跳转到内容

冠状病毒:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
无编辑摘要
无编辑摘要
第26行: 第26行:
}}
}}


'''正{{zy|冠|-{zh-cn:guān;zh-sg:guān;zh-hk:gun1;zh-tw:ㄍㄨㄢ¯}-}}狀病毒亞科'''([[學名]]:{{lang|la|''Orthocoronavirinae''}})通称'''{{zy|冠|-{zh-cn:guān;zh-sg:guān;zh-hk:gun1;zh-tw:ㄍㄨㄢ¯}-}}状病毒'''({{lang-en|Coronavirus}}),是一类在动物与人类之间传播的[[人畜共通傳染病|人畜共患]]的单链[[RNA病毒]]。冠状病毒可感染[[哺乳动物]]與[[鸟类]],部分病毒可感染家畜或家禽,造成養殖業的經濟損失。已知可感染人类的冠状病毒共有7种,其中有4種可引发[[普通感冒]],另外3種為[[严重急性呼吸道综合征冠状病毒]](SARS-CoV)、[[中東呼吸症候群冠狀病毒]](MERS)與[[严重急性呼吸系统综合征冠状病毒2]](SARS-CoV-2),皆會導致嚴重疾病,曾分別在全球各地造成疫情。
'''正{{zy|冠|-{zh-cn:guān;zh-sg:guān;zh-hk:gun1;zh-tw:ㄍㄨㄢ¯}-}}狀病毒亞科'''([[學名]]:{{lang|la|''Orthocoronavirinae''}})通称'''{{zy|冠|-{zh-cn:guān;zh-sg:guān;zh-hk:gun1;zh-tw:ㄍㄨㄢ¯}-}}状病毒'''({{lang-en|Coronavirus}}),是一类可感染[[哺乳动物]]與[[鸟类]]的单链[[RNA病毒]]。已知可感染人类的冠状病毒共有7种,其中有4種可引发[[普通感冒]],另外3種為[[严重急性呼吸道综合征冠状病毒]](SARS-CoV)、[[中東呼吸症候群冠狀病毒]](MERS)與[[严重急性呼吸系统综合征冠状病毒2]](SARS-CoV-2),皆會導致嚴重疾病,曾分別在全球各地造成疫情。另外部分病毒可感染家畜或家禽,造成養殖業的經濟損失


正冠狀病毒亞科属于[[網巢病毒目|网巢病毒目]][[冠状病毒科]]<ref name="FanZhao2019">{{cite journal | vauthors = Fan Y, Zhao K, Shi ZL, Zhou P | title = Bat Coronaviruses in China | journal = Viruses | volume = 11 | issue = 3 | pages = 210 | date = March 2019 | pmid = 30832341 | pmc = 6466186 | doi = 10.3390/v11030210 }}</ref><ref name="OrthocoronavirinaeICTV" />,為具有[[病毒包膜|包膜]]的[[正單鏈RNA病毒]]<ref>{{cite book | vauthors = Cherry J, Demmler-Harrison GJ, Kaplan SL, Steinbach WJ, Hotez PJ |title=Feigin and Cherry's Textbook of Pediatric Infectious Diseases |date=2017 |publisher=Elsevier Health Sciences |isbn=978-0-323-39281-5 |page=PT6615 |url=https://books.google.com/books?id=z-ZIDwAAQBAJ&pg=PT6615 |language=en}}</ref>,其[[基因組]]大小介於26000與32000[[核鹼基|nt]]之間,是[[RNA病毒]]中基因組最大的一類病毒之一<ref name=":1">{{cite journal | vauthors = Woo PC, Huang Y, Lau SK, Yuen KY | title = Coronavirus genomics and bioinformatics analysis | journal = Viruses | volume = 2 | issue = 8 | pages = 1804–20 | date = August 2010 | pmid = 21994708 | pmc = 3185738 | doi = 10.3390/v2081803 | quote = Coronaviruses possess the largest genomes [26.4 kb (ThCoV HKU12) to 31.7 kb (SW1)] among all known RNA viruses (Figure 1) [2,13,16]. }}</ref>,其表面具有由刺突蛋白組成的棒狀突起,是此類病毒顯著的特徵。
正冠狀病毒亞科属于[[網巢病毒目|网巢病毒目]][[冠状病毒科]]<ref name="FanZhao2019">{{cite journal | vauthors = Fan Y, Zhao K, Shi ZL, Zhou P | title = Bat Coronaviruses in China | journal = Viruses | volume = 11 | issue = 3 | pages = 210 | date = March 2019 | pmid = 30832341 | pmc = 6466186 | doi = 10.3390/v11030210 }}</ref><ref name="OrthocoronavirinaeICTV" />,為具有[[病毒包膜|包膜]]的[[正單鏈RNA病毒]]<ref>{{cite book | vauthors = Cherry J, Demmler-Harrison GJ, Kaplan SL, Steinbach WJ, Hotez PJ |title=Feigin and Cherry's Textbook of Pediatric Infectious Diseases |date=2017 |publisher=Elsevier Health Sciences |isbn=978-0-323-39281-5 |page=PT6615 |url=https://books.google.com/books?id=z-ZIDwAAQBAJ&pg=PT6615 |language=en}}</ref>,其[[基因組]]大小介於26000與32000[[核鹼基|nt]]之間,是[[RNA病毒]]中基因組最大的一類病毒之一<ref name=":1">{{cite journal | vauthors = Woo PC, Huang Y, Lau SK, Yuen KY | title = Coronavirus genomics and bioinformatics analysis | journal = Viruses | volume = 2 | issue = 8 | pages = 1804–20 | date = August 2010 | pmid = 21994708 | pmc = 3185738 | doi = 10.3390/v2081803 | quote = Coronaviruses possess the largest genomes [26.4 kb (ThCoV HKU12) to 31.7 kb (SW1)] among all known RNA viruses (Figure 1) [2,13,16]. }}</ref>,其表面具有由刺突蛋白組成的棒狀突起,是此類病毒顯著的特徵。
第41行: 第41行:
1960年代,感染人類的冠狀病毒漸被發現<ref>{{cite journal | vauthors = Kahn JS, McIntosh K | title = History and recent advances in coronavirus discovery | journal = The Pediatric Infectious Disease Journal | volume = 24 | issue = 11 Suppl | pages = S223–7, discussion S226 | date = November 2005 | pmid = 16378050 | doi = 10.1097/01.inf.0000188166.17324.60 }}</ref><ref>{{cite journal | vauthors = Mahase E | title = The BMJ in 1965 | journal = BMJ | volume = 369 | pages = m1547 | date = April 2020 | pmid = 32299810 | doi = 10.1136/bmj.m1547 | url = https://www.bmj.com/content/369/bmj.m1547 }}</ref>。1961年,{{le|大衛·A·泰瑞爾|David Tyrrell (physician)}}等[[英國醫學研究委員會]]{{le|感冒研究單位|Common Cold Unit}}的研究人員發現了造成[[普通感冒]]的一新病毒株,將其命名為B814<ref name=":9">{{cite journal | vauthors = Kendall EJ, Bynoe ML, Tyrrell DA | title = Virus isolations from common colds occurring in a residential school | journal = British Medical Journal | volume = 2 | issue = 5297 | pages = 82–6 | date = July 1962 | pmid = 14455113 | pmc = 1925312 | doi = 10.1136/bmj.2.5297.82 }}</ref><ref>{{cite journal |last=Richmond |first=Caroline | name-list-format = vanc |date=2005-06-18|title=David Tyrrell|journal=BMJ : British Medical Journal |volume=330 |issue=7505 |pages=1451 |doi=10.1136/bmj.330.7505.1451 |pmc=558394 }}</ref><ref>{{cite journal |date=1969-06-28 |title=Obituary Notices: Malcom Byone |url=https://www.bmj.com/content/2/5660/827 |journal=British Medical Journal |language=en |volume=2 |issue=5660 |pages=827–829 |doi=10.1136/bmj.2.5660.827 }}</ref>,但用培養[[腺病毒]]與[[鼻病毒]]等其他感冒病毒的方法試圖培養該病毒時卻告失敗,後來使用由{{le|器官培養|Organ culture}}技術建立的人類胚胎[[氣管]]組織才成功培養此病毒<ref>{{cite journal | vauthors = Tyrrell DA, Bynoe ML | title = Cultivation of a Novel Type of Common-Cold Virus in Organ Cultures | journal = British Medical Journal | volume = 1 | issue = 5448 | pages = 1467–70 | date = June 1965 | pmid = 14288084 | pmc = 2166670 | doi = 10.1136/bmj.1.5448.1467 }}</ref>。1962年又有科學家在[[芝加哥大學]]分離了新的感冒病毒毒株,於1966年發表,即為[[人類冠狀病毒229E]]<ref name=Hamre>{{cite journal | vauthors = Hamre D, Procknow JJ | title = A new virus isolated from the human respiratory tract | journal = Proceedings of the Society for Experimental Biology and Medicine | volume = 121 | issue = 1 | pages = 190–3 | date = January 1966 | pmid = 4285768 | doi = 10.3181/00379727-121-30734 }}</ref>。B814病毒與229E病毒皆能在自願的受試者中造成感冒,且經[[醚]]處理後即失去活性,顯示它們具有[[病毒包膜|包膜]]<ref name=Hamre/><ref name=":9" />。
1960年代,感染人類的冠狀病毒漸被發現<ref>{{cite journal | vauthors = Kahn JS, McIntosh K | title = History and recent advances in coronavirus discovery | journal = The Pediatric Infectious Disease Journal | volume = 24 | issue = 11 Suppl | pages = S223–7, discussion S226 | date = November 2005 | pmid = 16378050 | doi = 10.1097/01.inf.0000188166.17324.60 }}</ref><ref>{{cite journal | vauthors = Mahase E | title = The BMJ in 1965 | journal = BMJ | volume = 369 | pages = m1547 | date = April 2020 | pmid = 32299810 | doi = 10.1136/bmj.m1547 | url = https://www.bmj.com/content/369/bmj.m1547 }}</ref>。1961年,{{le|大衛·A·泰瑞爾|David Tyrrell (physician)}}等[[英國醫學研究委員會]]{{le|感冒研究單位|Common Cold Unit}}的研究人員發現了造成[[普通感冒]]的一新病毒株,將其命名為B814<ref name=":9">{{cite journal | vauthors = Kendall EJ, Bynoe ML, Tyrrell DA | title = Virus isolations from common colds occurring in a residential school | journal = British Medical Journal | volume = 2 | issue = 5297 | pages = 82–6 | date = July 1962 | pmid = 14455113 | pmc = 1925312 | doi = 10.1136/bmj.2.5297.82 }}</ref><ref>{{cite journal |last=Richmond |first=Caroline | name-list-format = vanc |date=2005-06-18|title=David Tyrrell|journal=BMJ : British Medical Journal |volume=330 |issue=7505 |pages=1451 |doi=10.1136/bmj.330.7505.1451 |pmc=558394 }}</ref><ref>{{cite journal |date=1969-06-28 |title=Obituary Notices: Malcom Byone |url=https://www.bmj.com/content/2/5660/827 |journal=British Medical Journal |language=en |volume=2 |issue=5660 |pages=827–829 |doi=10.1136/bmj.2.5660.827 }}</ref>,但用培養[[腺病毒]]與[[鼻病毒]]等其他感冒病毒的方法試圖培養該病毒時卻告失敗,後來使用由{{le|器官培養|Organ culture}}技術建立的人類胚胎[[氣管]]組織才成功培養此病毒<ref>{{cite journal | vauthors = Tyrrell DA, Bynoe ML | title = Cultivation of a Novel Type of Common-Cold Virus in Organ Cultures | journal = British Medical Journal | volume = 1 | issue = 5448 | pages = 1467–70 | date = June 1965 | pmid = 14288084 | pmc = 2166670 | doi = 10.1136/bmj.1.5448.1467 }}</ref>。1962年又有科學家在[[芝加哥大學]]分離了新的感冒病毒毒株,於1966年發表,即為[[人類冠狀病毒229E]]<ref name=Hamre>{{cite journal | vauthors = Hamre D, Procknow JJ | title = A new virus isolated from the human respiratory tract | journal = Proceedings of the Society for Experimental Biology and Medicine | volume = 121 | issue = 1 | pages = 190–3 | date = January 1966 | pmid = 4285768 | doi = 10.3181/00379727-121-30734 }}</ref>。B814病毒與229E病毒皆能在自願的受試者中造成感冒,且經[[醚]]處理後即失去活性,顯示它們具有[[病毒包膜|包膜]]<ref name=Hamre/><ref name=":9" />。


1967年,[[倫敦]][[聖湯瑪士醫院]]的病毒學家{{le|瓊·阿爾梅達|June Almeida}}和大衛·泰瑞爾合作,用[[電子顯微鏡]]觀察IBV、B814與229E等病毒的外形結構<ref>{{Cite news|url=https://www.bbc.com/news/uk-scotland-52278716|title=The woman who discovered the first coronavirus}}</ref><ref>{{Cite journal|last=Almeida|first=Joyce | name-list-format = vanc |date=2008-06-26|title=June Almeida (née Hart)|journal=BMJ|language=en|volume=336|issue=7659|pages=1511.1–1511|doi=10.1136/bmj.a434|pmc=2440895|issn=0959-8138}}</ref>,發現它們表面均具有特別的棒狀突起<ref>{{cite journal | vauthors = Almeida JD, Tyrrell DA | title = The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture | journal = The Journal of General Virology | volume = 1 | issue = 2 | pages = 175–8 | date = April 1967 | pmid = 4293939 | doi = 10.1099/0022-1317-1-2-175 }}</ref>。同年[[美國國家衛生院]]的團隊發現了另一種造成感冒的新病毒株[[人類冠狀病毒OC43]]<ref>{{cite journal | vauthors = McIntosh K, Becker WB, Chanock RM | title = Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 58 | issue = 6 | pages = 2268–73 | date = December 1967 | pmid = 4298953 | pmc = 223830 | doi = 10.1073/pnas.58.6.2268 | bibcode = 1967PNAS...58.2268M }}</ref>,此病毒株的表面亦具有棒狀突起<ref>{{cite journal | vauthors = McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM | title = Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 57 | issue = 4 | pages = 933–40 | date = April 1967 | pmid = 5231356 | pmc = 224637 | doi = 10.1073/pnas.57.4.933 | bibcode = 1967PNAS...57..933M }}</ref><ref>{{Cite news|last=Times|first=Harold M. Schmeck Jr Special To the New York|url=https://www.nytimes.com/1967/05/05/archives/six-newly-discovered-viruses-may-explain-cold-strains-are-similar.html|title=Six Newly Discovered Viruses May Explain Cold; Strains Are Similar to Germ That Causes a Bronchial Infection in Chickens Believed to Be New Group|date=1967-05-05|work=The New York Times|access-date=2020-04-25|language=en-US|issn=0362-4331}}</ref>,{{le|補體結合試驗|Complement fixation test}}結果顯示其與鼠肝炎病毒關係接近<ref name=":3" /> ,於是這些病毒被合稱為「冠狀病毒」<ref name=":2" />。後來人們又發現了[[人類冠狀病毒NL63]]與[[人類冠狀病毒HKU1]]兩個造成感冒的冠狀病毒,但B814病毒株今已佚失<ref>{{cite journal | vauthors = Corman VM, Jores J, Meyer B, Younan M, Liljander A, Said MY, Gluecks I, Lattwein E, Bosch BJ, Drexler JF, Bornstein S, Drosten C, Müller MA | display-authors = 6 | title = Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013 | journal = Emerging Infectious Diseases | volume = 20 | issue = 8 | pages = 1319–22 | date = August 2014 | pmc = 7122465 | doi = 10.1007/978-1-4899-7448-8_10 | pmid = 25075637 | isbn = 978-1-4899-7447-1 | quote = The other OC strains and B814 that could not be adapted to mouse brain resisted adaptation to cell culture as well; these distinct viruses have since been lost and may actually have been rediscovered recently. }}</ref>。外也有許多感染其他動物的冠狀病毒被發現<ref name="groot">{{Cite book|title=Ninth Report of the International Committee on Taxonomy of Viruses|vauthors=de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE, Holmes KV, Perlman S, Poon L, Rottier PJ, Talbot PJ, Woo PC, Ziebuhr J|publisher=Elsevier|year=2011|isbn=978-0-12-384684-6|veditors=King AM, Lefkowitz E, Adams MJ, Carstens EB, ((International Committee on Taxonomy of Viruses)), ((International Union of Microbiological Societies. Virology Division))|location=Oxford|pages=806–28|chapter=Family ''Coronaviridae''|doi=10.1016/B978-0-12-384684-6.00068-9|author-link2=Susan Baker (virologist)|chapter-url=https://www.sciencedirect.com/science/article/pii/B9780123846846000689}}</ref>。
1967年,[[倫敦]][[聖湯瑪士醫院]]的病毒學家{{le|瓊·阿爾梅達|June Almeida}}和大衛·泰瑞爾合作,用[[電子顯微鏡]]觀察IBV、B814與229E等病毒的外形結構<ref>{{Cite news|url=https://www.bbc.com/news/uk-scotland-52278716|title=The woman who discovered the first coronavirus}}</ref><ref>{{Cite journal|last=Almeida|first=Joyce | name-list-format = vanc |date=2008-06-26|title=June Almeida (née Hart)|journal=BMJ|language=en|volume=336|issue=7659|pages=1511.1–1511|doi=10.1136/bmj.a434|pmc=2440895|issn=0959-8138}}</ref>,發現它們表面均具有特別的棒狀突起<ref>{{cite journal | vauthors = Almeida JD, Tyrrell DA | title = The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture | journal = The Journal of General Virology | volume = 1 | issue = 2 | pages = 175–8 | date = April 1967 | pmid = 4293939 | doi = 10.1099/0022-1317-1-2-175 }}</ref>。同年[[美國國家衛生院]]的團隊發現了另一種造成感冒的新病毒株[[人類冠狀病毒OC43]]<ref>{{cite journal | vauthors = McIntosh K, Becker WB, Chanock RM | title = Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 58 | issue = 6 | pages = 2268–73 | date = December 1967 | pmid = 4298953 | pmc = 223830 | doi = 10.1073/pnas.58.6.2268 | bibcode = 1967PNAS...58.2268M }}</ref>,此病毒株的表面亦具有棒狀突起<ref>{{cite journal | vauthors = McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM | title = Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 57 | issue = 4 | pages = 933–40 | date = April 1967 | pmid = 5231356 | pmc = 224637 | doi = 10.1073/pnas.57.4.933 | bibcode = 1967PNAS...57..933M }}</ref><ref>{{Cite news|last=Times|first=Harold M. Schmeck Jr Special To the New York|url=https://www.nytimes.com/1967/05/05/archives/six-newly-discovered-viruses-may-explain-cold-strains-are-similar.html|title=Six Newly Discovered Viruses May Explain Cold; Strains Are Similar to Germ That Causes a Bronchial Infection in Chickens Believed to Be New Group|date=1967-05-05|work=The New York Times|access-date=2020-04-25|language=en-US|issn=0362-4331}}</ref>,{{le|補體結合試驗|Complement fixation test}}結果顯示其與鼠肝炎病毒關係接近<ref name=":3" /> ,於是這些病毒被合稱為「冠狀病毒」<ref name=":2" />。後來人們又發現了[[人類冠狀病毒NL63]]與[[人類冠狀病毒HKU1]]兩個造成感冒的冠狀病毒,但B814病毒株今已佚失<ref>{{cite journal | vauthors = Corman VM, Jores J, Meyer B, Younan M, Liljander A, Said MY, Gluecks I, Lattwein E, Bosch BJ, Drexler JF, Bornstein S, Drosten C, Müller MA | display-authors = 6 | title = Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013 | journal = Emerging Infectious Diseases | volume = 20 | issue = 8 | pages = 1319–22 | date = August 2014 | pmc = 7122465 | doi = 10.1007/978-1-4899-7448-8_10 | pmid = 25075637 | isbn = 978-1-4899-7447-1 | quote = The other OC strains and B814 that could not be adapted to mouse brain resisted adaptation to cell culture as well; these distinct viruses have since been lost and may actually have been rediscovered recently. }}</ref>。此外也有許多感染其他動物的冠狀病毒被陸續發現<ref name="groot">{{Cite book|title=Ninth Report of the International Committee on Taxonomy of Viruses|vauthors=de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE, Holmes KV, Perlman S, Poon L, Rottier PJ, Talbot PJ, Woo PC, Ziebuhr J|publisher=Elsevier|year=2011|isbn=978-0-12-384684-6|veditors=King AM, Lefkowitz E, Adams MJ, Carstens EB, ((International Committee on Taxonomy of Viruses)), ((International Union of Microbiological Societies. Virology Division))|location=Oxford|pages=806–28|chapter=Family ''Coronaviridae''|doi=10.1016/B978-0-12-384684-6.00068-9|author-link2=蘇珊·貝克 (病毒學家)|chapter-url=https://www.sciencedirect.com/science/article/pii/B9780123846846000689}}</ref>,感染[[狗]]、[[貓]]、[[牛]]與[[豬]]的冠狀病毒都在20世紀後半葉被發現,並有許多相關研究發表<ref name="WangGrunewald2020"/>。


2002年底,中國[[广东省]]爆發了[[非典型肺炎]],演變成為期近一年的[[SARS事件]],疫情擴散至29個國家,超過8000人感染,其中774人死亡<ref name=SARSstat>{{Cite web|title=How SARS terrified the world in 2003, infecting more than 8,000 people and killing 774|url=https://www.businessinsider.com/deadly-sars-virus-history-2003-in-photos-2020-2|accessdate=|author=|date=2020年2月21日|last=Pasley|first=James|format=|work=Business Insider}}</ref>。此感染為新發現的冠狀病毒[[SARS病毒]]造成,疑似是由市場中的[[果子貍SARS病毒|果子貍]]傳染給人類,但後續研究顯示[[蝙蝠]]才是SARS病毒的[[自然宿主]]。2012年,[[沙烏地阿拉伯]]爆發了[[中東呼吸綜合症疫情]],為另一新種冠狀病毒[[中東呼吸症候群冠狀病毒]](MERS)造成,可能經[[駱駝]]傳染給人類,疫情隨後擴散至西亞其他國家與[[2015年中東呼吸綜合症韓國疫情|韓國]],共造成超過1000人感染,約400人死亡<ref name=mersstat>{{cite web | url=http://www.who.int/csr/don/11-march-2015-mers-saudi-arabia/en/ | title=Middle East respiratory syndrome coronavirus (MERS-CoV) – Saudi Arabia | publisher=''[[世界卫生组织|World Health Organization]]'' | date=2015-03-10 | accessdate=2015-03-12 | archive-url=https://web.archive.org/web/20150316042445/http://www.who.int/csr/don/11-march-2015-mers-saudi-arabia/en/ | archive-date=2015-03-16 | dead-url=no }}</ref>。2019年12月,新型冠狀病毒[[严重急性呼吸系统综合征冠状病毒2]]在中國[[武汉市]]造成不明肺炎[[2019冠状病毒病疫情|疫情]],並於2020年迅速擴散至世界各國,造成嚴重的[[全球大流行]],截至2021年1月,染病人數已逾一億,超過200萬人死亡<ref name=covidstat>{{cite web|url=https://covid19.who.int|title=WHO Coronavirus Disease (COVID-19) Dashboard|publisher=World Health organization|date=2021-01-28}}</ref>。
2000年後,冠狀病毒已造成三次嚴重的疫情爆發。2002年底,中國[[广东省]]爆發了[[非典型肺炎]],演變成為期近一年的[[SARS事件]],疫情擴散至29個國家,超過8000人感染,其中774人死亡<ref name=SARSstat>{{Cite web|title=How SARS terrified the world in 2003, infecting more than 8,000 people and killing 774|url=https://www.businessinsider.com/deadly-sars-virus-history-2003-in-photos-2020-2|accessdate=|author=|date=2020年2月21日|last=Pasley|first=James|format=|work=Business Insider}}</ref>。此感染為新發現的冠狀病毒[[SARS病毒]]造成,疑似是由市場中的[[果子貍SARS病毒|果子貍]]傳染給人類,但後續研究顯示[[蝙蝠]]才是SARS病毒的[[自然宿主]]。2012年,[[沙烏地阿拉伯]]爆發了[[中東呼吸綜合症疫情]],為另一新種冠狀病毒[[中東呼吸症候群冠狀病毒]](MERS)造成,可能經[[駱駝]]傳染給人類,疫情隨後擴散至西亞其他國家與[[2015年中東呼吸綜合症韓國疫情|韓國]],共造成超過1000人感染,約400人死亡<ref name=mersstat>{{cite web | url=http://www.who.int/csr/don/11-march-2015-mers-saudi-arabia/en/ | title=Middle East respiratory syndrome coronavirus (MERS-CoV) – Saudi Arabia | publisher=''[[世界卫生组织|World Health Organization]]'' | date=2015-03-10 | accessdate=2015-03-12 | archive-url=https://web.archive.org/web/20150316042445/http://www.who.int/csr/don/11-march-2015-mers-saudi-arabia/en/ | archive-date=2015-03-16 | dead-url=no }}</ref>。2019年12月,新型冠狀病毒[[严重急性呼吸系统综合征冠状病毒2]]在中國[[武汉市]]造成不明肺炎[[2019冠状病毒病疫情|疫情]],並於2020年迅速擴散至世界各國,造成嚴重的[[全球大流行]],截至2021年1月,染病人數已逾一億,超過200萬人死亡<ref name=covidstat>{{cite web|url=https://covid19.who.int|title=WHO Coronavirus Disease (COVID-19) Dashboard|publisher=World Health organization|date=2021-01-28}}</ref>。

2003年SARS疫情結束後,許多研究人員開始調查野生動物中的冠狀病毒,在蝙蝠、[[鯨豚]]與鳥類中均有發現不同的冠狀病毒,增進了人們對冠狀病毒在自然界中多樣性的了解<ref name="WooLau2013">{{cite journal|last1=Woo|first1=P. C. Y.|last2=Lau|first2=S. K. P.|last3=Lam|first3=C. S. F.|last4=Tsang|first4=A. K. L.|last5=Hui|first5=S.-W.|last6=Fan|first6=R. Y. Y.|last7=Martelli|first7=P.|last8=Yuen|first8=K.-Y.|title=Discovery of a Novel Bottlenose Dolphin Coronavirus Reveals a Distinct Species of Marine Mammal Coronavirus in Gammacoronavirus|journal=Journal of Virology|volume=88|issue=2|year=2013|pages=1318–1331|issn=0022-538X|doi=10.1128/JVI.02351-13}}</ref><ref name="LauWong2018">{{cite journal|last1=Lau|first1=Susanna K. P.|last2=Wong|first2=Emily Y. M.|last3=Tsang|first3=Chi-Ching|last4=Ahmed|first4=Syed Shakeel|last5=Au-Yeung|first5=Rex K. H.|last6=Yuen|first6=Kwok-Yung|last7=Wernery|first7=Ulrich|last8=Woo|first8=Patrick C. Y.|last9=Gallagher|first9=Tom|title=Discovery and Sequence Analysis of Four Deltacoronaviruses from Birds in the Middle East Reveal Interspecies Jumping with Recombination as a Potential Mechanism for Avian-to-Avian and Avian-to-Mammalian Transmission|journal=Journal of Virology|volume=92|issue=15|year=2018|issn=0022-538X|doi=10.1128/JVI.00265-18}}</ref>。


==病毒學==
==病毒學==
===結構===
===結構===
[[File:3D medical animation coronavirus structure.jpg|alt=Cross-sectional model of a coronavirus|thumb|冠狀病毒的切面模型]]
[[File:3D medical animation coronavirus structure.jpg|alt=Cross-sectional model of a coronavirus|thumb|冠狀病毒的切面模型]]
冠狀病毒的外型大致呈球體<ref>{{cite journal | vauthors = Goldsmith CS, Tatti KM, Ksiazek TG, Rollin PE, Comer JA, Lee WW, Rota PA, Bankamp B, Bellini WJ, Zaki SR | display-authors = 6 | title = Ultrastructural characterization of SARS coronavirus | journal = Emerging Infectious Diseases | volume = 10 | issue = 2 | pages = 320–6 | date = February 2004 | pmid = 15030705 | pmc = 3322934 | doi = 10.3201/eid1002.030913 | quote = Virions acquired an envelope by budding into the cisternae and formed mostly spherical, sometimes pleomorphic, particles that averaged 78 nm in diameter (Figure 1A). }}</ref>,大小因種類而異,直徑一般介於80與120[[奈米]]之間,但也有小至50奈米與大至200奈米者<ref name=":21">{{cite journal | vauthors = Masters PS | title = The molecular biology of coronaviruses | journal = Advances in Virus Research | volume = 66 | pages = 193–292 | date = 2006 | pmid = 16877062 | pmc = 7112330 | doi = 10.1016/S0065-3527(06)66005-3 | isbn = 9780120398690 }}</ref> ,分子量約為40000[[原子質量單位|kDa]],具有外膜蛋白(E)、[[刺突蛋白]](S)、膜蛋白(M)與[[衣殼|衣殼蛋白]](N)等四種結構蛋白,外圍有[[磷脂雙分子層|脂雙層]]構成的[[病毒包膜|外膜]]<ref name=":20">{{Cite journal| vauthors = Lalchhandama K |date=2020|title=The chronicles of coronaviruses: the electron microscope, the doughnut, and the spike |journal=Science Vision|language=en|volume=20|issue=2|pages=78–92|doi=10.33493/scivis.20.02.03}}</ref>,在電子顯微鏡下為一電子密度高的殼狀結構<ref>{{cite journal | vauthors = Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, Milligan RA, Yeager M, Buchmeier MJ | display-authors = 6 | title = Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy | journal = Journal of Virology | volume = 80 | issue = 16 | pages = 7918–28 | date = August 2006 | pmid = 16873249 | pmc = 1563832 | doi = 10.1128/JVI.00645-06 | quote = Particle diameters ranged from 50 to 150 nm, excluding the spikes, with mean particle diameters of 82 to 94 nm; Also See Figure{{nbsp}}1 for double shell. }}</ref><ref name="Fehr_2015" />,外膜蛋白、刺突蛋白與膜蛋白均位於外膜上<ref name="Lai_1997">{{cite journal | vauthors = Lai MM, Cavanagh D | title = The molecular biology of coronaviruses | journal = Advances in Virus Research | volume = 48 | pages = 1–100 | date = 1997 | pmid = 9233431 | pmc = 7130985 | doi = 10.1016/S0065-3527(08)60286-9 | isbn = 9780120398485 }}</ref>,三種蛋白的數量比例約為1:20:300<ref>{{cite journal | vauthors = Cavanagh D, Mawditt K, Sharma M, Drury SE, Ainsworth HL, Britton P, Gough RE | title = Detection of a coronavirus from turkey poults in Europe genetically related to infectious bronchitis virus of chickens | journal = Avian Pathology | volume = 30 | issue = 4 | pages = 355–68 | date = August 2001 | pmid = 19184921 | pmc = 7123520 | doi = 10.1007/3-7643-7339-3_1 | publisher = Birkhäuser | isbn = 978-3-7643-7339-9 | veditors = Schmidt A, Weber O, Wolff MH | series = Birkhäuser Advances in Infectious Diseases BAID }}</ref>,外膜蛋白與膜蛋白為{{tsl|en|Viral structural protein|病毒結構蛋白|結構蛋白}},負責維持病毒包膜的結構與大小<ref name="Fehr_2015" />,S蛋白可與宿主細胞表面的受體結合,為病毒感染細胞所需(某些病毒的膜蛋白可能也能與宿主細胞結合<ref>{{cite journal | vauthors = Naskalska A, Dabrowska A, Szczepanski A, Milewska A, Jasik KP, Pyrc K | title = Membrane Protein of Human Coronavirus NL63 Is Responsible for Interaction with the Adhesion Receptor | journal = Journal of Virology | volume = 93 | issue = 19 | date = October 2019 | pmid = 31315999 | pmc = 6744225 | doi = 10.1128/JVI.00355-19 }}</ref>),衣殼蛋白則位於膜的內部,包覆病毒的遺傳物質[[核糖核酸]]。當病毒不在細胞內時,外膜、膜蛋白與衣殼蛋白均有保護病毒的功能<ref>{{cite journal | vauthors = Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, Droese B, Klaus JP, Makino S, Sawicki SG, Siddell SG, Stamou DG, Wilson IA, Kuhn P, Buchmeier MJ | display-authors = 6 | title = A structural analysis of M protein in coronavirus assembly and morphology | journal = Journal of Structural Biology | volume = 174 | issue = 1 | pages = 11–22 | date = April 2011 | pmid = 21130884 | pmc = 4486061 | doi = 10.1016/j.jsb.2010.11.021 | quote = See Figure 10. }}</ref>。
冠狀病毒的外型大致呈球體<ref>{{cite journal | vauthors = Goldsmith CS, Tatti KM, Ksiazek TG, Rollin PE, Comer JA, Lee WW, Rota PA, Bankamp B, Bellini WJ, Zaki SR | display-authors = 6 | title = Ultrastructural characterization of SARS coronavirus | journal = Emerging Infectious Diseases | volume = 10 | issue = 2 | pages = 320–6 | date = February 2004 | pmid = 15030705 | pmc = 3322934 | doi = 10.3201/eid1002.030913 | quote = Virions acquired an envelope by budding into the cisternae and formed mostly spherical, sometimes pleomorphic, particles that averaged 78 nm in diameter (Figure 1A). }}</ref>,大小因種類而異,直徑一般介於80與120[[奈米]]之間,但也有小至50奈米與大至200奈米者<ref name=":21">{{cite journal | vauthors = Masters PS | title = The molecular biology of coronaviruses | journal = Advances in Virus Research | volume = 66 | pages = 193–292 | date = 2006 | pmid = 16877062 | pmc = 7112330 | doi = 10.1016/S0065-3527(06)66005-3 | isbn = 9780120398690 }}</ref> ,分子量約為40000[[原子質量單位|kDa]],具有外膜蛋白(E)、[[刺突蛋白]](S)、膜蛋白(M)與[[衣殼|衣殼蛋白]](N)等四種結構蛋白,外圍有[[磷脂雙分子層|脂雙層]]構成的[[病毒包膜|外膜]]<ref name=":20">{{Cite journal| vauthors = Lalchhandama K |date=2020|title=The chronicles of coronaviruses: the electron microscope, the doughnut, and the spike |journal=Science Vision|language=en|volume=20|issue=2|pages=78–92|doi=10.33493/scivis.20.02.03}}</ref>,在電子顯微鏡下為一電子密度高的殼狀結構<ref>{{cite journal | vauthors = Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, Milligan RA, Yeager M, Buchmeier MJ | display-authors = 6 | title = Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy | journal = Journal of Virology | volume = 80 | issue = 16 | pages = 7918–28 | date = August 2006 | pmid = 16873249 | pmc = 1563832 | doi = 10.1128/JVI.00645-06 | quote = Particle diameters ranged from 50 to 150 nm, excluding the spikes, with mean particle diameters of 82 to 94 nm; Also See Figure{{nbsp}}1 for double shell. }}</ref><ref name="Fehr_2015" />,外膜蛋白、刺突蛋白與膜蛋白均位於外膜上<ref name="Lai_1997">{{cite journal | vauthors = Lai MM, Cavanagh D | title = The molecular biology of coronaviruses | journal = Advances in Virus Research | volume = 48 | pages = 1–100 | date = 1997 | pmid = 9233431 | pmc = 7130985 | doi = 10.1016/S0065-3527(08)60286-9 | isbn = 9780120398485 }}</ref>,三種蛋白的數量比例約為1:20:300<ref>{{cite journal | vauthors = Cavanagh D, Mawditt K, Sharma M, Drury SE, Ainsworth HL, Britton P, Gough RE | title = Detection of a coronavirus from turkey poults in Europe genetically related to infectious bronchitis virus of chickens | journal = Avian Pathology | volume = 30 | issue = 4 | pages = 355–68 | date = August 2001 | pmid = 19184921 | pmc = 7123520 | doi = 10.1007/3-7643-7339-3_1 | publisher = Birkhäuser | isbn = 978-3-7643-7339-9 | veditors = Schmidt A, Weber O, Wolff MH | series = Birkhäuser Advances in Infectious Diseases BAID }}</ref>,外膜蛋白與膜蛋白為{{tsl|en|Viral structural protein|病毒結構蛋白|結構蛋白}},負責維持病毒包膜的結構與大小<ref name="Fehr_2015" />,S蛋白可與宿主細胞表面的受體結合,為病毒感染細胞所需(某些病毒的膜蛋白可能也能與宿主細胞結合<ref>{{cite journal | vauthors = Naskalska A, Dabrowska A, Szczepanski A, Milewska A, Jasik KP, Pyrc K | title = Membrane Protein of Human Coronavirus NL63 Is Responsible for Interaction with the Adhesion Receptor | journal = Journal of Virology | volume = 93 | issue = 19 | date = October 2019 | pmid = 31315999 | pmc = 6744225 | doi = 10.1128/JVI.00355-19 }}</ref>),衣殼蛋白則位於膜的內部,包覆病毒的遺傳物質[[核糖核酸]]。當病毒不在細胞內時,外膜、膜蛋白與衣殼蛋白均有保護病毒的功能<ref>{{cite journal | vauthors = Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, Droese B, Klaus JP, Makino S, Sawicki SG, Siddell SG, Stamou DG, Wilson IA, Kuhn P, Buchmeier MJ | display-authors = 6 | title = A structural analysis of M protein in coronavirus assembly and morphology | journal = Journal of Structural Biology | volume = 174 | issue = 1 | pages = 11–22 | date = April 2011 | pmid = 21130884 | pmc = 4486061 | doi = 10.1016/j.jsb.2010.11.021 | quote = See Figure 10. }}</ref>。四種結構蛋白雖各有不同功能,但有研究顯示有些冠狀病毒不需全部的結構蛋白即可組裝完整、具感染力的病毒,顯示這些蛋白的功能可能有重複之處<ref name="SchoemanFielding2019"/>。


====膜蛋白====
====膜蛋白====
膜蛋白(M)是冠狀病毒包膜上主要的結構蛋白,屬於{{le|第三型膜蛋白|Bitopic protein}},由218至263個[[胺基酸]]組成<ref name=":20" />,可分為[[N端]]的{{le|胞外域|Ectodomain}}、跨膜三次的[[跨膜結構域]]與[[C端]]的胞內域等三個[[結構域]],其中後者可形成網狀結構以加固包膜,因病毒種類而異,膜蛋白的N端可能有[[醣基化|醣基]]修飾。膜蛋白病毒組裝、出芽、外膜形成與侵染細胞均相當重要<ref name="SchoemanFielding2019"/>。
膜蛋白(M)是冠狀病毒包膜上主要的結構蛋白,為四種結構蛋白中數量最多者,屬於{{le|第三型膜蛋白|Bitopic protein}},由218至263個[[胺基酸]]組成<ref name=":20" />,可分為[[N端]]的{{le|胞外域|Ectodomain}}、跨膜三次的[[跨膜結構域]]與[[C端]]的胞內域等三個[[結構域]],其中後者可形成網狀結構以加固包膜,因病毒種類而異,膜蛋白的N端可能有[[醣基化|醣基]]修飾。膜蛋白病毒組裝的過程扮演關鍵角色,可改變自身構型以改變的曲率,促進病毒包膜的形成<ref name="NeumanKiss2011">{{cite journal|last1=Neuman|first1=Benjamin W.|last2=Kiss|first2=Gabriella|last3=Kunding|first3=Andreas H.|last4=Bhella|first4=David|last5=Baksh|first5=M. Fazil|last6=Connelly|first6=Stephen|last7=Droese|first7=Ben|last8=Klaus|first8=Joseph P.|last9=Makino|first9=Shinji|last10=Sawicki|first10=Stanley G.|last11=Siddell|first11=Stuart G.|last12=Stamou|first12=Dimitrios G.|last13=Wilson|first13=Ian A.|last14=Kuhn|first14=Peter|last15=Buchmeier|first15=Michael J.|title=A structural analysis of M protein in coronavirus assembly and morphology|journal=Journal of Structural Biology|volume=174|issue=1|year=2011|pages=11–22|issn=10478477|doi=10.1016/j.jsb.2010.11.021}}</ref>,並其他三種結構蛋白互動以協調組裝<ref name="SchoemanFielding2019"/>。


====外膜蛋白====
====外膜蛋白====
外膜蛋白(E)也位於冠狀病毒的包膜上,是次要的結構蛋白,在不同病毒間的變異較大,一個冠狀病毒中約僅有20個外膜蛋白,由76至109個胺基酸組成.<ref name=":21" />,為四種結構蛋白中最小的,屬於嵌在脂雙層中的{{le|整合蛋白|Integral membrane protein}},可分為跨膜結構域與C端的膜外域兩個結構域。外膜蛋白大部分由[[α螺旋]]組成,某些冠狀病毒的數個外膜蛋白聚合時在膜上形成[[離子通道]]。外膜蛋白與病毒組裝、感染細胞後胞內物質的{{tsl|en|Intracellular transport|胞內物質運輸|運輸}}與出芽有<ref name="SchoemanFielding2019">{{cite journal|last1=Schoeman|first1=Dewald|last2=Fielding|first2=Burtram C.|title=Coronavirus envelope protein: current knowledge|journal=Virology Journal|volume=16|issue=1|year=2019|issn=1743-422X|doi=10.1186/s12985-019-1182-0}}</ref>。
外膜蛋白(E)也位於冠狀病毒的包膜上,是次要的結構蛋白,在不同病毒間的變異較大,一個冠狀病毒中約僅有20個外膜蛋白,由76至109個胺基酸組成.<ref name=":21" />,為四種結構蛋白中最小的,屬於嵌在脂雙層中的{{le|整合蛋白|Integral membrane protein}},可分為跨膜結構域與C端的膜外域兩個結構域。外膜蛋白大部分由[[α螺旋]]組成,SARS病毒等部分冠狀病毒的外膜蛋白可在膜上聚合而形成稱為{{le|病毒孔蛋白| viroporin}}的[[離子通道]],使離子(主要是[[氫離子]]、[[鉀離子]]、[[鈉離子]]與[[鈣離子]]等陽離子)通透,此離子通道的具體功能仍有待研究,但可能細胞釋出病毒的過程有關<ref name="SchoemanFielding2019"/>此外也外膜蛋白與病毒組裝、感染細胞後胞內物質的{{tsl|en|Intracellular transport|胞內物質運輸|運輸}}與出芽研究顯示缺乏外膜蛋白的[[鼠肝炎病毒]](MHV)仍能感染細胞,缺乏外膜蛋白的SARS病毒毒力降低{{Notetag|1=此病毒株中,3a與8a兩個輔助蛋白可能可彌補外膜蛋白的功能<ref name="SchoemanFielding2019"/>。}},而缺乏外膜蛋白的MERS病毒則無法感染細胞<ref name="SchoemanFielding2019">{{cite journal|last1=Schoeman|first1=Dewald|last2=Fielding|first2=Burtram C.|title=Coronavirus envelope protein: current knowledge|journal=Virology Journal|volume=16|issue=1|year=2019|issn=1743-422X|doi=10.1186/s12985-019-1182-0}}</ref>。


====刺突蛋白====
====刺突蛋白====
第69行: 第71行:
===基因組===
===基因組===
[[File:SARS Coronavirus Genome Organization.png|thumb|[[SARS病毒]]的基因組]]
[[File:SARS Coronavirus Genome Organization.png|thumb|[[SARS病毒]]的基因組]]
冠狀病毒的[[基因組]]為[[正單鏈RNA病毒|正單鏈RNA]],基因組長度介於26400至31700[[核鹼基|nt]]之間<ref name=":1" />,是[[RNA病毒]]中基因組最大的一類病毒之一,且與細胞生物的[[信使核糖核酸]]一樣具有[[5′端帽]]和[[3’端聚線苷酸尾|3′端聚線苷酸尾]]<ref name="Fehr_2015" />。其基因組基本結構為[[5′非轉譯區]](5'UTR)-複製酶(ORF1a/b)-刺突蛋白(S)-外膜蛋白(E)-膜蛋白(M)-衣殼蛋白(N)-[[3'非轉譯區]](3'UTR)-3′端聚線苷酸尾。編碼複製酶的[[開放閱讀框]]ORF1a/b占了基因組總長的2/3,可[[轉譯]]出一個多聚蛋白(polyprotein),此多聚蛋白有自我切割的活性,可自行切割成16個{{tsl|en|Viral nonstructural protein|病毒的非結構蛋白|非結構蛋白}}(nsp1-nsp16)<ref name="Fehr_2015" />。基因組後方則是編碼S、E、M與N四種結構蛋白的開放閱讀框<ref>{{cite journal | vauthors = Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, Gorbalenya AE | display-authors = 6 | title = Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage | journal = Journal of Molecular Biology | volume = 331 | issue = 5 | pages = 991–1004 | date = August 2003 | pmid = 12927536 | doi = 10.1016/S0022-2836(03)00865-9 | pmc = 7159028 | quote = See Figure 1. }}</ref>,其間可能穿插有其他編碼輔助蛋白的[[開放閱讀框]],輔助蛋白開放閱讀框的種類、數目與位置均因病毒種類不同而異<ref name="Fehr_2015" />。
冠狀病毒的[[基因組]]為[[正單鏈RNA病毒|正單鏈RNA]],基因組長度介於26400至31700[[核鹼基|nt]]之間<ref name=":1" />,是[[RNA病毒]]中基因組最大的一類病毒之一,且與細胞生物的[[信使核糖核酸]]一樣具有[[5′端帽]]和[[3’端聚線苷酸尾|3′端聚線苷酸尾]]<ref name="Fehr_2015" />。其基因組基本結構為[[5′非轉譯區]](5'UTR)-複製酶(ORF1a/b)-刺突蛋白(S)-外膜蛋白(E)-膜蛋白(M)-衣殼蛋白(N)-[[3'非轉譯區]](3'UTR)-3′端聚線苷酸尾。編碼複製酶的[[開放閱讀框]]ORF1a/b占了基因組總長的2/3,可[[轉譯]]出一個多聚蛋白(polyprotein),此多聚蛋白有自我切割的活性,可自行切割成16個{{tsl|en|Viral nonstructural protein|病毒的非結構蛋白|非結構蛋白}}(nsp1-nsp16)<ref name="Fehr_2015" />。基因組後方則是編碼S、E、M與N四種結構蛋白的開放閱讀框<ref>{{cite journal | vauthors = Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, Guan Y, Rozanov M, Spaan WJ, Gorbalenya AE | display-authors = 6 | title = Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage | journal = Journal of Molecular Biology | volume = 331 | issue = 5 | pages = 991–1004 | date = August 2003 | pmid = 12927536 | doi = 10.1016/S0022-2836(03)00865-9 | pmc = 7159028 | quote = See Figure 1. }}</ref>,其間可能穿插有其他編碼輔助蛋白的[[開放閱讀框]],輔助蛋白開放閱讀框的種類、數目與位置均因病毒種類不同而異<ref name="Fehr_2015" />,多數輔助蛋白不是病毒複製、感染所必須,但有些則在病毒的致病機理和對宿主[[免疫反應]]的抵抗扮演重要角色<ref name="WangGrunewald2020">{{cite journal|last1=Wang|first1=Yuhang|last2=Grunewald|first2=Matthew|last3=Perlman|first3=Stanley|title=Coronaviruses: An Updated Overview of Their Replication and Pathogenesis|volume=2203|year=2020|pages=1–29|issn=1064-3745|doi=10.1007/978-1-0716-0900-2_1}}</ref>。


===複製週期===
===複製週期===
第81行: 第83行:
進入宿主細胞後,冠狀病毒衣殼會被降解,使其基因組RNA進入宿主的[[細胞質]],因其RNA和真核生物的[[信使核糖核酸]]一樣具有[[5′端帽]]和[[3’端聚線苷酸尾|3′端聚線苷酸尾]],可被宿主的[[核糖體]][[轉譯]]產生[[蛋白質]],許多蛋白被合成後後還會得到[[醣基化]]等[[轉譯後修飾]]<ref name="FungLiu2019"/>。冠狀病毒編碼複製酶的[[開放閱讀框]]ORF1ab中間(ORF1a的末端)有一段{{le|滑動序列|slippery sequence}}(UUUAAAC)與一個[[假結結構|假結]],核糖體轉譯至此時可能發生{{tsl|en|Ribosomal frameshift|核糖體移碼|-1核糖體移碼}},使其繼續轉譯ORF1b的序列,而形成多聚蛋白pp1ab,若未發生核醣體移碼則轉譯在ORF1a結束後即停止,形成多聚蛋白pp1a<ref name="Fehr_2015" /><ref>{{cite journal|vauthors=Masters PS|date=2006-01-01|title=The molecular biology of coronaviruses|journal=Advances in Virus Research|publisher=Academic Press|volume=66|pages=193–292|doi=10.1016/S0065-3527(06)66005-3|isbn=9780120398690|pmid=16877062|pmc=7112330|quote=See Figure 8.}}</ref>,有研究顯示發生-1移碼的核糖體約有25%-30%<ref name="FungLiu2019"/>。
進入宿主細胞後,冠狀病毒衣殼會被降解,使其基因組RNA進入宿主的[[細胞質]],因其RNA和真核生物的[[信使核糖核酸]]一樣具有[[5′端帽]]和[[3’端聚線苷酸尾|3′端聚線苷酸尾]],可被宿主的[[核糖體]][[轉譯]]產生[[蛋白質]],許多蛋白被合成後後還會得到[[醣基化]]等[[轉譯後修飾]]<ref name="FungLiu2019"/>。冠狀病毒編碼複製酶的[[開放閱讀框]]ORF1ab中間(ORF1a的末端)有一段{{le|滑動序列|slippery sequence}}(UUUAAAC)與一個[[假結結構|假結]],核糖體轉譯至此時可能發生{{tsl|en|Ribosomal frameshift|核糖體移碼|-1核糖體移碼}},使其繼續轉譯ORF1b的序列,而形成多聚蛋白pp1ab,若未發生核醣體移碼則轉譯在ORF1a結束後即停止,形成多聚蛋白pp1a<ref name="Fehr_2015" /><ref>{{cite journal|vauthors=Masters PS|date=2006-01-01|title=The molecular biology of coronaviruses|journal=Advances in Virus Research|publisher=Academic Press|volume=66|pages=193–292|doi=10.1016/S0065-3527(06)66005-3|isbn=9780120398690|pmid=16877062|pmc=7112330|quote=See Figure 8.}}</ref>,有研究顯示發生-1移碼的核糖體約有25%-30%<ref name="FungLiu2019"/>。


多聚蛋白pp1ab與pp1a皆包含[[蛋白酶]]PLpro(nsp3)與{{tsl|en|3C-like protease|3C樣蛋白酶|3CLpro}}(nsp5),可分別將pp1ab切割成16個(nsp1-nsp16)與11個(nsp1-nsp11){{tsl|en|Viral nonstructural protein|病毒的非結構蛋白|非結構蛋白}}(nsp1-nsp16)<ref>{{cite web|url=https://viralzone.expasy.org/30?outline=all_by_species|title=Coronaviridae|publisher=ViralZone}}</ref>,其中許多病毒RNA複製所需的蛋白,如[[RNA複製酶]](nsp12)、[[螺旋酶|RNA螺旋酶]](nsp13)與[[核糖核酸外切酶|RNA外切酶]](nsp14)<ref name="Fehr_2015" />
多聚蛋白pp1ab與pp1a皆包含[[蛋白酶]]PLpro(nsp3)與{{tsl|en|3C-like protease|3C樣蛋白酶|3CLpro}}(nsp5),可分別將pp1ab切割成16個(nsp1-nsp16)與11個(nsp1-nsp11){{tsl|en|Viral nonstructural protein|病毒的非結構蛋白|非結構蛋白}}(nsp1-nsp16)<ref>{{cite web|url=https://viralzone.expasy.org/30?outline=all_by_species|title=Coronaviridae|publisher=ViralZone}}</ref>,其中許多參與病毒RNA複製與轉錄,為複製轉錄複合體(RTC)之一部分,如[[RNA複製酶]](nsp12)、[[螺旋酶|RNA螺旋酶]](nsp13)與[[核糖核酸外切酶|RNA外切酶]](nsp14)<ref name="Fehr_2015" />,有些非結構蛋白還有抑制宿主免疫反應的功能,如nsp1可阻止宿主[[干擾素]]mRNA的轉譯並促進其降解,nsp15可干擾宿主對細胞內雙股RNA的偵測,避免刺激宿主啟動免疫反應<ref name="DengHackbart2017">{{cite journal|last1=Deng|first1=Xufang|last2=Hackbart|first2=Matthew|last3=Mettelman|first3=Robert C.|last4=O’Brien|first4=Amornrat|last5=Mielech|first5=Anna M.|last6=Yi|first6=Guanghui|last7=Kao|first7=C. Cheng|last8=Baker|first8=Susan C.|title=Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages|journal=Proceedings of the National Academy of Sciences|volume=114|issue=21|year=2017|pages=E4251–E4260|issn=0027-8424|doi=10.1073/pnas.1618310114}}</ref>


====RNA複製與轉錄====
====RNA複製與轉錄====
第160行: 第162行:
冠狀病毒可感染多種家禽與家畜。[[傳染性支氣管炎病毒]](IBV)屬丙型冠狀病毒,可經氣溶膠或糞口途徑感染家禽<ref name=":16">{{Cite web|title=Merck Veterinary Manual|url=https://www.merckvetmanual.com/|access-date=2020-06-08|website=Merck Veterinary Manual|language=en-US}}</ref>,造成{{tsl|en|家禽傳染性支氣管炎|Avian infectious bronchitis|傳染性支氣管炎}},除呼吸道外還可感染[[泌尿生殖系統]]<ref name="pmid25954763">{{cite journal | vauthors = Bande F, Arshad SS, Bejo MH, Moeini H, Omar AR | title = Progress and challenges toward the development of vaccines against avian infectious bronchitis | journal = Journal of Immunology Research | volume = 2015 | pages = 424860 | year = 2015 | pmid = 25954763 | pmc = 4411447 | doi = 10.1155/2015/424860 }}</ref>。家禽傳染性支氣管炎的死亡率高、散播迅速<ref name=":14" />且影響肉與蛋的產量,造成嚴重的經濟損失<ref name="Cavanagh 2007">{{cite journal|last1=Cavanagh|first1=D|date=2007|title=Coronavirus avian infectious bronchitis virus|journal=Veterinary Research|volume=38|issue=2|pages=281–97|doi=10.1051/vetres:2006055|pmid=17296157}}{{open access}}</ref>,目前已有多種[[疫苗]]可防止此病毒感染。此外還有一些與IBV相近的病毒株,如造成火雞[[腸炎]]的[[火雞冠狀病毒]](TCV)<ref name=":14" />。
冠狀病毒可感染多種家禽與家畜。[[傳染性支氣管炎病毒]](IBV)屬丙型冠狀病毒,可經氣溶膠或糞口途徑感染家禽<ref name=":16">{{Cite web|title=Merck Veterinary Manual|url=https://www.merckvetmanual.com/|access-date=2020-06-08|website=Merck Veterinary Manual|language=en-US}}</ref>,造成{{tsl|en|家禽傳染性支氣管炎|Avian infectious bronchitis|傳染性支氣管炎}},除呼吸道外還可感染[[泌尿生殖系統]]<ref name="pmid25954763">{{cite journal | vauthors = Bande F, Arshad SS, Bejo MH, Moeini H, Omar AR | title = Progress and challenges toward the development of vaccines against avian infectious bronchitis | journal = Journal of Immunology Research | volume = 2015 | pages = 424860 | year = 2015 | pmid = 25954763 | pmc = 4411447 | doi = 10.1155/2015/424860 }}</ref>。家禽傳染性支氣管炎的死亡率高、散播迅速<ref name=":14" />且影響肉與蛋的產量,造成嚴重的經濟損失<ref name="Cavanagh 2007">{{cite journal|last1=Cavanagh|first1=D|date=2007|title=Coronavirus avian infectious bronchitis virus|journal=Veterinary Research|volume=38|issue=2|pages=281–97|doi=10.1051/vetres:2006055|pmid=17296157}}{{open access}}</ref>,目前已有多種[[疫苗]]可防止此病毒感染。此外還有一些與IBV相近的病毒株,如造成火雞[[腸炎]]的[[火雞冠狀病毒]](TCV)<ref name=":14" />。


[[豬]]、[[牛]]與[[馬]]等家畜也會被冠狀病毒感染<ref name=":14" />。[[豬流行性腹瀉病毒]](PEDV)<ref name="pmid32041637">{{Cite journal | vauthors = Wei X, She G, Wu T, Xue C, Cao Y | title = PEDV enters cells through clathrin-, caveolae-, and lipid raft-mediated endocytosis and traffics via the endo-/lysosome pathway | journal = Veterinary Research | volume = 51 | issue = 1 | pages = 10 | date = February 2020 | pmid = 32041637 | pmc = 7011528 | doi = 10.1186/s13567-020-0739-7 }}</ref>、[[豬傳染性胃腸炎病毒]](TGEV)<ref name="ReferenceA">{{cite journal | vauthors = Cruz JL, Sola I, Becares M, Alberca B, Plana J, Enjuanes L, Zuñiga S | title = Coronavirus gene 7 counteracts host defenses and modulates virus virulence | journal = PLoS Pathogens | volume = 7 | issue = 6 | pages = e1002090 | date = June 2011 | pmid = 21695242 | pmc = 3111541 | doi = 10.1371/journal.ppat.1002090 }}</ref><ref name="ReferenceB">{{cite journal | vauthors = Cruz JL, Becares M, Sola I, Oliveros JC, Enjuanes L, Zúñiga S | title = Alphacoronavirus protein 7 modulates host innate immune response | journal = Journal of Virology | volume = 87 | issue = 17 | pages = 9754–67 | date = September 2013 | pmid = 23824792 | pmc = 3754097 | doi = 10.1128/JVI.01032-13 }}</ref>、豬丁型冠狀病毒(PdCV)與[[豬急性腹瀉綜合徵冠狀病毒]](SADS-CoV)均為感染豬消化道的冠狀病毒,造成嘔吐與腹瀉等症狀,其中SADS-CoV很可來來自蝙蝠病毒,其序列與[[菊頭蝠冠狀病毒HKU2]]的相似度很高<ref name="pmid29618817">{{cite journal | vauthors = Zhou P, Fan H, Lan T, Yang XL, Shi WF, Zhang W, Zhu Y, Zhang YW, Xie QM, Mani S, Zheng XS, Li B, Li JM, Guo H, Pei GQ, An XP, Chen JW, Zhou L, Mai KJ, Wu ZX, Li D, Anderson DE, Zhang LB, Li SY, Mi ZQ, He TT, Cong F, Guo PJ, Huang R, Luo Y, Liu XL, Chen J, Huang Y, Sun Q, Zhang XL, Wang YY, Xing SZ, Chen YS, Sun Y, Li J, Daszak P, Wang LF, Shi ZL, Tong YG, Ma JY | display-authors = 6 | title = Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin | journal = Nature | volume = 556 | issue = 7700 | pages = 255–58 | date = April 2018 | pmid = 29618817 | doi = 10.1038/s41586-018-0010-9 | pmc = 7094983 | bibcode = 2018Natur.556..255Z}}</ref>感染牛的[[牛冠狀病毒]]則和[[人类冠状病毒OC43]]關係接近<ref name=":18">{{Cite web|title=Taxonomy browser (Betacoronavirus 1)|url=https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Tree&id=694003&lvl=3&keep=1&srchmode=1&unlock|access-date=2020-06-08|website=www.ncbi.nlm.nih.gov}}</ref>,可造成小牛腹瀉等症狀<ref name=":14" />。
[[豬]]、[[牛]]與[[馬]]等家畜也會被冠狀病毒感染<ref name=":14" />。[[豬流行性腹瀉病毒]](PEDV)<ref name="pmid32041637">{{Cite journal | vauthors = Wei X, She G, Wu T, Xue C, Cao Y | title = PEDV enters cells through clathrin-, caveolae-, and lipid raft-mediated endocytosis and traffics via the endo-/lysosome pathway | journal = Veterinary Research | volume = 51 | issue = 1 | pages = 10 | date = February 2020 | pmid = 32041637 | pmc = 7011528 | doi = 10.1186/s13567-020-0739-7 }}</ref>、[[豬傳染性胃腸炎病毒]](TGEV)<ref name="ReferenceA">{{cite journal | vauthors = Cruz JL, Sola I, Becares M, Alberca B, Plana J, Enjuanes L, Zuñiga S | title = Coronavirus gene 7 counteracts host defenses and modulates virus virulence | journal = PLoS Pathogens | volume = 7 | issue = 6 | pages = e1002090 | date = June 2011 | pmid = 21695242 | pmc = 3111541 | doi = 10.1371/journal.ppat.1002090 }}</ref><ref name="ReferenceB">{{cite journal | vauthors = Cruz JL, Becares M, Sola I, Oliveros JC, Enjuanes L, Zúñiga S | title = Alphacoronavirus protein 7 modulates host innate immune response | journal = Journal of Virology | volume = 87 | issue = 17 | pages = 9754–67 | date = September 2013 | pmid = 23824792 | pmc = 3754097 | doi = 10.1128/JVI.01032-13 }}</ref>、[[豬丁型冠狀病毒]](PdCV)與[[豬急性腹瀉綜合徵冠狀病毒]](SADS-CoV)均為感染豬消化道的冠狀病毒,造成嘔吐與腹瀉等症狀,其中SADS-CoV很可來來自蝙蝠病毒,其序列與[[菊頭蝠冠狀病毒HKU2]]的相似度很高<ref name="pmid29618817">{{cite journal | vauthors = Zhou P, Fan H, Lan T, Yang XL, Shi WF, Zhang W, Zhu Y, Zhang YW, Xie QM, Mani S, Zheng XS, Li B, Li JM, Guo H, Pei GQ, An XP, Chen JW, Zhou L, Mai KJ, Wu ZX, Li D, Anderson DE, Zhang LB, Li SY, Mi ZQ, He TT, Cong F, Guo PJ, Huang R, Luo Y, Liu XL, Chen J, Huang Y, Sun Q, Zhang XL, Wang YY, Xing SZ, Chen YS, Sun Y, Li J, Daszak P, Wang LF, Shi ZL, Tong YG, Ma JY | display-authors = 6 | title = Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin | journal = Nature | volume = 556 | issue = 7700 | pages = 255–58 | date = April 2018 | pmid = 29618817 | doi = 10.1038/s41586-018-0010-9 | pmc = 7094983 | bibcode = 2018Natur.556..255Z}}</ref>感染牛的[[牛冠狀病毒]]則和[[人类冠状病毒OC43]]關係接近<ref name=":18">{{Cite web|title=Taxonomy browser (Betacoronavirus 1)|url=https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Tree&id=694003&lvl=3&keep=1&srchmode=1&unlock|access-date=2020-06-08|website=www.ncbi.nlm.nih.gov}}</ref>,可造成小牛腹瀉等症狀<ref name=":14" />;感染馬的[[馬冠狀病毒]]也可造成腹瀉<ref>{{cite journal|last1=Mattei|first1=Debora N.|last2=Kopper|first2=Jamie J.|last3=Sanz|first3=Macarena G.|title=Equine Coronavirus-Associated Colitis in Horses: A Retrospective Study|journal=Journal of Equine Veterinary Science|volume=87|year=2020|pages=102906|issn=07370806|doi=10.1016/j.jevs.2019.102906}}</ref>,很少造成死亡<ref>{{cite web|url=https://www.vet.cornell.edu/animal-health-diagnostic-center/veterinary-support/disease-information/equine-enteric-coronavirus|title=Equine Enteric Coronavirus|publisher={{le|Cornell University College of Veterinary Medicine}}}}</ref>。


===寵物===
===寵物===

2021年1月30日 (六) 20:40的版本

冠状病毒
電子顯微鏡下的禽類傳染性支氣管炎病毒
Illustration of a SARS-CoV-2 virion
冠狀病毒示意圖[1]
  紅色:刺突蛋白(S)
  灰色:外膜
  黃色:外膜蛋白(E)
  橘色:膜蛋白(M)
病毒分類 编辑
(未分级) 病毒 Virus
域: 核糖病毒域 Riboviria
界: 正核糖病毒界 Orthornavirae
门: 小核糖病毒门 Pisuviricota
纲: 小南嵌套病毒纲 Pisoniviricetes
目: 套式病毒目 Nidovirales
科: 冠状病毒科 Coronaviridae
亚科: 正冠状病毒亚科 Orthocoronavirinae
異名[2][3]
  • Coronavirinae

guān狀病毒亞科學名Orthocoronavirinae)通称guān状病毒(英語:Coronavirus),是一类可感染哺乳动物鸟类的单链RNA病毒。已知可感染人类的冠状病毒共有7种,其中有4種可引发普通感冒,另外3種為严重急性呼吸道综合征冠状病毒(SARS-CoV)、中東呼吸症候群冠狀病毒(MERS)與严重急性呼吸系统综合征冠状病毒2(SARS-CoV-2),皆會導致嚴重疾病,曾分別在全球各地造成疫情。另外部分病毒可感染家畜或家禽,造成養殖業的經濟損失。

正冠狀病毒亞科属于网巢病毒目冠状病毒科[4][3],為具有包膜正單鏈RNA病毒[5],其基因組大小介於26000與32000nt之間,是RNA病毒中基因組最大的一類病毒之一[6],其表面具有由刺突蛋白組成的棒狀突起,是此類病毒顯著的特徵。

詞源

冠狀病毒的學名Coronavirus為最早研究人類冠狀病毒的英國病毒學家瓊·阿爾梅達英语June Almeida大衛·A·泰瑞爾英语David Tyrrell (physician)所取[7],最早見於1968年《自然》的一篇文章[8]。此名源於拉丁文corona,意指「皇冠」或「花環」,這個詞本身則來自希臘文κορώνη(korṓnē),意指「花環」[9][10]。以Corona稱呼此類病毒的原因是在電子顯微鏡下觀察時,可見其病毒顆粒表面由刺突蛋白(spike protein)所構成、形似光暈的棒狀突起[7][11]

1971年,國際病毒命名委員會(現已改名為國際病毒分類委員會)將冠狀病毒(Coronavirus)接受為一[12],隨著發現的病毒數量日益增多,該屬於2009年被細分成甲型冠狀病毒屬乙型冠狀病毒屬丙型冠狀病毒屬丁型冠狀病毒屬等四個屬[13]

研究歷史

電子顯微鏡下的人類冠狀病毒OC43

冠狀病毒感染動物最早的紀錄是1920年代晚期,美國飼養的隻出現急性呼吸道感染[14],1931年有科學家發表了對北達科他州雞隻呼吸道感染的詳細報告,指出被感染的小雞有喘氣與倦怠的症狀,且具有40%至90%的高死亡率[15]。1933年造成此感染的病毒被成功分離[16],即傳染性支氣管炎病毒(IBV),1937年研究人員首度成功在實驗室培養此病毒[17]。1940年代晚期,有兩種感染鼠類的冠狀病毒毒株被發現,即JHM株系鼠肝炎病毒,分別感染老鼠的[18],當時尚不知這兩種病毒與IBV有關聯[12]

1960年代,感染人類的冠狀病毒漸被發現[19][20]。1961年,大衛·A·泰瑞爾英语David Tyrrell (physician)英國醫學研究委員會感冒研究單位英语Common Cold Unit的研究人員發現了造成普通感冒的一新病毒株,將其命名為B814[21][22][23],但用培養腺病毒鼻病毒等其他感冒病毒的方法試圖培養該病毒時卻告失敗,後來使用由器官培養英语Organ culture技術建立的人類胚胎氣管組織才成功培養此病毒[24]。1962年又有科學家在芝加哥大學分離了新的感冒病毒毒株,於1966年發表,即為人類冠狀病毒229E[25]。B814病毒與229E病毒皆能在自願的受試者中造成感冒,且經處理後即失去活性,顯示它們具有包膜[25][21]

1967年,倫敦聖湯瑪士醫院的病毒學家瓊·阿爾梅達英语June Almeida和大衛·泰瑞爾合作,用電子顯微鏡觀察IBV、B814與229E等病毒的外形結構[26][27],發現它們表面均具有特別的棒狀突起[28]。同年美國國家衛生院的團隊發現了另一種造成感冒的新病毒株人類冠狀病毒OC43[29],此病毒株的表面亦具有棒狀突起[30][31]補體結合試驗英语Complement fixation test結果顯示其與鼠肝炎病毒關係接近[18] ,於是這些病毒被合稱為「冠狀病毒」[8]。後來人們又發現了人類冠狀病毒NL63人類冠狀病毒HKU1兩個造成感冒的冠狀病毒,但B814病毒株今已佚失[32]。此外也有許多感染其他動物的冠狀病毒被陸續發現[33],感染的冠狀病毒都在20世紀後半葉被發現,並有許多相關研究發表[34]

2000年後,冠狀病毒已造成三次嚴重的疫情爆發。2002年底,中國广东省爆發了非典型肺炎,演變成為期近一年的SARS事件,疫情擴散至29個國家,超過8000人感染,其中774人死亡[35]。此感染為新發現的冠狀病毒SARS病毒造成,疑似是由市場中的果子貍傳染給人類,但後續研究顯示蝙蝠才是SARS病毒的自然宿主。2012年,沙烏地阿拉伯爆發了中東呼吸綜合症疫情,為另一新種冠狀病毒中東呼吸症候群冠狀病毒(MERS)造成,可能經駱駝傳染給人類,疫情隨後擴散至西亞其他國家與韓國,共造成超過1000人感染,約400人死亡[36]。2019年12月,新型冠狀病毒严重急性呼吸系统综合征冠状病毒2在中國武汉市造成不明肺炎疫情,並於2020年迅速擴散至世界各國,造成嚴重的全球大流行,截至2021年1月,染病人數已逾一億,超過200萬人死亡[37]

2003年SARS疫情結束後,許多研究人員開始調查野生動物中的冠狀病毒,在蝙蝠、鯨豚與鳥類中均有發現不同的冠狀病毒,增進了人們對冠狀病毒在自然界中多樣性的了解[38][39]

病毒學

結構

Cross-sectional model of a coronavirus
冠狀病毒的切面模型

冠狀病毒的外型大致呈球體[40],大小因種類而異,直徑一般介於80與120奈米之間,但也有小至50奈米與大至200奈米者[41] ,分子量約為40000kDa,具有外膜蛋白(E)、刺突蛋白(S)、膜蛋白(M)與衣殼蛋白(N)等四種結構蛋白,外圍有脂雙層構成的外膜[42],在電子顯微鏡下為一電子密度高的殼狀結構[43][44],外膜蛋白、刺突蛋白與膜蛋白均位於外膜上[45],三種蛋白的數量比例約為1:20:300[46],外膜蛋白與膜蛋白為結構蛋白英语Viral structural protein,負責維持病毒包膜的結構與大小[44],S蛋白可與宿主細胞表面的受體結合,為病毒感染細胞所需(某些病毒的膜蛋白可能也能與宿主細胞結合[47]),衣殼蛋白則位於膜的內部,包覆病毒的遺傳物質核糖核酸。當病毒不在細胞內時,外膜、膜蛋白與衣殼蛋白均有保護病毒的功能[48]。四種結構蛋白雖各有不同功能,但有研究顯示有些冠狀病毒不需全部的結構蛋白即可組裝完整、具感染力的病毒,顯示這些蛋白的功能可能有重複之處[49]

膜蛋白

膜蛋白(M)是冠狀病毒包膜上主要的結構蛋白,為四種結構蛋白中數量最多者,屬於第三型膜蛋白英语Bitopic protein,由218至263個胺基酸組成[42],可分為N端胞外域英语Ectodomain、跨膜三次的跨膜結構域C端的胞內域等三個結構域,其中後者可形成網狀結構以加固包膜,因病毒種類而異,膜蛋白的N端可能有醣基修飾。膜蛋白在病毒組裝的過程扮演關鍵角色,可改變自身構型以改變膜的曲率,促進病毒包膜的形成[50],並與其他三種結構蛋白互動以協調組裝[49]

外膜蛋白

外膜蛋白(E)也位於冠狀病毒的包膜上,是次要的結構蛋白,在不同病毒間的變異較大,一個冠狀病毒中約僅有20個外膜蛋白,由76至109個胺基酸組成.[41],為四種結構蛋白中最小的,屬於嵌在脂雙層中的整合蛋白,可分為跨膜結構域與C端的膜外域兩個結構域。外膜蛋白大部分由α螺旋組成,SARS病毒等部分冠狀病毒的外膜蛋白可在外膜上聚合而形成稱為病毒孔蛋白英语viroporin離子通道,使離子(主要是氫離子鉀離子鈉離子鈣離子等陽離子)通透,此離子通道的具體功能仍有待研究,但可能細胞釋出病毒的過程有關[49]。此外也外膜蛋白參與病毒組裝、感染細胞後胞內物質的運輸英语Intracellular transport與出芽,有研究顯示缺乏外膜蛋白的鼠肝炎病毒(MHV)仍能感染細胞,缺乏外膜蛋白的SARS病毒毒力降低[註 1],而缺乏外膜蛋白的MERS病毒則無法感染細胞[49]

刺突蛋白

刺突(spike)為冠狀病毒表面的棒狀突起,是此類病毒最明顯的特徵,一個冠狀病毒平均有74個刺突[51],刺突長約20奈米,為3個刺突蛋白組成的三聚體。刺突蛋白屬於第一型膜融合蛋白英语Membrane fusion protein,r可與宿主細胞表面的受體結合,並使外膜和宿主細胞膜融合英语Lipid bilayer fusion,此蛋白也具有許多醣基修飾,可分為S1與S2兩個次單元,S1位於刺突蛋白的頂部,具有與宿主受體結合的受體結合結構域(receptor binding domain, RBD);S2則位於刺突蛋白基部,將刺突蛋白固定在膜上,並在被組織蛋白酶跨膜丝氨酸蛋白酶2等宿主蛋白酶切割活化後介導膜融合,使病毒直接進入細胞質中,或形成胞內體內吞作用進入細胞[52]。S1次單元可在分為N端次單元(NTD)與C端次單元(CTD)兩部分,皆可結合細胞表面的受體,前者結合的受體一般為細胞膜蛋白上的醣基[註 2],後者則與血管紧张素转化酶2(ACE2)、丙胺酸胺肽酶英语Aminopeptidase N(APN)和二肽基肽酶-4(DPP4)等蛋白受體結合[53]。冠狀病毒演化的過程中,S1中CTD可能面臨較大的選汰壓力,因而演化的速度比NTD快,CTD發生變異而嘗試與新的受體結合的同時,與醣基結合的NTD可作為一個保險的機制,確保病毒可以與細胞結合[53]

有些冠狀病毒的刺突蛋白在病毒組裝後即被胞內的蛋白酶切割,如中東呼吸綜合症冠狀病毒(MERS-CoV)的S1與S2間有一段可被細胞內的弗林蛋白酶的序列,因此其經由胞吐作用被釋放到胞外後,S1與S2可能已被切開,這些病毒隨後與其他細胞的受體結合時可迅速改變構型,再被其他細胞表面的蛋白酶在S2'位點切割,隨後病毒即可與細胞膜融合而進入細胞質中;而不具有弗林蛋白酶的細胞所釋放的病毒則未被切割,與受體結合後構型改變較慢,需以胞內體-溶體途徑進入細胞,在溶體中被组织蛋白酶切割後才可進入細胞質[54][55]。另外還有些冠狀病毒的刺突蛋白在組裝與釋放後,可被彈性蛋白酶英语elastase等細胞外的蛋白酶切割[53]

血細胞凝集素酯酶

乙型冠狀病毒屬支序A的病毒(乙型冠狀病毒1型鼠冠狀病毒人類冠狀病毒HKU1等)除膜蛋白、外膜蛋白與刺突蛋白外,在外膜上還有另一種蛋白血細胞凝集素酯酶英语Hemagglutinin esterase(HE)[33],此蛋白是由兩個相同的次單元組成的二聚體,包含約400個胺基酸,為病毒表面比刺突短的突起,長約5至7奈米,可協助病毒與宿主細胞的結合[56]

衣殼蛋白

包膜內部為許多衣殼蛋白(N)組成的衣殼,衣殼蛋白與病毒的基因組正鏈單股核糖核酸結合,如同珠子與絲線結合般,將其包覆於衣殼內部[44][57] 。衣殼蛋白為一磷蛋白,可分成三個結構域,其中結構域1與結構域2組成其主要部分,包含許多帶正電的精胺酸離胺酸,結構域3則較小,位於C端,因包含較多酸性胺基酸,所帶的淨電荷為負[41]

基因組

SARS病毒的基因組

冠狀病毒的基因組正單鏈RNA,基因組長度介於26400至31700nt之間[6],是RNA病毒中基因組最大的一類病毒之一,且與細胞生物的信使核糖核酸一樣具有5′端帽3′端聚線苷酸尾[44]。其基因組基本結構為5′非轉譯區(5'UTR)-複製酶(ORF1a/b)-刺突蛋白(S)-外膜蛋白(E)-膜蛋白(M)-衣殼蛋白(N)-3'非轉譯區(3'UTR)-3′端聚線苷酸尾。編碼複製酶的開放閱讀框ORF1a/b占了基因組總長的2/3,可轉譯出一個多聚蛋白(polyprotein),此多聚蛋白有自我切割的活性,可自行切割成16個非結構蛋白英语Viral nonstructural protein(nsp1-nsp16)[44]。基因組後方則是編碼S、E、M與N四種結構蛋白的開放閱讀框[58],其間可能穿插有其他編碼輔助蛋白的開放閱讀框,輔助蛋白開放閱讀框的種類、數目與位置均因病毒種類不同而異[44],多數輔助蛋白不是病毒複製、感染所必須,但有些則在病毒的致病機理和對宿主免疫反應的抵抗扮演重要角色[34]

複製週期

冠狀病毒的複製週期

進入細胞

感染細胞時,冠狀病毒的刺突蛋白和細胞表面的受體結合,隨後宿主的蛋白酶組織蛋白酶跨膜丝氨酸蛋白酶2等)會切割刺突蛋白而將其活化,因病毒株系而異,活化後的病毒可以內吞作用進入細胞,或直接和宿主細胞膜融合而進入細胞質[59]貓冠狀病毒人類冠狀病毒229E傳染性支氣管炎病毒SARS病毒鼠肝炎病毒A59(MHV A59)即是使用前者,鼠肝炎病毒 JHM(MHV JHM)則是使用後者[52]。除了蛋白酶外,其他宿主蛋白也會影響病毒感染的過程,例如干扰素诱导跨膜蛋白(IFITM)可阻止病毒進入細胞,含缬酪肽蛋白英语valosin-containing protein(VCP)則可幫助胞內體中的病毒進入細胞質[60][55]

冠狀病毒的使用的受體種類多樣。人類冠狀病毒NL63與SARS病毒分別屬於甲型與乙型冠狀病毒,但皆使用血管紧张素转化酶2(ACE2)為受體,但與NL63同屬甲型冠狀病毒的豬傳染性胃腸炎病毒(TGEV)和豬流行性腹瀉病毒(PEDV)使用的受體為丙胺酸胺肽酶英语Aminopeptidase N(APN),與SARS同屬乙型冠狀病毒的MERS病毒使用二肽基肽酶-4(DPP4)為受體、鼠冠狀病毒使用癌胚抗原相關細胞黏附分子1英语carcinoembryonic antigen-related cell adhesion molecule 1(CEACAM1)為受體,另外許多冠狀病毒使用細胞膜蛋白上的醣基修飾為受體或輔受體英语Co-receptor[53]

轉譯

進入宿主細胞後,冠狀病毒衣殼會被降解,使其基因組RNA進入宿主的細胞質,因其RNA和真核生物的信使核糖核酸一樣具有5′端帽3′端聚線苷酸尾,可被宿主的核糖體轉譯產生蛋白質,許多蛋白被合成後後還會得到醣基化轉譯後修飾[55]。冠狀病毒編碼複製酶的開放閱讀框ORF1ab中間(ORF1a的末端)有一段滑動序列英语slippery sequence(UUUAAAC)與一個假結,核糖體轉譯至此時可能發生-1核糖體移碼,使其繼續轉譯ORF1b的序列,而形成多聚蛋白pp1ab,若未發生核醣體移碼則轉譯在ORF1a結束後即停止,形成多聚蛋白pp1a[44][61],有研究顯示發生-1移碼的核糖體約有25%-30%[55]

多聚蛋白pp1ab與pp1a皆包含蛋白酶PLpro(nsp3)與3CLpro(nsp5),可分別將pp1ab切割成16個(nsp1-nsp16)與11個(nsp1-nsp11)非結構蛋白英语Viral nonstructural protein(nsp1-nsp16)[62],其中許多參與病毒RNA的複製與轉錄,為複製轉錄複合體(RTC)之一部分,如RNA複製酶(nsp12)、RNA螺旋酶(nsp13)與RNA外切酶(nsp14)[44],有些非結構蛋白還有抑制宿主免疫反應的功能,如nsp1可阻止宿主干擾素mRNA的轉譯並促進其降解,nsp15可干擾宿主對細胞內雙股RNA的偵測,避免刺激宿主啟動免疫反應[63]

RNA複製與轉錄

冠狀病毒的複製轉錄複合體(RTC)
次基因組RNA英语Subgenomic mRNA轉錄
長度各異的次基因組RNA

許多由pp1ab切割而成的非結構蛋白共同組合成一個複製轉錄複合體(replication transcription complex;RTC)以進行冠狀病毒RNA的複製與轉錄,其中最重要的蛋白為RNA複製酶(RdRP),直接催化RNA合成,其他蛋白則各有不同的輔助功能,例如RNA外切酶提供了校對功能,可將誤配的核苷酸移除,增進RNA複製與轉錄的準確度[64],因為有此外切酶校對,冠狀病毒的突變率比其他RNA病毒低上許多,接近單鏈DNA病毒的突變率[65][66]

RNA複製時,RNA複製酶以正鏈的基因組RNA為模板,合成完整的負鏈的RNA,亦可以負鏈RNA為模板合成完整正鏈RNA[44];轉錄時,RNA複製酶以正鏈RNA為模板合成負鏈RNA,但合成至序列的中間即停止,跳過剩餘的序列而直接跳轉至最末端的5′非轉譯區,形成次基因組RNA英语Subgenomic mRNA(subgenomic RNA),再以此為模板合成正鏈的次基因組RNA[44],次基因組RNA因跳轉發生的位置不同而長度各異,但皆不含有ORF1ab的序列[67]。病毒的衣殼蛋白(N)雖不是複製轉錄複合體的一部分,但可能有RNA伴護蛋白的功能,並可能與一些宿主蛋白結合調節轉錄時的模板跳轉[55]

另外,當細胞中具有兩個以上的病毒RNA時,複製轉錄複合體可能可以在複製時切換模板,而造成病毒的基因重組[67]。基因重組是造成冠狀病毒多樣性的重要機制,可能造成病毒序列的變異,使病毒得以跨越物種障礙感染其他物種,但其具體機制尚不明朗[68]

組裝與釋放

RNA複製所合成的完整正鏈RNA為病毒的遺傳物質,被衣殼蛋白包覆組成衣殼;次基因組RNA則包含四種結構蛋白的開放閱讀框,可在細胞的內質網中由核糖體轉譯出結構蛋白與輔助蛋白[44],其中刺突蛋白、膜蛋白與外膜蛋白可隨宿主細胞的內膜系統移動至内质网-高尔基体中间体英语Vesicular-tubular cluster(ERGIC),在此與衣殼組裝成完整的病毒經由高基氏體胞吐作用自細胞膜離開細胞,再進而感染其他細胞[69]。冠狀病毒組裝與釋放的過程可能有微管微絲波形蛋白等宿主蛋白參與,因病毒種類而異[55]

傳播

被病毒感染的個體可以將其散播至環境中,病毒的組織特異性英语Tissue tropism感染力宿主特異性英语Host tropism由其刺突蛋白和宿主細胞受體的結合決定[70][71]。冠狀病毒多感染上皮細胞[33],可能以氣溶膠英语Bioaerosol物品糞口路徑傳染給其他個體[72]

已知的人類冠狀病毒大多感染呼吸道,例如SARS病毒與細胞表面的血管紧张素转化酶2(ACE2)受體結合造成感染[73];其他動物的冠狀病毒則有許多感染消化道[33],例如豬傳染性胃腸炎病毒(TGEV)主要感染途徑為糞口傳染[72],以丙胺酸胺肽酶英语alanine aminopeptidase(APN)為受體感染豬腸道的上皮細胞[44]

分類

冠狀病毒是冠狀病毒科的兩個亞科之一[33][74],該科的另一個亞科為勒托病毒亚科,目前僅有姬蛙甲型勒托病毒一型一種,為感染魚類的病毒[75][76]。冠狀病毒亞科下分甲型冠状病毒属、乙型冠状病毒属、丙型冠状病毒属與丁型冠状病毒属等四個屬,前兩者僅感染哺乳動物,後兩者則主要感染鳥類,但也有少數感染哺乳動物者[77][78]

演化

數種冠狀病毒可能的起源

有研究以RNA複製酶(RdRp)作為分子鐘,顯示冠狀病毒的最近共同祖先(MRCA)約於公元前8000年出現,且甲型冠状病毒屬、乙型冠状病毒屬、丙型冠状病毒屬與丁型冠状病毒屬的共祖分別在約2400BCE、3300BCE、2800BCE與3000BCE出現[85],但有學者認為此研究高估了冠狀病毒的突變率,且忽略了纯化选择英语purifying selection的影響,而提出新模型主張冠狀病毒共祖早在5500萬年前就已出現,與蝙蝠鳥類發生了長期的共演化[65]。蝙蝠與鳥類(溫血的飛行動物)是冠狀病毒很好的自然宿主,兩者在全世界廣泛的分布和龐大的族群使冠狀病毒得以大量演化、傳播[85]

大多數人類冠狀病毒都是由蝙蝠而來[86]。例如造成感冒的人類冠狀病毒NL63肯亞波斯葉鼻蝠屬體內的BtKYNL63-9a、BtKYNL63-9b與BtKYNL63-15病毒關係接近[87]人類冠狀病毒229E則與肯亞蹄蝠屬蝙蝠的BtKY229E-1與BtKY229E-8病毒關係接近[87]SARS病毒中東呼吸症候群冠狀病毒(MERS)可能也是源於蝙蝠,再分別經與果子貍駱駝傳染給人類[88][89][90]

乙型冠状病毒屬的亞屬Embecovirus(包含乙型冠狀病毒1型鼠冠狀病毒人類冠狀病毒HKU1等)可能是起源於鼠類,而非蝙蝠[86][91]

感染人類

MERS-CoV、SARS-CoV與SARS-CoV-2病毒造成的疾病比較
MERS-CoV SARS-CoV SARS-CoV-2
疾病 MERS SARS COVID-19
疫情 2012年2015年2018年英语2018 Middle East respiratory syndrome coronavirus outbreak SARS疫情 COVID-19疫情
首例時間 2012年6月 2002年11月 2019年12月[92]
首例地點 沙烏地阿拉伯吉达 中國廣東顺德 中國湖北武汉
平均年齡 56 44[93][a] 56[94]
性別比(男:女) 3.3:1 0.8:1[95] 1.6:1[94]
確診數 2494 8096[96] 676,609,955
死亡數 858 774[96] 6,881,955
死亡率 37% 9.2% 1.01%
症狀
發燒 98% 99–100% 87.9%[97]
乾咳 47% 29–75% 67.7%[97]
呼吸困难 72% 40–42% 18.6%[97]
腹瀉 26% 20–25% 3.7%[97]
喉嚨痛 21% 13–25% 13.9%[97]
呼吸机使用 24.5%[98] 14–20% 4.1%[99]

  1. ^ 基於香港的病例統計資料

目前已知7種冠狀病毒病毒株可感染人類,其中有兩個病毒株屬於同個物種。冠狀病毒感染造成的人類疾病嚴重程度不一,嚴重者如中東呼吸綜合症冠狀病毒(MERS-CoV)感染的死亡率超過30%,輕微者則只造成發燒咽喉痛等較不嚴重的普通感冒症狀[44][100]。冠狀病毒一般感染人類的呼吸道,可能造成肺炎支氣管炎等併發症[101]

有四種冠狀病毒會造成症狀輕微的普通感冒:

另外三種冠狀病毒都屬乙型冠狀病毒,可導致嚴重的疾病,皆曾在世界各地引起嚴重疫情:

普通感冒

人类冠状病毒229E人类冠状病毒OC43人类冠状病毒NL63人类冠状病毒HKU1可造成普通感冒,這四種病毒在人群中已廣泛流傳[102],造成的症狀較輕微,有統計顯示15%的感冒是這四種病毒感染引起(也有數據指為20%至30%[103][104][註 3]。在溫帶地區,這些病毒的感染多在冬天發生[106][107],在熱帶地區則沒有明顯差別[108]。四種冠狀病毒可能彼此競爭,且在人群中的流行有週期性[103]。另外,有假說認為這些冠狀病毒雖僅造成感冒,但它們在數百年前或數十年前剛出現時可能曾造成嚴重疫情,經數十年至數百年的演化後才成為現今毒力較弱的株系[103],例如1890年左右乙型冠狀病毒1型中的人類冠狀病毒OC43牛冠狀病毒分支,前者跨越物種障礙,獲得感染人類的能力[109][110],即有學者提出1889–1890年流感大流行可能是此溢出事件產生的OC43病毒造成,而非流感病毒所致[111]

嚴重急性呼吸系統綜合症(SARS)

嚴重急性呼吸系統綜合症相關冠狀病毒示意圖

2002年底,在中國广东省爆發了非典型肺炎,演變成為期近一年的SARS事件,疫情擴散至29個國家,超過8000人感染,其中774人死亡[35][112]。2003年3月世界衛生組織正式將此疾病命名為SARS,同時許多科學家研究發現疫情是冠狀病毒造成,為首個被發現引起嚴重疾病的冠狀病毒,其直接來源應為市場中販賣的果子貍,牠們身上檢測出的果子貍SARS病毒與人類SARS病毒的序列相似度高達99.8%,但此病毒的自然宿主應是中華菊頭蝠馬鐵菊頭蝠等蝙蝠[113][114]。SARS的潛伏期一般為4至6天,之後出現類似流感的症狀與肺炎,嚴重者會呼吸困難,可能併發急性呼吸窘迫综合征(ARDS),此感染的症狀在病毒被免疫系統清除後反而更加嚴重,顯示部分症狀可能是病人自身的免疫系統過度活躍所致[55]

中東呼吸綜合症(MERS)

2012年沙烏地阿拉伯有病人出現嚴重的呼吸道症狀,其中分離出了一種新型冠狀病毒,即中東呼吸綜合症冠狀病毒(MERS-CoV)[115][116]。此病毒應該也是源於蝙蝠病毒[117],可能經駱駝傳染給人類,疫情隨後擴散至西亞各國,並於2015年擴散至韓國[36],截至2020年共有約2500人感染[118],其中約35%死亡,大多數病例都位於阿拉伯半島[117]。MERS的潛伏期約為5.5天[119],典型症狀包括發燒、咳嗽、呼吸困難與腹瀉[117],部分病患無症狀,嚴重者則會引發嚴重肺炎與急性呼吸窘迫综合征[120]。此病毒的傳染力較弱,一般與患者近距離接觸才會感染,且不常在醫院外的地方傳染[121]

2019冠状病毒病

2019年12月,中國武汉市爆發不明原因的肺炎疫情[122],經研究於12月31日發現疫情是一新型冠狀病毒造成[123],命名為2019新型冠状病毒[124][125][126]國際病毒分類委員會則將其成為SARS-CoV-2。2020年疫情迅速擴散至世界各國,截至2021年1月染病人數已逾一億,超過200萬人死亡[37],對全球社會與經濟造成巨大影響,為1930年代的經濟大恐慌以來最嚴重的經濟衰退。2019冠状病毒病的症狀歧異度很高,潛伏期介於1至14天之間,至少有三分之一的感染者無任何症狀,但仍可散播病毒[127][128],有症狀者多數為輕微至中等,包括發燒、咳嗽、倦怠、短暫的嗅覺喪失與輕微肺炎等,少數患者為重症,症狀包括呼吸困難缺氧,更嚴重者還包括呼吸衰竭休克器官衰竭[129]。部分患者在康復後仍有器官損傷未能恢復,不過此疾病長期的後遺症還有待更多研究闡明[130]

感染其他動物

許多冠狀病毒可感染許多動物,其中包括家畜與家禽、寵物與實驗動物[131],大部分經由糞口途徑傳染,感染消化道組織[132] 。已有許多獸醫學研究探討這些病毒的致病機制英语Viral pathogenesis[133]

家畜與家禽

冠狀病毒可感染多種家禽與家畜。傳染性支氣管炎病毒(IBV)屬丙型冠狀病毒,可經氣溶膠或糞口途徑感染家禽[134],造成傳染性支氣管炎英语家禽傳染性支氣管炎,除呼吸道外還可感染泌尿生殖系統[135]。家禽傳染性支氣管炎的死亡率高、散播迅速[131]且影響肉與蛋的產量,造成嚴重的經濟損失[136],目前已有多種疫苗可防止此病毒感染。此外還有一些與IBV相近的病毒株,如造成火雞腸炎火雞冠狀病毒(TCV)[131]

等家畜也會被冠狀病毒感染[131]豬流行性腹瀉病毒(PEDV)[137]豬傳染性胃腸炎病毒(TGEV)[138][80]豬丁型冠狀病毒(PdCV)與豬急性腹瀉綜合徵冠狀病毒(SADS-CoV)均為感染豬消化道的冠狀病毒,造成嘔吐與腹瀉等症狀,其中SADS-CoV很可來來自蝙蝠病毒,其序列與菊頭蝠冠狀病毒HKU2的相似度很高[139];感染牛的牛冠狀病毒則和人类冠状病毒OC43關係接近[140],可造成小牛腹瀉等症狀[131];感染馬的馬冠狀病毒也可造成腹瀉[141],很少造成死亡[142]

寵物

雪貂等寵物也會被冠狀病毒感染[134]貓冠狀病毒屬甲型冠狀病毒[143],可分為兩型,感染腸道的貓腸道冠狀病毒(FECV)症狀較輕微,貓傳染性腹膜炎病毒(Feline infectious peritonitis virus、FIPV)則可造成嚴重的貓傳染性腹膜炎[131]。已知有兩種冠狀病毒可感染狗,分別為犬冠狀病毒(CCoV)與犬呼吸道冠狀病毒(CRCoV),前者屬甲型冠狀病毒[143],造成輕微的消化道症狀[131];後者則屬乙型冠狀病毒[140],感染呼吸道[131]。感染雪貂的雪貂冠狀病毒也有兩型[144],一型造成腸炎,另一型造成類似貓傳染性腹膜炎的全身性感染[145][146]

實驗動物

冠狀病毒亦可感染許多實驗室中使用的動物[131]鼠肝炎病毒(MHV)感染實驗小鼠造成的死亡率很高[147],在SARS病毒出現前,MHV即是被研究最多的冠狀病毒[133];大鼠涎淚腺炎病毒(SDAV)則為感染實驗大鼠的冠狀病毒,為其重要病原之一。另外也有冠狀病毒可感染,造成死亡率高的腸炎[148]

註腳

  1. ^ 此病毒株中,3a與8a兩個輔助蛋白可能可彌補外膜蛋白的功能[49]
  2. ^ 鼠冠狀病毒的刺突蛋白為一例外,其S1次單元的NTD是與蛋白受體癌胚抗原相關細胞黏附分子1英语carcinoembryonic antigen-related cell adhesion molecule 1(CEACAM1)結合。
  3. ^ 有近50%的普通感冒鼻病毒感染引起[105]

参考文献

  1. ^ Giaimo C. The Spiky Blob Seen Around the World. New York Times. 1 April 2020 [6 April 2020]. (原始内容存档于2 April 2020). 
  2. ^ 2017.012-015S. International Committee on Taxonomy of Viruses (ICTV). October 2018 [24 January 2020]. (原始内容 (xlsx)存档于14 May 2019). 
  3. ^ 3.0 3.1 ICTV Taxonomy history: Orthocoronavirinae. International Committee on Taxonomy of Viruses (ICTV). [24 January 2020]. 
  4. ^ Fan Y, Zhao K, Shi ZL, Zhou P. Bat Coronaviruses in China. Viruses. March 2019, 11 (3): 210. PMC 6466186可免费查阅. PMID 30832341. doi:10.3390/v11030210. 
  5. ^ Cherry J, Demmler-Harrison GJ, Kaplan SL, Steinbach WJ, Hotez PJ. Feigin and Cherry's Textbook of Pediatric Infectious Diseases. Elsevier Health Sciences. 2017: PT6615. ISBN 978-0-323-39281-5 (英语). 
  6. ^ 6.0 6.1 Woo PC, Huang Y, Lau SK, Yuen KY. Coronavirus genomics and bioinformatics analysis. Viruses. August 2010, 2 (8): 1804–20. PMC 3185738可免费查阅. PMID 21994708. doi:10.3390/v2081803. Coronaviruses possess the largest genomes [26.4 kb (ThCoV HKU12) to 31.7 kb (SW1)] among all known RNA viruses (Figure 1) [2,13,16]. 
  7. ^ 7.0 7.1 Tyrrell DA, Fielder M. Cold Wars: The Fight Against the Common Cold. Oxford University Press. 2002: 96. ISBN 978-0-19-263285-2 (英语). We looked more closely at the appearance of the new viruses and noticed that they had a kind of halo surrounding them. Recourse to a dictionary produced the Latin equivalent, corona, and so the name coronavirus was born. 
  8. ^ 8.0 8.1 Almeida JD, Berry DM, Cunningham CH, Hamre D, Hofstad MS, Mallucci L, McIntosh K, Tyrrell DA. Virology: Coronaviruses. Nature. November 1968, 220 (5168): 650. Bibcode:1968Natur.220..650.. doi:10.1038/220650b0. [T]here is also a characteristic "fringe" of projections 200 A long, which are rounded or petal shaped ... This appearance, recalling the solar corona, is shared by mouse hepatitis virus and several viruses recently recovered from man, namely strain B814, 229E and several others. 
  9. ^ Definition of Coronavirus by Merriam-Webster. Merriam-Webster. [24 March 2020]. (原始内容存档于23 March 2020). 
  10. ^ Definition of Corona by Merriam-Webster. Merriam-Webster. [24 March 2020]. (原始内容存档于24 March 2020). 
  11. ^ Sturman LS, Holmes KV. Lauffer MA, Maramorosch K , 编. The molecular biology of coronaviruses. Advances in Virus Research. 1983-01-01, 28: 35–112. ISBN 9780120398287. PMC 7131312可免费查阅. PMID 6362367. doi:10.1016/s0065-3527(08)60721-6. [T]hese viruses displayed a characteristic fringe of large, distinctive, petal-shaped peplomers or spikes which resembled a crown, like the corona spinarum in religious art; hence the name coronaviruses. 
  12. ^ 12.0 12.1 Lalchhandama K. The chronicles of coronaviruses: the bronchitis, the hepatitis and the common cold. Science Vision. 2020, 20 (1): 43–53. doi:10.33493/scivis.20.01.04 (英语). 
  13. ^ Carstens EB. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009). Archives of Virology. 2010, 155 (1): 133–46. PMC 7086975可免费查阅. PMID 19960211. doi:10.1007/s00705-009-0547-x. 
  14. ^ Estola T. Coronaviruses, a New Group of Animal RNA Viruses. Avian Diseases. 1970, 14 (2): 330–336. ISSN 0005-2086. JSTOR 1588476. PMID 4316767. doi:10.2307/1588476. 
  15. ^ Fabricant J. The Early History of Infectious Bronchitis. Avian Diseases. 1998, 42 (4): 648–650. ISSN 0005-2086. JSTOR 1592697. PMID 9876830. doi:10.2307/1592697. 
  16. ^ Bushnell LD, Brandly CA. Laryngotracheitis in chicks. Poultry Science. 1933, 12 (1): 55–60. doi:10.3382/ps.0120055 (英语). 
  17. ^ Decaro N. Gammacoronavirus‡: Coronaviridae. Tidona C, Darai G (编). The Springer Index of Viruses. Springer: 403–413. 2011. ISBN 978-0-387-95919-1. PMC 7176155可免费查阅. doi:10.1007/978-0-387-95919-1_58 (英语).  |entry=|title=只需其一 (帮助)
  18. ^ 18.0 18.1 McIntosh K. Coronaviruses: A Comparative Review. Arber W, Haas R, Henle W, Hofschneider PH, Jerne NK, Koldovský P, Koprowski H, Maaløe O, Rott R (编). Current Topics in Microbiology and Immunology / Ergebnisse der Mikrobiologie und Immunitätsforschung. Current Topics in Microbiology and Immunology / Ergebnisse der Mikrobiologie und Immunitätsforschung. Berlin, Heidelberg: Springer. 1974: 87. ISBN 978-3-642-65775-7. doi:10.1007/978-3-642-65775-7_3 (英语). 
  19. ^ Kahn JS, McIntosh K. History and recent advances in coronavirus discovery. The Pediatric Infectious Disease Journal. November 2005, 24 (11 Suppl): S223–7, discussion S226. PMID 16378050. doi:10.1097/01.inf.0000188166.17324.60. 
  20. ^ Mahase E. The BMJ in 1965. BMJ. April 2020, 369: m1547. PMID 32299810. doi:10.1136/bmj.m1547. 
  21. ^ 21.0 21.1 Kendall EJ, Bynoe ML, Tyrrell DA. Virus isolations from common colds occurring in a residential school. British Medical Journal. July 1962, 2 (5297): 82–6. PMC 1925312可免费查阅. PMID 14455113. doi:10.1136/bmj.2.5297.82. 
  22. ^ Richmond C. David Tyrrell. BMJ : British Medical Journal. 2005-06-18, 330 (7505): 1451. PMC 558394可免费查阅. doi:10.1136/bmj.330.7505.1451. 
  23. ^ Obituary Notices: Malcom Byone. British Medical Journal. 1969-06-28, 2 (5660): 827–829. doi:10.1136/bmj.2.5660.827 (英语). 
  24. ^ Tyrrell DA, Bynoe ML. Cultivation of a Novel Type of Common-Cold Virus in Organ Cultures. British Medical Journal. June 1965, 1 (5448): 1467–70. PMC 2166670可免费查阅. PMID 14288084. doi:10.1136/bmj.1.5448.1467. 
  25. ^ 25.0 25.1 Hamre D, Procknow JJ. A new virus isolated from the human respiratory tract. Proceedings of the Society for Experimental Biology and Medicine. January 1966, 121 (1): 190–3. PMID 4285768. doi:10.3181/00379727-121-30734. 
  26. ^ The woman who discovered the first coronavirus. 
  27. ^ Almeida J. June Almeida (née Hart). BMJ. 2008-06-26, 336 (7659): 1511.1–1511. ISSN 0959-8138. PMC 2440895可免费查阅. doi:10.1136/bmj.a434 (英语). 
  28. ^ Almeida JD, Tyrrell DA. The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. The Journal of General Virology. April 1967, 1 (2): 175–8. PMID 4293939. doi:10.1099/0022-1317-1-2-175. 
  29. ^ McIntosh K, Becker WB, Chanock RM. Growth in suckling-mouse brain of "IBV-like" viruses from patients with upper respiratory tract disease. Proceedings of the National Academy of Sciences of the United States of America. December 1967, 58 (6): 2268–73. Bibcode:1967PNAS...58.2268M. PMC 223830可免费查阅. PMID 4298953. doi:10.1073/pnas.58.6.2268. 
  30. ^ McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proceedings of the National Academy of Sciences of the United States of America. April 1967, 57 (4): 933–40. Bibcode:1967PNAS...57..933M. PMC 224637可免费查阅. PMID 5231356. doi:10.1073/pnas.57.4.933. 
  31. ^ Times, Harold M. Schmeck Jr Special To the New York. Six Newly Discovered Viruses May Explain Cold; Strains Are Similar to Germ That Causes a Bronchial Infection in Chickens Believed to Be New Group. The New York Times. 1967-05-05 [2020-04-25]. ISSN 0362-4331 (美国英语). 
  32. ^ Corman VM, Jores J, Meyer B, Younan M, Liljander A, Said MY, et al. Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992-2013. Emerging Infectious Diseases. August 2014, 20 (8): 1319–22. ISBN 978-1-4899-7447-1. PMC 7122465可免费查阅. PMID 25075637. doi:10.1007/978-1-4899-7448-8_10. The other OC strains and B814 that could not be adapted to mouse brain resisted adaptation to cell culture as well; these distinct viruses have since been lost and may actually have been rediscovered recently. 
  33. ^ 33.0 33.1 33.2 33.3 33.4 de Groot RJ, Baker SC, Baric R, Enjuanes L, Gorbalenya AE, Holmes KV, Perlman S, Poon L, Rottier PJ, Talbot PJ, Woo PC, Ziebuhr J. Family Coronaviridae. King AM, Lefkowitz E, Adams MJ, Carstens EB, International Committee on Taxonomy of Viruses, International Union of Microbiological Societies. Virology Division (编). Ninth Report of the International Committee on Taxonomy of Viruses. Oxford: Elsevier. 2011: 806–28. ISBN 978-0-12-384684-6. doi:10.1016/B978-0-12-384684-6.00068-9. 
  34. ^ 34.0 34.1 Wang, Yuhang; Grunewald, Matthew; Perlman, Stanley. Coronaviruses: An Updated Overview of Their Replication and Pathogenesis 2203: 1–29. 2020. ISSN 1064-3745. doi:10.1007/978-1-0716-0900-2_1. 
  35. ^ 35.0 35.1 Pasley, James. How SARS terrified the world in 2003, infecting more than 8,000 people and killing 774. Business Insider. 2020年2月21日. 
  36. ^ 36.0 36.1 Middle East respiratory syndrome coronavirus (MERS-CoV) – Saudi Arabia. World Health Organization. 2015-03-10 [2015-03-12]. (原始内容存档于2015-03-16). 
  37. ^ 37.0 37.1 WHO Coronavirus Disease (COVID-19) Dashboard. World Health organization. 2021-01-28. 
  38. ^ Woo, P. C. Y.; Lau, S. K. P.; Lam, C. S. F.; Tsang, A. K. L.; Hui, S.-W.; Fan, R. Y. Y.; Martelli, P.; Yuen, K.-Y. Discovery of a Novel Bottlenose Dolphin Coronavirus Reveals a Distinct Species of Marine Mammal Coronavirus in Gammacoronavirus. Journal of Virology. 2013, 88 (2): 1318–1331. ISSN 0022-538X. doi:10.1128/JVI.02351-13. 
  39. ^ Lau, Susanna K. P.; Wong, Emily Y. M.; Tsang, Chi-Ching; Ahmed, Syed Shakeel; Au-Yeung, Rex K. H.; Yuen, Kwok-Yung; Wernery, Ulrich; Woo, Patrick C. Y.; Gallagher, Tom. Discovery and Sequence Analysis of Four Deltacoronaviruses from Birds in the Middle East Reveal Interspecies Jumping with Recombination as a Potential Mechanism for Avian-to-Avian and Avian-to-Mammalian Transmission. Journal of Virology. 2018, 92 (15). ISSN 0022-538X. doi:10.1128/JVI.00265-18. 
  40. ^ Goldsmith CS, Tatti KM, Ksiazek TG, Rollin PE, Comer JA, Lee WW, et al. Ultrastructural characterization of SARS coronavirus. Emerging Infectious Diseases. February 2004, 10 (2): 320–6. PMC 3322934可免费查阅. PMID 15030705. doi:10.3201/eid1002.030913. Virions acquired an envelope by budding into the cisternae and formed mostly spherical, sometimes pleomorphic, particles that averaged 78 nm in diameter (Figure 1A). 
  41. ^ 41.0 41.1 41.2 Masters PS. The molecular biology of coronaviruses. Advances in Virus Research. 2006, 66: 193–292. ISBN 9780120398690. PMC 7112330可免费查阅. PMID 16877062. doi:10.1016/S0065-3527(06)66005-3. 
  42. ^ 42.0 42.1 Lalchhandama K. The chronicles of coronaviruses: the electron microscope, the doughnut, and the spike. Science Vision. 2020, 20 (2): 78–92. doi:10.33493/scivis.20.02.03 (英语). 
  43. ^ Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, et al. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. Journal of Virology. August 2006, 80 (16): 7918–28. PMC 1563832可免费查阅. PMID 16873249. doi:10.1128/JVI.00645-06. Particle diameters ranged from 50 to 150 nm, excluding the spikes, with mean particle diameters of 82 to 94 nm; Also See Figure 1 for double shell. 
  44. ^ 44.00 44.01 44.02 44.03 44.04 44.05 44.06 44.07 44.08 44.09 44.10 44.11 44.12 Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Maier HJ, Bickerton E, Britton P (编). Coronaviruses. Methods in Molecular Biology 1282. Springer. 2015: 1–23. ISBN 978-1-4939-2438-7. PMC 4369385可免费查阅. PMID 25720466. doi:10.1007/978-1-4939-2438-7_1. See section: Virion Structure. 
  45. ^ Lai MM, Cavanagh D. The molecular biology of coronaviruses. Advances in Virus Research. 1997, 48: 1–100. ISBN 9780120398485. PMC 7130985可免费查阅. PMID 9233431. doi:10.1016/S0065-3527(08)60286-9. 
  46. ^ Cavanagh D, Mawditt K, Sharma M, Drury SE, Ainsworth HL, Britton P, Gough RE. Schmidt A, Weber O, Wolff MH , 编. Detection of a coronavirus from turkey poults in Europe genetically related to infectious bronchitis virus of chickens. Avian Pathology. Birkhäuser Advances in Infectious Diseases BAID (Birkhäuser). August 2001, 30 (4): 355–68. ISBN 978-3-7643-7339-9. PMC 7123520可免费查阅. PMID 19184921. doi:10.1007/3-7643-7339-3_1. 
  47. ^ Naskalska A, Dabrowska A, Szczepanski A, Milewska A, Jasik KP, Pyrc K. Membrane Protein of Human Coronavirus NL63 Is Responsible for Interaction with the Adhesion Receptor. Journal of Virology. October 2019, 93 (19). PMC 6744225可免费查阅. PMID 31315999. doi:10.1128/JVI.00355-19. 
  48. ^ Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. A structural analysis of M protein in coronavirus assembly and morphology. Journal of Structural Biology. April 2011, 174 (1): 11–22. PMC 4486061可免费查阅. PMID 21130884. doi:10.1016/j.jsb.2010.11.021. See Figure 10. 
  49. ^ 49.0 49.1 49.2 49.3 49.4 Schoeman, Dewald; Fielding, Burtram C. Coronavirus envelope protein: current knowledge. Virology Journal. 2019, 16 (1). ISSN 1743-422X. doi:10.1186/s12985-019-1182-0. 
  50. ^ Neuman, Benjamin W.; Kiss, Gabriella; Kunding, Andreas H.; Bhella, David; Baksh, M. Fazil; Connelly, Stephen; Droese, Ben; Klaus, Joseph P.; Makino, Shinji; Sawicki, Stanley G.; Siddell, Stuart G.; Stamou, Dimitrios G.; Wilson, Ian A.; Kuhn, Peter; Buchmeier, Michael J. A structural analysis of M protein in coronavirus assembly and morphology. Journal of Structural Biology. 2011, 174 (1): 11–22. ISSN 1047-8477. doi:10.1016/j.jsb.2010.11.021. 
  51. ^ Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. A structural analysis of M protein in coronavirus assembly and morphology. Journal of Structural Biology. April 2011, 174 (1): 11–22. PMC 4486061可免费查阅. PMID 21130884. doi:10.1016/j.jsb.2010.11.021. 
  52. ^ 52.0 52.1 Yamada, Yoshiyuki; Liu, Ding Xiang. Proteolytic Activation of the Spike Protein at a Novel RRRR/S Motif Is Implicated in Furin-Dependent Entry, Syncytium Formation, and Infectivity of Coronavirus Infectious Bronchitis Virus in Cultured Cells. Journal of Virology. 2009, 83 (17): 8744–8758. ISSN 0022-538X. doi:10.1128/JVI.00613-09. 
  53. ^ 53.0 53.1 53.2 53.3 Li, Fang. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annual Review of Virology. 2016, 3 (1): 237–261. ISSN 2327-056X. doi:10.1146/annurev-virology-110615-042301. 
  54. ^ Park, Jung-Eun; Li, Kun; Barlan, Arlene; Fehr, Anthony R.; Perlman, Stanley; McCray, Paul B.; Gallagher, Tom. Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proceedings of the National Academy of Sciences. 2016, 113 (43): 12262–12267. ISSN 0027-8424. doi:10.1073/pnas.1608147113. 
  55. ^ 55.0 55.1 55.2 55.3 55.4 55.5 55.6 Fung, To Sing; Liu, Ding Xiang. Human Coronavirus: Host-Pathogen Interaction. Annual Review of Microbiology. 2019, 73 (1): 529–557. ISSN 0066-4227. doi:10.1146/annurev-micro-020518-115759. 
  56. ^ Zeng Q, Langereis MA, van Vliet AL, Huizinga EG, de Groot RJ. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proceedings of the National Academy of Sciences of the United States of America. July 2008, 105 (26): 9065–9. PMC 2449365可免费查阅. PMID 18550812. doi:10.1073/pnas.0800502105. 
  57. ^ Chang CK, Hou MH, Chang CF, Hsiao CD, Huang TH. The SARS coronavirus nucleocapsid protein—forms and functions. Antiviral Research. March 2014, 103: 39–50. PMC 7113676可免费查阅. PMID 24418573. doi:10.1016/j.antiviral.2013.12.009. See Figure 4c. 
  58. ^ Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. Journal of Molecular Biology. August 2003, 331 (5): 991–1004. PMC 7159028可免费查阅. PMID 12927536. doi:10.1016/S0022-2836(03)00865-9. See Figure 1. 
  59. ^ Simmons G, Zmora P, Gierer S, Heurich A, Pöhlmann S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Research. December 2013, 100 (3): 605–14. PMC 3889862可免费查阅. PMID 24121034. doi:10.1016/j.antiviral.2013.09.028. See Figure 2. 
  60. ^ Wong, Hui Hui; Kumar, Pankaj; Tay, Felicia Pei Ling; Moreau, Dimitri; Liu, Ding Xiang; Bard, Frédéric; Perlman, S. Genome-Wide Screen Reveals Valosin-Containing Protein Requirement for Coronavirus Exit from Endosomes. Journal of Virology. 2015, 89 (21): 11116–11128. ISSN 0022-538X. doi:10.1128/JVI.01360-15. 
  61. ^ Masters PS. The molecular biology of coronaviruses. Advances in Virus Research (Academic Press). 2006-01-01, 66: 193–292. ISBN 9780120398690. PMC 7112330可免费查阅. PMID 16877062. doi:10.1016/S0065-3527(06)66005-3. See Figure 8. 
  62. ^ Coronaviridae. ViralZone. 
  63. ^ Deng, Xufang; Hackbart, Matthew; Mettelman, Robert C.; O’Brien, Amornrat; Mielech, Anna M.; Yi, Guanghui; Kao, C. Cheng; Baker, Susan C. Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages. Proceedings of the National Academy of Sciences. 2017, 114 (21): E4251–E4260. ISSN 0027-8424. doi:10.1073/pnas.1618310114. 
  64. ^ Sexton NR, Smith EC, Blanc H, Vignuzzi M, Peersen OB, Denison MR. Homology-Based Identification of a Mutation in the Coronavirus RNA-Dependent RNA Polymerase That Confers Resistance to Multiple Mutagens. Journal of Virology. August 2016, 90 (16): 7415–28. PMC 4984655可免费查阅. PMID 27279608. doi:10.1128/JVI.00080-16. Finally, these results, combined with those from previous work (33, 44), suggest that CoVs encode at least three proteins involved in fidelity (nsp12-RdRp, nsp14-ExoN, and nsp10), supporting the assembly of a multiprotein replicase-fidelity complex, as described previously (38). 
  65. ^ 65.0 65.1 Wertheim, J. O.; Chu, D. K. W.; Peiris, J. S. M.; Kosakovsky Pond, S. L.; Poon, L. L. M. A Case for the Ancient Origin of Coronaviruses. Journal of Virology. 2013, 87 (12): 7039–7045. ISSN 0022-538X. doi:10.1128/JVI.03273-12. 
  66. ^ Emerman, Michael; Eckerle, Lance D.; Becker, Michelle M.; Halpin, Rebecca A.; Li, Kelvin; Venter, Eli; Lu, Xiaotao; Scherbakova, Sana; Graham, Rachel L.; Baric, Ralph S.; Stockwell, Timothy B.; Spiro, David J.; Denison, Mark R. Infidelity of SARS-CoV Nsp14-Exonuclease Mutant Virus Replication Is Revealed by Complete Genome Sequencing. PLoS Pathogens. 2010, 6 (5): e1000896. ISSN 1553-7374. doi:10.1371/journal.ppat.1000896. 
  67. ^ 67.0 67.1 Payne S. Chapter 17 - Family Coronaviridae. Viruses. Academic Press. 2017-01-01: 149–158. ISBN 978-0-12-803109-4. doi:10.1016/B978-0-12-803109-4.00017-9 (英语). 
  68. ^ Su S, Wong G, Shi W, Liu J, Lai AC, Zhou J, Liu W, Bi Y, Gao GF. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in Microbiology. June 2016, 24 (6): 490–502. PMC 7125511可免费查阅. PMID 27012512. doi:10.1016/j.tim.2016.03.003. 
  69. ^ Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Maier HJ, Bickerton E, Britton P (编). Coronaviruses. Methods in Molecular Biology 1282. Springer. 2015: 1–23. ISBN 978-1-4939-2438-7. PMC 4369385可免费查阅. PMID 25720466. doi:10.1007/978-1-4939-2438-7_1. See section: Coronavirus Life Cycle—Assembly and Release 
  70. ^ Masters PS. The molecular biology of coronaviruses. Advances in Virus Research (Academic Press). 1 January 2006, 66: 193–292. ISBN 978-0120398690. PMC 7112330可免费查阅. PMID 16877062. doi:10.1016/S0065-3527(06)66005-3. Nevertheless, the interaction between S protein and receptor remains the principal, if not sole, determinant of coronavirus host species range and tissue tropism. 
  71. ^ Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nature Reviews. Microbiology. March 2019, 17 (3): 181–92. PMC 7097006可免费查阅. PMID 30531947. doi:10.1038/s41579-018-0118-9. Different SARS-CoV strains isolated from several hosts vary in their binding affinities for human ACE2 and consequently in their infectivity of human cells 76, 78 (Fig. 6b) 
  72. ^ 72.0 72.1 Decaro N. Tidona C, Darai G , 编. Alphacoronavirus. Springer. 2011: 371–383. ISBN 978-0-387-95919-1. PMC 7176201可免费查阅. doi:10.1007/978-0-387-95919-1_56 (英语).  |journal=被忽略 (帮助)
  73. ^ Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. September 2005, 309 (5742): 1864–68. Bibcode:2005Sci...309.1864L. PMID 16166518. doi:10.1126/science.1116480. 
  74. ^ International Committee on Taxonomy of Viruses. ICTV Master Species List 2009—v10 (xls). 24 August 2010. 
  75. ^ Bukhari, Khulud; Mulley, Geraldine; Gulyaeva, Anastasia A.; Zhao, Lanying; Shu, Guocheng; Jiang, Jianping; Neuman, Benjamin W. Description and initial characterization of metatranscriptomic nidovirus-like genomes from the proposed new family Abyssoviridae, and from a sister group to the Coronavirinae, the proposed genus Alphaletovirus. Virology. 2018, 524: 160–171. ISSN 0042-6822. doi:10.1016/j.virol.2018.08.010. 
  76. ^ Gideon J Mordecai, Kristina M Miller, Emiliano Di Cicco, Angela D Schulze, Karia H Kaukinen, Tobi J Ming, Shaorong Li, Amy Tabata, Amy Teffer, David A Patterson, Hugh W Ferguson, Curtis A Suttle. Endangered wild salmon infected by newly discovered viruses (PDF). eLIFE. 2019, 8: e47615. doi:10.7554/eLife.47615.001. 
  77. ^ Wertheim JO, Chu DK, Peiris JS, Kosakovsky Pond SL, Poon LL. A case for the ancient origin of coronaviruses. Journal of Virology. June 2013, 87 (12): 7039–45. PMC 3676139可免费查阅. PMID 23596293. doi:10.1128/JVI.03273-12. Alphacoronaviruses and betacoronaviruses are found exclusively in mammals, whereas gammacoronaviruses and deltacoronaviruses primarily infect birds. 
  78. ^ Cui, Jie; Li, Fang; Shi, Zheng-Li. Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology. 2018, 17 (3): 181–192. ISSN 1740-1526. doi:10.1038/s41579-018-0118-9. 
  79. ^ 马亦林. 冠状病毒的特性及其致病性研究进展. 中华临床感染病杂志. 2018, 11 (4): 305–315 [2020-01-21]. doi:10.3760/cma.j.issn.1674-2397.2018.04.011. (原始内容存档于2020-05-06). 
  80. ^ 80.0 80.1 Cruz JL, Becares M, Sola I, Oliveros JC, Enjuanes L, Zúñiga S. Alphacoronavirus protein 7 modulates host innate immune response. Journal of Virology. September 2013, 87 (17): 9754–67. PMC 3754097可免费查阅. PMID 23824792. doi:10.1128/JVI.01032-13. 
  81. ^ Gorbalenya, Alexander E. Severe acute respiratory syndrome-related coronavirus – The species and its viruses, a statement of the Coronavirus Study Group. bioRxiv. 2020-02-11: 2020.02.07.937862 [2020-02-12]. doi:10.1101/2020.02.07.937862. (原始内容存档于2020-02-11) (英语). 
  82. ^ Jon Cohen,"Mining coronavirus genomes for clues to the outbreak’s origins"[1]页面存档备份,存于互联网档案馆),AAAS-Science,Jan.31,2020,6:20PM.
  83. ^ "Taxonomy browser (Munia coronavirus HKU13)"[2]页面存档备份,存于互联网档案馆),NCBI taxonomy database,retrieved Feb 11, 2020.
  84. ^ "Taxonomy browser (Thrush coronavirus HKU12)"[3]页面存档备份,存于互联网档案馆),NCBI taxonomy database,retrieved Feb 11, 2020.
  85. ^ 85.0 85.1 Woo PC, Lau SK, Lam CS, Lau CC, Tsang AK, Lau JH, et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. Journal of Virology. April 2012, 86 (7): 3995–4008. PMC 3302495可免费查阅. PMID 22278237. doi:10.1128/JVI.06540-11. 
  86. ^ 86.0 86.1 Forni D, Cagliani R, Clerici M, Sironi M. Molecular Evolution of Human Coronavirus Genomes. Trends in Microbiology. January 2017, 25 (1): 35–48. PMC 7111218可免费查阅. PMID 27743750. doi:10.1016/j.tim.2016.09.001. Specifically, all HCoVs are thought to have a bat origin, with the exception of lineage A beta-CoVs, which may have reservoirs in rodents [2]. 
  87. ^ 87.0 87.1 Tao, Ying; Shi, Mang; Chommanard, Christina; Queen, Krista; Zhang, Jing; Markotter, Wanda; Kuzmin, Ivan V.; Holmes, Edward C.; Tong, Suxiang; Perlman, Stanley. Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History. Journal of Virology. 2017, 91 (5). ISSN 0022-538X. doi:10.1128/JVI.01953-16. 
  88. ^ Gouilh MA, Puechmaille SJ, Gonzalez JP, Teeling E, Kittayapong P, Manuguerra JC. SARS-Coronavirus ancestor's foot-prints in South-East Asian bat colonies and the refuge theory. Infection, Genetics and Evolution. October 2011, 11 (7): 1690–702. PMC 7106191可免费查阅. PMID 21763784. doi:10.1016/j.meegid.2011.06.021. 
  89. ^ Cui J, Han N, Streicker D, Li G, Tang X, Shi Z, et al. Evolutionary relationships between bat coronaviruses and their hosts. Emerging Infectious Diseases. October 2007, 13 (10): 1526–32. PMC 2851503可免费查阅. PMID 18258002. doi:10.3201/eid1310.070448. 
  90. ^ Forni D, Cagliani R, Clerici M, Sironi M. Molecular Evolution of Human Coronavirus Genomes. Trends in Microbiology. January 2017, 25 (1): 35–48. PMC 7111218可免费查阅. PMID 27743750. doi:10.1016/j.tim.2016.09.001. 
  91. ^ Lau SK, Woo PC, Li KS, Tsang AK, Fan RY, Luk HK, et al. Discovery of a novel coronavirus, China Rattus coronavirus HKU24, from Norway rats supports the murine origin of Betacoronavirus 1 and has implications for the ancestor of Betacoronavirus lineage A. Journal of Virology. March 2015, 89 (6): 3076–92. PMC 4337523可免费查阅. PMID 25552712. doi:10.1128/JVI.02420-14. 
  92. ^ Wang, Chen; Horby, Peter W; Hayden, Frederick G; Gao, George F. A novel coronavirus outbreak of global health concern. The Lancet. 2020-02, 395 (10223): 470–473. PMC 7135038可免费查阅. PMID 31986257. doi:10.1016/S0140-6736(20)30185-9 (英语). 
  93. ^ Lau, Eric HY; Hsiung, C Agnes; Cowling, Benjamin J; Chen, Chang-Hsun; Ho, Lai-Ming; Tsang, Thomas; Chang, Chiu-Wen; Donnelly, Christl A; Leung, Gabriel M. A comparative epidemiologic analysis of SARS in Hong Kong, Beijing and Taiwan. BMC Infectious Diseases. 2010-12, 10 (1): 50. ISSN 1471-2334. PMC 2846944可免费查阅. PMID 20205928. doi:10.1186/1471-2334-10-50 (英语). 
  94. ^ 94.0 94.1 Old age, sepsis tied to poor COVID-19 outcomes, death. CIDRAP英语CIDRAP, University of Minnesota. [29 March 2020]. 
  95. ^ Karlberg, J. Do Men Have a Higher Case Fatality Rate of Severe Acute Respiratory Syndrome than Women Do?. American Journal of Epidemiology. 2004-02-01, 159 (3): 229–231. ISSN 0002-9262. PMC 7110237可免费查阅. PMID 14742282. doi:10.1093/aje/kwh056 (英语). 
  96. ^ 96.0 96.1 Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. World Health Organization. April 2004. 
  97. ^ 97.0 97.1 97.2 97.3 97.4 Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) (PDF). World Health Organization. February 2020. 
  98. ^ Oh, Myoung-don; Park, Wan Beom; Park, Sang-Won; Choe, Pyoeng Gyun; Bang, Ji Hwan; Song, Kyoung-Ho; Kim, Eu Suk; Kim, Hong Bin; Kim, Nam Joong. Middle East respiratory syndrome: what we learned from the 2015 outbreak in the Republic of Korea. The Korean Journal of Internal Medicine. 2018-02-27, 33 (2): 233–246. ISSN 1226-3303. PMC 5840604可免费查阅. PMID 29506344. doi:10.3904/kjim.2018.031 (英语). 
  99. ^ Ñamendys-Silva, Silvio A. Respiratory support for patients with COVID-19 infection. The Lancet Respiratory Medicine. 2020-04, 8 (4): e18. PMC 7129706可免费查阅. PMID 32145829. doi:10.1016/S2213-2600(20)30110-7 (英语). 
  100. ^ Liu P, Shi L, Zhang W, He J, Liu C, Zhao C, et al. Prevalence and genetic diversity analysis of human coronaviruses among cross-border children. Virology Journal. November 2017, 14 (1): 230. PMC 5700739可免费查阅. PMID 29166910. doi:10.1186/s12985-017-0896-0 (英语). 
  101. ^ Forgie S, Marrie TJ. Healthcare-associated atypical pneumonia. Seminars in Respiratory and Critical Care Medicine. February 2009, 30 (1): 67–85. PMID 19199189. doi:10.1055/s-0028-1119811. 
  102. ^ Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and Sources of Endemic Human Coronaviruses. Advances in Virus Research. 2018, 100: 163–188. ISBN 978-0-12-815201-0. PMID 29551135. doi:10.1016/bs.aivir.2018.01.001. 
  103. ^ 103.0 103.1 103.2 King, Anthony. An uncommon cold. New Scientist. 2020, 246 (3280): 32–35. ISSN 0262-4079. doi:10.1016/S0262-4079(20)30862-9. 
  104. ^ Pelczar. Microbiology: Application Based Approach. 2010: 656. ISBN 978-0-07-015147-5. (原始内容存档于16 May 2016). 
  105. ^ Cecil RL, Goldman L, Schafer AI. Goldman's Cecil Medicine, Expert Consult Premium Edition 24. Elsevier Health Sciences. 2012: 2103–. ISBN 978-1-4377-1604-7. (原始内容存档于4 May 2016). 
  106. ^ Charlton CL, Babady E, Ginocchio CC, Hatchette TF, Jerris RC, Li Y, et al. Practical Guidance for Clinical Microbiology Laboratories: Viruses Causing Acute Respiratory Tract Infections. Clinical Microbiology Reviews. January 2019, 32 (1). PMC 6302358可免费查阅. PMID 30541871. doi:10.1128/CMR.00042-18. See Figure 1. 
  107. ^ Monto AS, DeJonge P, Callear AP, Bazzi LA, Capriola S, Malosh RE, et al. Coronavirus occurrence and transmission over 8 years in the HIVE cohort of households in Michigan. The Journal of Infectious Diseases. April 2020, 222: 9–16. PMC 7184402可免费查阅. PMID 32246136. doi:10.1093/infdis/jiaa161. 
  108. ^ Abdul-Rasool S, Fielding BC. Understanding Human Coronavirus HCoV-NL63. The Open Virology Journal. May 2010, 4: 76–84. PMC 2918871可免费查阅. PMID 20700397. doi:10.2174/1874357901004010076. 
  109. ^ Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, et al. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. Journal of Virology. February 2005, 79 (3): 1595–604. PMC 544107可免费查阅. PMID 15650185. doi:10.1128/jvi.79.3.1595-1604.2005. 
  110. ^ Bidokhti MR, Tråvén M, Krishna NK, Munir M, Belák S, Alenius S, Cortey M. Evolutionary dynamics of bovine coronaviruses: natural selection pattern of the spike gene implies adaptive evolution of the strains. The Journal of General Virology. September 2013, 94 (Pt 9): 2036–2049. PMID 23804565. doi:10.1099/vir.0.054940-0. See Table 1 
  111. ^ Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, et al. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. Journal of Virology. February 2005, 79 (3): 1595–604. PMC 544107可免费查阅. PMID 15650185. doi:10.1128/JVI.79.3.1595-1604.2005. However, it is tempting to speculate about an alternative hypothesis, that the 1889-1890 pandemic may have been the result of interspecies transmission of bovine coronaviruses to humans, resulting in the subsequent emergence of HCoV-OC43. 
  112. ^ Pasley, James. How SARS terrified the world in 2003, infecting more than 8,000 people and killing 774. Business Insider. [2020-11-08]. 
  113. ^ Li, W. Bats Are Natural Reservoirs of SARS-Like Coronaviruses. Science. 2005, 310 (5748): 676–679. ISSN 0036-8075. doi:10.1126/science.1118391. 
  114. ^ Xing‐Yi Ge, Ben Hu, and Zheng‐Li Shi. BAT CORONAVIRUSES. Lin-Fa Wang and Christopher Cowled (编). Bats and Viruses: A New Frontier of Emerging Infectious Diseases, First Edition.. John Wiley & Sons. 2015. 
  115. ^ Doucleef M. Scientists Go Deep On Genes Of SARS-Like Virus. Associated Press. 26 September 2012 [27 September 2012]. (原始内容存档于27 September 2012). 
  116. ^ Falco M. New SARS-like virus poses medical mystery. CNN Health. 24 September 2012 [16 March 2013]. (原始内容存档于1 November 2013). 
  117. ^ 117.0 117.1 117.2 Middle East respiratory syndrome coronavirus (MERS-CoV). www.who.int. [15 April 2020]. 
  118. ^ MERS outbreaks. www.emro.who.int. [15 April 2020]. 
  119. ^ Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DA, Alabdullatif ZN, Assad M, Almulhim A, Makhdoom H, Madani H, Alhakeem R, Al-Tawfiq JA, Cotten M, Watson SJ, Kellam P, Zumla AI, Memish ZA. Hospital outbreak of Middle East respiratory syndrome coronavirus. The New England Journal of Medicine. August 2013, 369 (5): 407–16. PMC 4029105可免费查阅. PMID 23782161. doi:10.1056/NEJMoa1306742. 
  120. ^ Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S, Al-Barrak A, Flemban H, Al-Nassir WN, Balkhy HH, Al-Hakeem RF, Makhdoom HQ, Zumla AI, Memish ZA. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. The Lancet. Infectious Diseases. September 2013, 13 (9): 752–61. PMC 7185445可免费查阅. PMID 23891402. doi:10.1016/S1473-3099(13)70204-4. 
  121. ^ Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet. September 2015, 386 (9997): 995–1007. PMC 4721578可免费查阅. PMID 26049252. doi:10.1016/S0140-6736(15)60454-8. 
  122. ^ The Editorial Board. Is the World Ready for the Coronavirus?—Distrust in science and institutions could be a major problem if the outbreak worsens. New York Times. 29 January 2020 [30 January 2020]. 
  123. ^ WHO Statement Regarding Cluster of Pneumonia Cases in Wuhan, China. www.who.int. 9 January 2020 [10 January 2020]. (原始内容存档于14 January 2020) (英语). 
  124. ^ Laboratory testing of human suspected cases of novel coronavirus (nCoV) infection. Interim guidance, 10 January 2020 (PDF). [14 January 2020]. (原始内容 (PDF)存档于20 January 2020). 
  125. ^ Novel Coronavirus 2019, Wuhan, China. www.cdc.gov (CDC). 23 January 2020 [23 January 2020]. (原始内容存档于20 January 2020). 
  126. ^ 2019 Novel Coronavirus infection (Wuhan, China): Outbreak update. Canada.ca. 21 January 2020. 
  127. ^ Oran, Daniel P.; Topol, Eric J. The Proportion of SARS-CoV-2 Infections That Are Asymptomatic. Annals of Internal Medicine. 2021-01-22. ISSN 0003-4819. doi:10.7326/M20-6976. 
  128. ^ Transmission of COVID-19. European Centre for Disease Prevention and Control. [2020-12-06]. 
  129. ^ Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). U.S. Centers for Disease Control and Prevention (CDC). 6 April 2020 [19 April 2020]. (原始内容存档于2 March 2020). 
  130. ^ CDC. COVID-19 and Your Health. Centers for Disease Control and Prevention. 2020-02-11 [2021-01-23] (美国英语). 
  131. ^ 131.0 131.1 131.2 131.3 131.4 131.5 131.6 131.7 131.8 Chapter 24 - Coronaviridae. Fenner's Veterinary Virology Fifth. Academic Press. 2017: 435–461. ISBN 978-0-12-800946-8. doi:10.1016/B978-0-12-800946-8.00024-6 (英语). 
  132. ^ Murphy FA, Gibbs EP, Horzinek MC, Studdart MJ. Veterinary Virology. Boston: Academic Press. 1999: 495–508. ISBN 978-0-12-511340-3. 
  133. ^ 133.0 133.1 Tirotta E, Carbajal KS, Schaumburg CS, Whitman L, Lane TE. Cell replacement therapies to promote remyelination in a viral model of demyelination. Journal of Neuroimmunology. July 2010, 224 (1–2): 101–07. PMC 2919340可免费查阅. PMID 20627412. doi:10.1016/j.jneuroim.2010.05.013. 
  134. ^ 134.0 134.1 Merck Veterinary Manual. Merck Veterinary Manual. [2020-06-08] (美国英语). 
  135. ^ Bande F, Arshad SS, Bejo MH, Moeini H, Omar AR. Progress and challenges toward the development of vaccines against avian infectious bronchitis. Journal of Immunology Research. 2015, 2015: 424860. PMC 4411447可免费查阅. PMID 25954763. doi:10.1155/2015/424860. 
  136. ^ Cavanagh, D. Coronavirus avian infectious bronchitis virus. Veterinary Research. 2007, 38 (2): 281–97. PMID 17296157. doi:10.1051/vetres:2006055. 开放获取
  137. ^ Wei X, She G, Wu T, Xue C, Cao Y. PEDV enters cells through clathrin-, caveolae-, and lipid raft-mediated endocytosis and traffics via the endo-/lysosome pathway. Veterinary Research. February 2020, 51 (1): 10. PMC 7011528可免费查阅. PMID 32041637. doi:10.1186/s13567-020-0739-7. 
  138. ^ Cruz JL, Sola I, Becares M, Alberca B, Plana J, Enjuanes L, Zuñiga S. Coronavirus gene 7 counteracts host defenses and modulates virus virulence. PLoS Pathogens. June 2011, 7 (6): e1002090. PMC 3111541可免费查阅. PMID 21695242. doi:10.1371/journal.ppat.1002090. 
  139. ^ Zhou P, Fan H, Lan T, Yang XL, Shi WF, Zhang W, et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature. April 2018, 556 (7700): 255–58. Bibcode:2018Natur.556..255Z. PMC 7094983可免费查阅. PMID 29618817. doi:10.1038/s41586-018-0010-9. 
  140. ^ 140.0 140.1 Taxonomy browser (Betacoronavirus 1). www.ncbi.nlm.nih.gov. [2020-06-08]. 
  141. ^ Mattei, Debora N.; Kopper, Jamie J.; Sanz, Macarena G. Equine Coronavirus-Associated Colitis in Horses: A Retrospective Study. Journal of Equine Veterinary Science. 2020, 87: 102906. ISSN 0737-0806. doi:10.1016/j.jevs.2019.102906. 
  142. ^ Equine Enteric Coronavirus. Cornell University College of Veterinary Medicine英语Cornell University College of Veterinary Medicine. 
  143. ^ 143.0 143.1 Taxonomy browser (Alphacoronavirus 1). www.ncbi.nlm.nih.gov. [2020-06-08]. 
  144. ^ Taxonomy browser (Alphacoronavirus). www.ncbi.nlm.nih.gov. [2020-06-08]. 
  145. ^ Murray J. What's New With Ferret FIP-like Disease?. 16 April 2014 [24 April 2014]. (原始内容 (xls)存档于24 April 2014). 
  146. ^ Infectious Diseases of Ferrets - Exotic and Laboratory Animals. Merck Veterinary Manual. [2020-06-08]. 
  147. ^ Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiology and Molecular Biology Reviews. December 2005, 69 (4): 635–64. PMC 1306801可免费查阅. PMID 16339739. doi:10.1128/MMBR.69.4.635-664.2005. 
  148. ^ Enteric Coronavirus. Diseases of Research Animals. [24 January 2020]. (原始内容存档于1 July 2019). 

參見

外部連結