二元数

本页使用了标题或全文手工转换
维基百科,自由的百科全书
各种各样的
基本

延伸
其他

圆周率
自然对数的底
虚数单位
无限大

线性代数二元数(英语:Dual number)是实数的延伸。二元数有一“二元数单位”ε,其平方ε2=0(亦即ε是幂零元)。二元数的集合能在实数之上组成、符合交换律二维结合代数。全部二元数z都有z=a+bε的特性,其中ab是实数。

矩阵表示法[编辑]

二元数可用矩阵表示为:

二元数的和与积可以寻常的矩阵加法、矩阵乘法计算。在二元数的代数中,两种数学运算都符合交换律结合律

二元数的矩阵表示与复数的矩阵表示类似,但这并非唯一的表示法,参见2×2实矩阵英语2 × 2 real matrices。如同复平面双曲复数平面,二元数也是平面代数的实现方式之一。

几何[编辑]

定义z*=abε,二元数的“单位圆”包括了那些a值为1或−1的二元数,因为zz*=1。然而注意到

所以ε轴的指数映射仅涵盖半“圆”。

a≠0且m,则za(1+mε)为二元数z极分解斜率m则与辐角相关。二元数平面中的“旋转”等价于一个垂直错切,原因是(1+pε)(1+qε)=1+(pq)ε。

伽利略变换[编辑]

绝对时空中,伽利略变换

,亦即

将静止参考系与带有速度v移动参考系做联结。使用二元数,txε表示一维空间与时间中的事件,伽利略变换就可以采乘上(1+vε)来达成。

循环[编辑]

给定两个二元数pq,它们决定了一组z的集合,使得zpq的直线的斜率差(伽利略角)是常量。这个集合是二元数平面上的“循环”。设置直线斜率差为常量的方程式是z实部的二次方程式,则一个循环实则是抛物线。二元数平面的“循环旋转”实际上是二元数投影线的运动。

根据Isaak Yaglom的著作《简易非欧几何及其物理基础》(1979)(pp. 92,3),循环Z={z:y=αx2}在错切的组合中保持不变:

平移项:

这组合是循环旋转(cyclic rotation),V. V. Kisil更进一步推演之。[1]

在代数中的特性[编辑]

一般化[编辑]

微分[编辑]

超空间[编辑]

除法[编辑]

对于由两个二元数组成的分数来说,如分母的实数部分非零,我们可计算出那分数的值。二元数除法和复数除法相似:两者皆把分子和分母乘以分母的共轭以约去分子和分母的非实数部分。

所以,如要计算这二元数分数的值:

我们需要把分子和分母乘以分母的共轭

而二元数除数在c为非零时才有值。

但是,如果c为零而d不为零时,这条方程式:

  1. 当a非零时没有解
  2. 当a为零时,以下的二元数都是它的解:

[编辑]

以下是二元数的幂的计算方法:

参见[编辑]

参考资料[编辑]

  1. ^ V.V. Kisil (2007) "Inventing a Wheel, the Parabolic One" arXiv:0707.4024页面存档备份,存于互联网档案馆