stryer. Biochemistry. 6th ed. New York: W.H. Freeman, 2007. 478-79. Print.
  18. ^ Podebrad F, Heil M, Reichert S, Mosandl A, Sewell AC, Böhles H. 4,5-dimethyl-3-hydroxy-25H-furanone (sotolone)--the odour of maple syrup urine disease. Journal of Inherited Metabolic Disease. April 1999, 22 (2): 107–114. PMID 10234605. doi:10.1023/A:1005433516026. 
  19. ^ Leung PS, Rossaro L, Davis PA; et al. Antimitochondrial antibodies in acute liver failure: Implications for primary biliary cirrhosis. Hepatology. 2007, 46 (5): 1436–42. PMID 17657817. doi:10.1002/hep.21828. 

外部链接[编辑]