火星水文:修订间差异
标签:手工回退 |
无编辑摘要 |
||
第1行: | 第1行: | ||
[[File:AncientMars.jpg|thumb| |
[[File:AncientMars.jpg|thumb|200px|right|根据[[火星海洋假说#观测证据史|地质数据]]创作的古代火星的艺术想象图]] |
||
{{multipleimage |header=火星上的水冰<br/>最可能的区域<ref name="EG-20191212">{{cite news |last=Torbet |first=Georgina |title=美国宇航局就在火星表面下方发现了“水冰”—专家说,冰层可以用铲子铲到。|url=https://www.engadget.com/2019/12/12/nasa-ice-surface-mars/ |date=12 December 2019 |work=[[Engadget|瘾科技]] |access-date=2019年12月10日}}</ref><br/>(2019年12月10日) |align=right |direction=vertical |width= |image1=PIA23515-Mars-WaterIce-LikeliestAreas-20191210.jpg |caption1=<div class="center">全球</div> |width1=200 |image2=PIA23514-Mars-WaterIce-LikeliestAreas-20191210.jpg |caption2=<div class="center">平面</div> |width2=200 |footer= }} |
|||
[[File:Mars Valles Marineris.jpeg|thumb|現在的火星只剩下乾涸的水道<small>(海盜號拍攝)</small>]] |
|||
{{multiple image|direction=vertical|align=right|total_width=210|header=[[火星]] – 乌托邦平原|header_align=center |caption_align=center |
|||
'''火星水文'''是研究火星表面水的狀態。相較於地球,液態水在[[火星]]表面幾乎不存在。火星的水大多鎖在[[永久凍土]]和極冠等[[冰凍圈]](Cryosphere),所以在火星表面沒有足夠的液態水可以形成[[水圈]]。只有極少量的水蒸氣存在於[[火星大氣層]]<ref name ="ucar">{{cite web| url=http://www.windows.ucar.edu/tour/link=/mars/exploring/MGS_water_clouds.html| title=Mars Global Surveyor Measures Water Clouds| accessdate=2009-03-07| archive-url=https://web.archive.org/web/20090812084157/http://www.windows.ucar.edu/tour/link%3D/mars/exploring/MGS_water_clouds.html| archive-date=2009-08-12| dead-url=yes}}</ref>。 |
|||
|image1=PIA21136 - Scalloped Terrain Led to Finding of Buried Ice on Mars.jpg |
|||
|caption1=火星地形 |
|||
|width1= |
|||
|height1= |
|||
|image2=PIA21138 - Location of Large Subsurface Water-Ice Deposit in Utopia Planitia, Mars.png |
|||
|caption2=火星地形 |
|||
|width2= |
|||
|height2= |
|||
|footer_align=left |
|||
|footer=[[扇形地形]]导致发现了大量的地下冰—足以填满[[苏必利尔湖]](2016年11月22日)<ref name="NASA-20161122">{{cite web |author=Staff |title=扇形地形导致在火星上发现了埋藏的冰|url=http://photojournal.jpl.nasa.gov/catalog/PIA21136 |date=November 22, 2016 |work=[[NASA]] |access-date=November 23, 2016 }}</ref><ref name="Register-2016">{{cite web|url=https://www.theregister.co.uk/2016/11/22/nasa_finds_ice_under_martian_surface/ |title=火星上发现的新墨西哥州大的冰水湖—美国宇航局|work=The Register|date=2016年11月22日|access-date=November 23, 2016}}</ref><ref name="NASA-20161122jpl">{{cite web|url=http://www.jpl.nasa.gov/news/news.php?release=2016-299 |title=火星冰层的水量与苏必利尔湖相当|publisher=美国宇航局|date=November 22, 2016 |access-date=2016年11月23日}}</ref> |
|||
}} |
|||
今天[[火星]]上几乎所有的水都是以[[冰]]的形式存在,此外,[[火星大气层|大气层]]中也分布有极少量的[[水蒸气]]<ref>{{cite book |last1=Jakosky |first1=B.M. |last2=Haberle |first2=R.M. |date=1992 |chapter=The Seasonal Behavior of Water on Mars |title=Mars |editor-first=H.H. |editor-last=Kieffer |display-editors=etal |publisher=University of Arizona Press |location=Tucson, AZ |pages=969–1016}}</ref>,被认为是浅层[[火星土壤]]中低流量的液态[[卤水 (水域)|卤水]],也称为[[火星暖坡上的季节性流|重现性斜坡线]]<ref name="Torres 2015">{{cite journal |title=Transient liquid water and water activity at Gale crater on Mars |journal=Nature Geoscience |date= April 13, 2015 |last1=Martín-Torres |first1=F. Javier |last2=Zorzano |first2=María-Paz |last3=Valentín-Serrano |first3=Patricia |last4=Harri |first4=Ari-Matti |last5=Genzer |first5=Maria |doi=10.1038/ngeo2412 |volume=8 |issue=5 |pages=357–361|bibcode=2015NatGe...8..357M }}</ref><ref name="Ojhaetal2015">{{cite journal |last1=Ojha |first1=L. |last2=Wilhelm |first2=M. B. |last3=Murchie |first3=S. L. |last4=McEwen |first4=A. S. |last5=Wray |first5=J. J. |last6=Hanley |first6=J. |last7=Massé |first7=M. |last8=Chojnacki |first8=M. |date=2015 |title=Spectral evidence for hydrated salts in recurring slope lineae on Mars |journal=Nature Geoscience |doi=10.1038/ngeo2546 |volume=8 |issue=11 |pages=829–832|bibcode=2015NatGe...8..829O |s2cid=59152931 |url=https://semanticscholar.org/paper/b071b71b59dd90ad6935a94d41552eccba5851ee }}</ref>,可能是山坡上滑落流沙形成的黑色条纹<ref>[https://www.nasa.gov/feature/jpl/recurring-martian-streaks-flowing-sand-not-water Recurring Martian Streaks: Flowing Sand, Not Water?], Nasa.org 2017-11-20</ref>。在地表,可看到水冰的唯一地方是[[火星极冠#北极冠|北极冰盖]][9],而火星南极永久[[干冰|二氧化碳]]冰盖下和环境更温和的浅层地表下也可能存有丰富的水冰<ref>{{cite book |last=Carr |first=M.H. |date=1996 |title=Water on Mars |publisher=Oxford University Press |location=New York |page=197}}</ref> Abundant water ice is also present beneath the permanent [[dry ice|carbon dioxide]] ice cap at the Martian south pole and in the shallow subsurface at more temperate conditions.<ref>{{cite journal |last1=Bibring |first1=J.-P. |last2=Langevin |first2=Yves |date=2004 |title=Perennial Water Ice Identified in the South Polar Cap of Mars |journal=Nature |volume=428 |issue=6983 |pages=627–630 |doi=10.1038/nature02461|pmid=15024393 |last3=Poulet |first3=François |last4=Gendrin |first4=Aline |last5=Gondet |first5=Brigitte |last6=Berthé |first6=Michel |last7=Soufflot |first7=Alain |last8=Drossart |first8=Pierre |last9=Combes |first9=Michel |last10=Bellucci |first10=Giancarlo |last11=Moroz |first11=Vassili |last12=Mangold |first12=Nicolas |last13=Schmitt |first13=Bernard |last14=Omega Team |first14=the|last15=Erard |first15=S. |last16=Forni |first16=O. |last17=Manaud |first17=N. |last18=Poulleau |first18=G. |last19=Encrenaz |first19=T. |last20=Fouchet |first20=T. |last21=Melchiorri |first21=R. |last22=Altieri |first22=F. |last23=Formisano |first23=V. |last24=Bonello |first24=G. |last25=Fonti |first25=S. |last26=Capaccioni |first26=F. |last27=Cerroni |first27=P. |last28=Coradini |first28=A. |last29=Kottsov |first29=V. |last30=Ignatiev |first30=N. |bibcode=2004Natur.428..627B |s2cid=4373206 |display-authors=29 }}</ref><ref>{{Cite journal|last1=Pradeep|first1=Thalappil|last2=Kumar|first2=Rajnish|last3=Choudhary|first3=Nilesh|last4=Ragupathy|first4=Gopi|last5=Bhuin|first5=Radha Gobinda|last6=Methikkalam|first6=Rabin Rajan J.|last7=Ghosh|first7=Jyotirmoy|date=2019-01-29|title=Clathrate hydrates in interstellar environment|journal=Proceedings of the National Academy of Sciences|language=en|volume=116|issue=5|pages=1526–1531|doi=10.1073/pnas.1814293116|issn=0027-8424|pmc=6358667|pmid=30630945}}</ref><ref name="ESAwater">{{cite news |title=Water at Martian south pole |date=March 17, 2004 |publisher=European Space Agency (ESA) |url=http://www.esa.int/SPECIALS/Mars_Express/SEMYKEX5WRD_0.html}}</ref>。现已在火星表面或近地表下探测到超过 500 万公里<sup>3</sup>的冰,足以覆盖整个行星 35 米(115 英尺)深<ref name="ChristensenIceBudget" />,更多的水冰很可能被锁在地下深处<ref>Carr, 2006, p. 173.</ref>。 |
|||
今天的火星表面可能会短暂地出现一些液态水,但仅限于来自大气层和薄膜的微量溶解水分,这对已知生命来说是具有挑战性的环境<ref name="Ojhaetal2015"/><ref name="NASA-20131210">{{cite web |last1=Webster |first1=Guy |last2=Brown |first2=Dwayne |title=NASA Mars Spacecraft Reveals a More Dynamic Red Planet |url=http://www.jpl.nasa.gov/news/news.php?release=2013-361&1#1 |date=December 10, 2013 |work=[[NASA]]}}</ref><ref name="Salt and water 2014">{{cite news |url=http://astrobiology.nasa.gov/articles/2014/7/3/liquid-water-from-ice-and-salt-on-mars/ |title=Liquid Water From Ice and Salt on Mars |work=Geophysical Research Letters |publisher=NASA Astrobiology |date=July 3, 2014 |access-date=August 13, 2014 |archive-url=https://web.archive.org/web/20140814092915/http://astrobiology.nasa.gov/articles/2014/7/3/liquid-water-from-ice-and-salt-on-mars/ |archive-date=August 14, 2014 |url-status=dead }}</ref>。行星表面不存在大型液态水体,因为那里的平均气压只有 610 [[帕斯卡]](0.088[[磅力每平方英寸|磅每平方英寸]]),这一数字略低于水在[[三相点]]的[[水蒸气压|蒸气压]]。在火星平均条件下,表面变暖的水会[[升华]],这意味着直接从固体转变为蒸汽;相反,冷却的水会沉积,意味着直接从气体转变为固体。大约在 [[诺亚纪|38 亿年前]],火星可能拥有更稠密的[[火星大气层|大气层]]和更高的表面温度,允许地表存在大量的液态水<ref>{{cite journal |last=Pollack |first=J.B. |date=1979 |title=Climatic Change on the Terrestrial Planets |journal=Icarus |volume=37 |issue=3 |pages=479–553 |doi=10.1016/0019-1035(79)90012-5 |bibcode=1979Icar...37..479P}}</ref><ref>{{cite journal |last1=Pollack |first1=J.B. |last2=Kasting |first2=J.F. |last3=Richardson |first3=S.M. |last4=Poliakoff |first4=K. |date=1987 |title=The Case for a Wet, Warm Climate on Early Mars |journal=Icarus |volume=71 |issue=2 |pages=203–224 |doi=10.1016/0019-1035(87)90147-3 |pmid=11539035 |bibcode=1987Icar...71..203P|hdl=2060/19870013977 |hdl-access=free }}</ref><ref>{{cite journal | last = Fairén | first = A. G. | year = 2010 | title = A cold and wet Mars Mars | journal = Icarus | volume = 208 | issue = 1| pages = 165–175 | doi=10.1016/j.icarus.2010.01.006 | bibcode = 2010Icar..208..165F }}</ref><ref>{{cite journal | last = Fairén | first = A. G. | display-authors=etal |year = 2009 | title = Stability against freezing of aqueous solutions on early Mars | url = https://zenodo.org/record/1233311| journal = Nature | volume = 459 | issue = 7245 | pages = 401–404 | doi=10.1038/nature07978 | pmid = 19458717 | bibcode = 2009Natur.459..401F | s2cid = 205216655 }}</ref>,可能还包括一片覆盖了火星三分之一表面<ref>{{cite journal |last1=Clifford |first1=S.M. |last2=Parker |first2=T.J. |date=2001 |title=The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains |journal=Icarus |volume=154 |issue=1 |pages=40–79 |doi=10.1006/icar.2001.6671 |bibcode=2001Icar..154...40C|s2cid=13694518 |url=https://semanticscholar.org/paper/de49a10fe4dc64afe5dbfaf13fc2ac96e10fa25a }}</ref><ref name="ReferenceA" /><ref name="third">{{cite web |url=https://www.sciencedaily.com/releases/2010/06/100613181245.htm |title=Ancient ocean may have covered third of Mars |publisher=Sciencedaily.com |date=June 14, 2010}}</ref>的[[火星海洋假说|海洋]]<ref>{{cite journal |last1=Parker |first1=T.J. |last2=Saunders |first2=R.S. |last3=Schneeberger |first3=D.M. |date=1989 |title=Transitional Morphology in West Deuteronilus Mensae, Mars: Implications for Modification of the Lowland/Upland Boundary |journal=Icarus |volume=82 |issue=1 |pages=111–145 |doi=10.1016/0019-1035(89)90027-4 |bibcode=1989Icar...82..111P}}</ref><ref>{{cite journal |last1=Dohm |first1=J.M. |last2=Baker |first2=Victor R.|date=2009 |title=GRS Evidence and the Possibility of Paleooceans on Mars |journal=Planetary and Space Science |volume=57 |issue=5–6 |pages=664–684 |doi=10.1016/j.pss.2008.10.008 |bibcode=2009P&SS...57..664D|last3=Boynton |first3=William V. |last4=Fairén |first4=Alberto G. |last5=Ferris |first5=Justin C. |last6=Finch |first6=Michael |last7=Furfaro |first7=Roberto |last8=Hare |first8=Trent M. |last9=Janes |first9=Daniel M. |last10=Kargel |first10=Jeffrey S. |last11=Karunatillake |first11=Suniti |last12=Keller |first12=John |last13=Kerry |first13=Kris |last14=Kim |first14=Kyeong J. |last15=Komatsu |first15=Goro |last16=Mahaney |first16=William C. |last17=Schulze-Makuch |first17=Dirk |last18=Marinangeli |first18=Lucia |last19=Ori |first19=Gian G. |last20=Ruiz |first20=Javier |last21=Wheelock |first21=Shawn J.|url=http://eprints.ucm.es/10512/2/25-Marte_9_P%C3%A1gina_01.pdf }}</ref><ref name="Sea">{{cite web |url=http://www.psrd.hawaii.edu/July03/MartianSea.html |title=PSRD: Ancient Floodwaters and Seas on Mars |publisher=Psrd.hawaii.edu |date=July 16, 2003}}</ref><ref>{{cite web |url=http://www.spaceref.com/news/viewpr.html?pid=26947 |title=Gamma-Ray Evidence Suggests Ancient Mars Had Oceans |publisher=SpaceRef |date=November 17, 2008}}</ref>。在火星历史的最近一段时间里,水显然也以不同的间隙在短时间内流过地表<ref>Carr, 2006, pp 144–147.</ref><ref>{{cite journal |last1=Fassett |first1=C. I. |last2=Dickson |first2=James L. |date=2010 |title=Supraglacial and Proglacial Valleys on Amazonian Mars |journal=Icarus |volume=208 |issue=1 |pages=86–100 |doi=10.1016/j.icarus.2010.02.021 |bibcode=2010Icar..208...86F|last3=Head |first3=James W. |last4=Levy |first4=Joseph S. |last5=Marchant |first5=David R.}}</ref><ref name="flashback">{{cite web |url=http://www.space.com/scienceastronomy/flashback-water-on-mars-announced-10-years-ago-100622.html |title=Flashback: Water on Mars Announced 10 Years Ago |publisher=SPACE.com |date=June 22, 2000}}</ref>。[[好奇号|好奇号火星车]]探索的[[盖尔撞击坑]]中的[[伊奥利亚沼|埃俄利斯沼]]就是一座古老的[[湖泊|淡水湖]]地质遗迹,可能是[[微生物|微生物生命]]宜居的环境<ref name="NYT-20131209">{{cite news |last=Chang |first=Kenneth |title=On Mars, an Ancient Lake and Perhaps Life |url=https://www.nytimes.com/2013/12/10/science/space/on-mars-an-ancient-lake-and-perhaps-life.html |date=December 9, 2013 |work=[[New York Times]]}}</ref><ref name="SCI-20131209">{{cite journal |author=Various |title=Science – Special Collection – Curiosity Rover on Mars |url=http://www.sciencemag.org/site/extra/curiosity/ |date=December 9, 2013 |journal=[[Science (journal)|Science]]}}</ref><ref>{{cite journal name="lpi.usra.edu">{{cite journal |last1=Parker |first1=T. |date=2000 |title=Argyre Planitia and the Mars Global Hydrologic Cycle |volume=XXXI |bibcode=2000LPI....31.2033P |journal=Lunar and Planetary Science |url=http://www.lpi.usra.edu/meetings/lpsc2000/pdf/2033.pdf |last2=Clifford |first2=S. M. |last3=Banerdt |first3=W. B. |page=2033}}</ref><ref name="Heisinger2002">{{cite journal |doi=10.1016/S0032-0633(02)00054-5 |last1=Heisinger |first1=H. |last2=Head |first2=J. |year=2002 |title=Topography and morphology of the Argyre basin, Mars: implications for its geologic and hydrologic history |journal=Planet. Space Sci. |volume=50 |pages=939–981 |bibcode=2002P&SS...50..939H |issue=10–11}}</ref>。目前火星上的水资源贮量可通过[[航天器]]成像、[[遥感|遥感技术]]([[光谱学|光谱测量]])<ref>{{cite book |last=Soderblom |first=L.A. |date=1992 |title=The composition and mineralogy of the Martian surface from spectroscopic observations – 0.3 micron to 50 microns |editor-first=H.H. |editor-last=Kieffer |display-editors=etal |publisher=University of Arizona Press |location=Tucson, AZ |pages=[https://archive.org/details/mars0000unse/page/557 557–593] |isbn=978-0-8165-1257-7 |url=https://archive.org/details/mars0000unse/page/557 }}</ref><ref>{{cite journal |last1=Glotch |first1=T. |first2=P. |last2=Christensen |date=2005 |title=Geologic and mineralogical mapping of Aram Chaos: Evidence for water-rich history |journal=J. Geophys. Res. |volume=110 |issue=E9 |pages=E09006 |doi=10.1029/2004JE002389 |bibcode=2005JGRE..110.9006G|s2cid=53489327 |doi-access=free }}</ref>、[[雷达]]<ref name="Holt, J. 2008">{{cite journal |bibcode=2008LPI....39.2441H |year=2008 |title=Radar Sounding Evidence for Ice within Lobate Debris Aprons near Hellas Basin, Mid-Southern Latitudes of Mars |journal=Lunar and Planetary Science |volume=XXXIX |issue=1391 |url=http://www.lpi.usra.edu/meetings/lpsc2008/pdf/2441.pdf |last1=Holt |first1=J. W. |last2=Safaeinili |first2=A. |last3=Plaut |first3=J. J. |last4=Young |first4=D. A. |last5=Head |first5=J. W. |last6=Phillips |first6=R. J. |last7=Campbell |first7=B. A. |last8=Carter |first8=L. M. |last9=Gim |first9=Y. |last10=Seu |first10=R. |first11=Sharad |last11=Team |page=2441}}</ref>等)以及着陆器和漫游车的表面勘查来估计<ref name="Amos June 2013">{{cite news |first=Jonathan |last=Amos |title=Old Opportunity Mars rover makes rock discovery |date=June 10, 2013 |work=BBC News |url=https://www.bbc.co.uk/news/science-environment-22832673}}</ref><ref name="Clay clues">{{cite news |title=Mars Rover Opportunity Examines Clay Clues in Rock |date=May 17, 2013 |publisher=Jet Propulsion Laboratory, NASA |url=http://www.jpl.nasa.gov/news/news.php?release=2013-167}}</ref>。过去水的地质证据包括洪水蚀刻出的巨大[[溢出河道]]<ref name="Floods 2015">{{cite news |url=http://spaceref.com/mars/regional-not-global-processes-led-to-huge-martian-floods.html |title=Regional, Not Global, Processes Led to Huge Martian Floods |work=Planetary Science Institute |publisher=SpaceRef |date=September 11, 2015 |access-date=September 12, 2015}}</ref>、古河谷网<ref name="Harrison 2005">{{cite journal |last1=Harrison |first1=K |last2=Grimm |first2=R. |date=2005 |title=Groundwater-controlled valley networks and the decline of surface runoff on early Mars |journal=Journal of Geophysical Research |volume=110 |issue=E12 |pages=E12S16 |doi=10.1029/2005JE002455 |bibcode=2005JGRE..11012S16H|s2cid=7755332 |doi-access=free }}</ref><ref name="Howard, A. 2005">{{cite journal |last1=Howard |first1=A. |last2=Moore |first2=Jeffrey M. |last3=Irwin |first3=Rossman P. |date=2005 |title=An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits |journal=Journal of Geophysical Research |volume=110 |issue=E12 |pages=E12S14 |doi=10.1029/2005JE002459 |bibcode=2005JGRE..11012S14H|s2cid=14890033 |doi-access=free }}</ref>、[[三角洲]]<ref>{{cite journal | last1 = Salese | first1 = F. | last2 = Di Achille | first2 = G. | last3 = Neesemann | first3 = A. | last4 = Ori | first4 = G. G. | last5 = Hauber | first5 = E. | year = 2016 | title = Hydrological and sedimentary analyses of well-preserved paleofluvial-paleolacustrine systems at Moa Valles, Mars | journal = J. Geophys. Res. Planets | volume = 121 | issue = 2| pages = 194–232 | doi = 10.1002/2015JE004891 | bibcode = 2016JGRE..121..194S }}</ref>和[[湖床]]<ref name="Irwin III 2005" /><ref name="Fassett2008">{{cite journal |doi=10.1016/j.icarus.2008.06.016 |last1=Fassett |first1=C. |last2=Head |first2=III |year=2008 |title=Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology |journal=Icarus |volume=198 |issue=1 |pages=37–56 |bibcode=2008Icar..198...37F}}</ref><ref name="Moore2001">{{cite journal |doi=10.1006/icar.2001.6736 |last1=Moore |first1=J. |last2=Wilhelms |first2=D. |date=2001 |title=Hellas as a possible site of ancient ice-covered lakes on Mars |url=https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20020050249_2002081883.pdf |journal=Icarus |volume=154 |pages=258–276 |bibcode=2001Icar..154..258M |issue=2|hdl=2060/20020050249 }}</ref><ref name="http">{{cite journal |last1=Weitz |first1=C. |first2=T. |last2=Parker |date=2000 |title=New evidence that the Valles Marineris interior deposits formed in standing bodies of water |journal=Lunar and Planetary Science |volume=XXXI |bibcode=2000LPI....31.1693W |url=http://www.lpi.usra.edu/meetings/lpsc2000/pdf/1693.pdf |page=1693}}</ref>以及探测到只在液态水中形成的地表岩石和矿物质<ref>{{cite news |url=http://www.space.com/6033-signs-ancient-mars-wet.html |title=New Signs That Ancient Mars Was Wet |work=Space.com |date=October 28, 2008}}</ref>。许多[[地貌学|地貌]]特征表明,在最近<ref name="HeadMarchant2006">{{cite journal |last1=Head |first1=J. |first2=D. |last2=Marchant |date=2006 |title=Modifications of the walls of a Noachian crater in Northern Arabia Terra (24 E, 39 N) during northern mid-latitude Amazonian glacial epochs on Mars: Nature and evolution of Lobate Debris Aprons and their relationships to lineated valley fill and glacial systems (abstract) |journal=Lunar Planet. Sci. |volume=37 |page=1128}}</ref><ref>{{cite journal |last=Head |first=J. |display-authors=etal |date=2006 |title=Modification if the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation |journal=Geophys. Res. Lett. |page=33 <!-- check this -->|doi=10.1029/2005gl024360 |bibcode=2006GeoRL..33.8S03H |volume=33|issue=8 |s2cid=9653193 |doi-access=free }}</ref><ref>{{cite journal |last1=Head |first1=J. |first2=D. |last2=Marchant |date=2006 |title=Evidence for global-scale northern mid-latitude glaciation in the Amazonian period of Mars: Debris-covered glacial and valley glacial deposits in the 30 – 50 N latitude band (abstract) |journal=Lunar Planet. Sci. |volume=37 |page=1127}}</ref><ref name="Richard Lewis">{{cite web |first=Richard |last=Lewis |url=http://news.brown.edu/pressreleases/2008/04/martian-glaciers |title=Glaciers Reveal Martian Climate Has Been Recently Active |publisher=Brown University |date=April 23, 2008}}</ref>和现在<ref name="Plaut, J. 2008">{{cite journal |last1=Plaut |first1=Jeffrey J. |last2=Safaeinili |first2=Ali |last3=Holt |first3=John W. |last4=Phillips |first4=Roger J. |last5=Head |first5=James W. |last6=Seu |first6=Roberto |last7=Putzig |first7=Nathaniel E. |last8=Frigeri |first8=Alessandro |title=Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars |doi=10.1029/2008GL036379 |date=2009 |volume=36 |journal=Geophysical Research Letters |url=http://www.planetary.brown.edu/pdfs/3733.pdf |bibcode=2009GeoRL..3602203P |issue=2|pages=n/a }}</ref>的一段时期中,存在地面冰([[永久冻土]])<ref>{{cite book |last=Squyres |first=S.W. |date=1992 |chapter=Ice in the Martian Regolith |title=Mars |editor-first=H.H. |editor-last=Kieffer |display-authors=etal |publisher=University of Arizona Press |location=Tucson, AZ |pages=[https://archive.org/details/mars0000unse/page/523 523–554] |isbn=978-0-8165-1257-7 |chapter-url=https://archive.org/details/mars0000unse/page/523 }}</ref>和[[冰川]]中冰的移动;悬崖和陨石坑壁上的[[火星冲沟|冲沟]]和[[火星暖坡上的季节性流|暖坡线]]表明,水流仍在继续塑造着火星表面,尽管程度远低于古代。 |
|||
虽然火星表面周期性地潮湿,并在数十亿年前可能适合微生物生活<ref name="Wall">{{cite news |last=Wall |first=Mike |title=Q & A with Mars Life-Seeker Chris Carr |date=March 25, 2011 |url=http://www.space.com/11232-mars-life-evolution-carr-interview.html |work=Space.com }}</ref>,但现今的地表环境极度干燥且温度低于冰点,可能对生物体构成了无法逾越的障碍。此外,火星缺乏厚厚的[[大气层]]、[[臭氧层]]和[[地磁场]],因此太阳和宇宙辐射可以畅通无阻地撞击地表,电离辐射对细胞结构的破坏作用是影响地表生命生存的另一项主要限制因素<ref name="Dartnell-1">{{cite journal |title=Modelling the surface and subsurface Martian radiation environment: Implications for astrobiology |journal=Geophysical Research Letters |date=January 30, 2007 |first1=L.R. |last1=Dartnell |last2=Desorgher |last3=Ward |last4=Coates |volume=34 |issue=2 |pages=L02207 |doi=10.1029/2006GL027494 |quote=The damaging effect of ionising radiation on cellular structure is one of the prime limiting factors on the survival of life in potential astrobiological habitats. |bibcode=2007GeoRL..34.2207D|url=http://discovery.ucl.ac.uk/134609/ }}</ref><ref name="ionising radiation">{{cite journal |title=Martian sub-surface ionising radiation: biosignatures and geology |journal=Biogeosciences |date=2007 |first1=L. R. |last1=Dartnell |first2=L. |last2=Desorgher |first3=J. M. |last3=Ward |first4=A. J. |last4=Coates |volume=4 |issue=4 |pages=545–558 |quote=This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation. [..] Even at a depth of 2 meters beneath the surface, any microbes would likely be dormant, cryopreserved by the current freezing conditions, and so metabolically inactive and unable to repair cellular degradation as it occurs. |bibcode=2007BGeo....4..545D |doi=10.5194/bg-4-545-2007|url=http://hal.archives-ouvertes.fr/docs/00/29/76/31/PDF/bg-4-545-2007.pdf |doi-access=free }}</ref>。因而,发现[[火星生命]]的最佳潜在地点可能是地下环境<ref name="subsurface habitability model">{{cite journal |title=A Possible Biochemical Model for Mars |journal=43rd Lunar and Planetary Science Conference (2012) |date=2012 |first=A. |last=de Morais |url=http://www.lpi.usra.edu/meetings/lpsc2012/pdf/2943.pdf |access-date=June 5, 2013 |quote=The extensive volcanism at that time much possibly created subsurface cracks and caves within different strata, and the liquid water could have been stored in these subterraneous places, forming large aquifers with deposits of saline liquid water, minerals organic molecules, and geothermal heat – ingredients for life as we know on Earth.}}</ref><ref name="Parnell">{{cite news |first=JohnThomas |last=Didymus |title=Scientists find evidence Mars subsurface could hold life |date=January 21, 2013 |url=http://digitaljournal.com/article/341801 |work=Digital Journal – Science |quote=There can be no life on the surface of Mars, because it is bathed in radiation and it's completely frozen. Life in the subsurface would be protected from that. – Prof. Parnell.}}</ref><ref name=Steigerwald>{{cite news |first=Bill |last=Steigerwald |title=Martian Methane Reveals the Red Planet is not a Dead Planet |date=January 15, 2009 |publisher=NASA |url=http://www.nasa.gov/mission_pages/mars/news/marsmethane.html |work=NASA's Goddard Space Flight Center |quote=If microscopic Martian life is producing the methane, it likely resides far below the surface, where it's still warm enough for liquid water to exist}}</ref>。在火星上发现了大量的地下冰,检测到的水量相当于一座[[苏必利尔湖]]<ref name="NASA-20161122" /><ref name="Register-2016" /><ref name="NASA-20161122jpl" />。2018 年,科学家們报告說,在火星[[南极高原 (火星)|南极冰盖]] 下1.5 公里(0.93 英里)处发现了一座冰下湖,水平范围约 20 公里(12 英里),这是火星上第一个已知的稳定液态水体<ref name="SCI-20180725"/><ref>{{cite news |last1=Halton |first1=Mary |title=Liquid water 'lake' revealed on Mars |url=https://www.bbc.co.uk/news/science-environment-44952710 |access-date=July 26, 2018 |work=BBC News |date=July 25, 2018}}</ref>。 |
|||
現在火星表面環境因為大氣壓力和溫度過低,會讓液態水[[蒸發]]或[[凝固]]而無法存在。因此研究人員研究古代火星的水文遺跡,重建[[火星海洋假说|火星古代可能存在的海洋]]<ref>{{cite web |
|||
| url=http://science.nasa.gov/headlines/y2001/ast05jan_1.htm |
|||
| title=Science@NASA, The Case of the Missing Mars Water |
|||
| accessdate=2009-03-07 |
|||
| archive-date=2010-03-26 |
|||
| archive-url=https://web.archive.org/web/20100326142821/http://science.nasa.gov/headlines/y2001/ast05jan_1.htm |
|||
| dead-url=no |
|||
}}</ref><ref>ISBN 0-312-24551-3</ref><ref>{{Cite web |url=http://www.psrd.hawaii.edu/July03/MartianSea.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2014-10-30 |archive-url=https://web.archive.org/web/20141030043919/http://www.psrd.hawaii.edu/July03/MartianSea.html |dead-url=no }}</ref><ref>http://www.spaceref.com/news/viewpr.html?pid=26947</ref><ref>Carr, M. and J. Head. 2003. Oceans on Mars: An assessment of the observational evidence and possible fate. Journal of Geophysical Research: 108. 5042</ref>。但仍無法解答液態水消失的原因<ref>{{cite web |
|||
| url=http://www.adlerplanetarium.org/cyberspace/planets/mars/water.html |
|||
| title=Water on Mars: Where is it All? |
|||
| accessdate=2009-03-07 |
|||
| archive-date=2007-12-03 |
|||
| archive-url=https://web.archive.org/web/20071203120931/http://www.adlerplanetarium.org/cyberspace/planets/mars/water.html |
|||
| dead-url=no |
|||
}}</ref>。 |
|||
了解火星上水的分布和状况对评估火星孕育生命和为未来人类探索提供可用资源的潜力至关重要。正因如此,“跟随着水”成为美国宇航局火星探索计划(MEP)在 21 世纪头十年中的科学主题。[[美国宇航局]]和[[欧洲空间局|欧空局]]的探测任务,包括 [[2001 火星奥德赛号]]、[[火星快车号]]、[[火星探索漫游者]](MERs)、[[火星勘测轨道飞行器]] (MRO) 和火星[[凤凰号火星探测器|凤凰号着陆器]],提供了有关火星上水的丰度和分布信息<ref>NASA Mars Exploration Program Overview. http://www.nasa.gov/mission_pages/mars/overview/index.html.</ref>。火星奥德赛号、火星快车号、火星勘测轨道飞行器和[[好奇号|火星科学实验室登陆器好奇号漫游车]]仍在运行,并且不断有所发现。 |
|||
目前已有許多直接和間接證據證明火星表面有液態水間歇性存在<ref>{{cite web |url="http://www.esa.int/SPECIALS/Mars_Express/SEMYKEX5WRD_0.html |title=Water at Martian south pole |date=17 March 2004 |accessdate=29 September 2009 |archive-date=2004-04-01 |archive-url=https://web.archive.org/web/20040401181115/http://www.esa.int/SPECIALS/Mars_Express/SEMYKEX5WRD_0.html |dead-url=no }}</ref>於表面或地表下;例如[[河床]]<ref>{{Cite web |url=http://history.nasa.gov/SP-441/ch4.htm |title=存档副本 |accessdate=2010-03-30 |archive-date=2010-04-10 |archive-url=https://web.archive.org/web/20100410082607/http://history.nasa.gov/SP-441/ch4.htm |dead-url=no }}</ref><ref name="Harrison 2005">Harrison, K and R. Grimm. 2005. Groundwater-controlled valley networks and the decline of surface runoff on early Mars. Journal of Geophysical Research: 110. E12S16</ref><ref name="Howard, A. 2005">Howard, A. et al. 2005. An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. Journal of Geophysical Research: 110. E12S14</ref>、[[冰帽|極冠]]、光譜<ref name="ISBN 0-8165-1257-4"/>、被侵蝕的撞擊坑和[[針鐵礦]]等礦物都直接顯示火星曾經存在克律塞平原|液態水。在一篇《[[地球物理研究期刊]]》(Journal of Geophysical Research, JGR)的文章中,科學家研究地球南極冰層下的[[沃斯托克湖]]後認為液態水可能仍存在於火星。研究人員認為如果渥斯托克湖在永凍冰層出現以前就存在,那該湖可能並未凍結。因此火星如果仍有液態水存在,可能以冰下湖的形式存在於冰冠下<ref>{{cite web |
|||
| url=http://www.agu.org/journals/je/v106/iE01/2000JE001254/2000JE001254.pdf |
|||
| title=A numerical model for an alternative origin of Lake Vostok and its exobiological implications for Mars |
|||
| accessdate=2009-04-08}}</ref>。2015年9月28日,[[NASA]]根據[[火星偵察軌道器|火星勘測軌道衛星]]的探測,現在的[[火星]]表面間歇性存在液態水<ref>{{cite web |url=http://udn.com/news/story/6812/1216700-%E7%81%AB%E6%98%9F%E6%9C%89%E6%B6%B2%E6%85%8B%E6%B0%B4-NASA%E6%89%BE%E5%88%B0%E9%90%B5%E8%AD%89 |title=火星有液態水 NASA找到鐵證 |accessdate=2015-09-30 |archive-date=2015-09-30 |archive-url=https://web.archive.org/web/20150930010036/http://udn.com/news/story/6812/1216700-%E7%81%AB%E6%98%9F%E6%9C%89%E6%B6%B2%E6%85%8B%E6%B0%B4-NASA%E6%89%BE%E5%88%B0%E9%90%B5%E8%AD%89 |dead-url=no }}</ref>。 |
|||
2020 年 9 月,科学家证实在火星[[南极高原 (火星)|南极地区]]冰层下存在数座大型[[咸水湖]]。根据其中一位研究人员的说法,“我们确认了相同的水体 [正如早期初步探测中所建议的那样],但我们还在主要水体周围发现了另外三处水体......这是一个复杂的系统”<ref name="NAT-20200928">{{cite journal |author=Lauro, Sebastian Emanuel |display-authors=et al. |title=Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data |url=https://www.nature.com/articles/s41550-020-1200-6 |date=28 September 2020 |journal=[[Nature Astronomy]] |volume=5 |pages=63–70 |doi=10.1038/s41550-020-1200-6 |arxiv=2010.00870 |bibcode=2020NatAs.tmp..194L |s2cid=222125007 |access-date=29 September 2020 }}</ref><ref name="NNEWS-20200928">{{cite journal |last=O'Callaghan |first=Jonathan |title=Water on Mars: discovery of three buried lakes intrigues scientists - Researchers have detected a group of lakes hidden under the red planet's icy surface. |url=https://www.nature.com/articles/d41586-020-02751-1 |date=28 September 2020 |journal=[[Nature (journal)|Nature]] |doi=10.1038/d41586-020-02751-1 |pmid=32989309 |access-date=29 September 2020 }}</ref>。2021 年 3 月,研究人员报告说,古代火星上的大量水仍留在火星上,但多年来,大部分水可能已被隔绝在行星岩石和地壳中<ref name="NASA-20210316">{{cite news |last1=Hautaluoma |first1=Grey |last2=Johnson |first2=Alana |last3=Good |first3=Andrew |title=New Study Challenges Long-Held Theory of Fate of Mars' Water |url=https://www.jpl.nasa.gov/news/new-study-challenges-long-held-theory-of-fate-of-mars-water |date=16 March 2021 |work=[[NASA]] |access-date=16 March 2021 }}</ref><ref name="CNET-20210316">{{cite news |last=Mack |first=Eric |title=Mars hides an ancient ocean beneath its surface - New research finds a surprising amount of water locked away in the red planet. |url=https://www.cnet.com/news/mars-hides-an-ancient-ocean-beneath-its-surface/ |date=16 March 2021 |work=[[CNET]] |access-date=16 March 2021 }}</ref><ref name="SCI-20210316">{{cite journal |author=Scheller, E.L. |display-authors=et al. |title=Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust |date=16 March 2021 |journal=[[Science (journal)|Science]] |volume=372 |issue=6537 |pages=56–62 |doi=10.1126/science.abc7717 |pmid=33727251 |bibcode=2021Sci...372...56S |doi-access=free }}</ref><ref name="NYT-20210319">{{cite news |last=Chang |first=Kenneth |title=The Water on Mars Vanished. This Might Be Where It Went. Mars once had rivers, lakes and seas. Although the planet is now desert dry, scientists say most of the water is still there, just locked up in rocks. |url=https://www.nytimes.com/2021/03/19/science/mars-water-missing.html |date=19 March 2021 |work=[[The New York Times]] |access-date=19 March 2021 }}</ref>。 |
|||
== 探測器的發現 == |
|||
== 历史背景 == |
|||
{{Main|火星观测历史}} |
|||
火星上有水的概念比太空时代早了数百年,早期的[[光学望远镜|望远镜]]观察者正确推断了白色极冠和云是水存在的迹象。这些观察结果,加上火星一天有24 小时的事实,导致天文学家[[威廉·赫歇尔]]在 1784 年宣布火星可能为其居民提供了“在许多方面与我们相似的环境”<ref>Sheehan, 1996, p. 35.</ref>。 |
|||
{{multiple image |
|||
| align = right |
|||
| direction = vertical |
|||
| image1 = Karte Mars Schiaparelli MKL1888.png |
|||
| width1 = 220 |
|||
| alt1 = |
|||
| caption1 =[[乔凡尼·斯基亚帕雷利]]在 1877 年火星“大冲”期间绘制的火星地图。 |
|||
| image2 = Lowell Mars channels.jpg |
|||
| width2 = 220 |
|||
| alt2 = |
|||
| caption2 =1898 年,天文学家[[帕西瓦尔·罗威尔|帕西瓦尔·洛厄尔]]绘制的[[火星运河]]。 |
|||
| footer = |
|||
}} |
|||
到 20 世纪初,大多数天文学家都认识到火星比地球更冷、更干燥。存在海洋的说法不再被接受,因此,观念转变为将火星描绘成一颗只拥有少量水的“垂死”星球,所看到的季节性变化幽暗区被认为是大片的植被<ref>{{cite book |last1=Kieffer |first1=H.H. |last2=Jakosky |first2=B.M |last3=Snyder |first3=C. |date=1992 |chapter=The Planet Mars: From Antiquity to the Present |title=Mars |editor-first=H.H. |editor-last=Kieffer |display-editors=etal |publisher=University of Arizona Press |location=Tucson, AZ |pages=1–33}}</ref>。对传播这种火星观负有最大责任的是[[帕西瓦尔·罗威尔|帕西瓦尔·洛厄尔]](1855年-1916年),他想象了一个建造运河网,将水从两极输送给赤道居民的火星种族,虽引起了巨大的公众效应,但洛厄尔的这种想法却并不被大多数天文学家接受。英国天文学家[[爱德华·沃尔特·蒙德]](1851-1928 年)对当时科学界的主流观点做了最好的总结,他将火星气候与北极岛屿上两万英尺高山峰上的条件作了比较<ref>hartmann, 2003, p. 20.</ref>,在那里只有[[地衣]]才可能存活下来。 |
|||
与此同时,许多天文学家正在改进有望能检测[[火星大气层]]成分的行星[[光谱学|光谱仪]]。1925 年至 1943 年间,[[威尔逊山天文台]]的[[沃尔特·亚当斯]]和西奥多·邓纳姆尝试在火星大气层中找到[[氧|氧气]]和[[水蒸气]],但结果通常都是负面的。火星大气层中唯一所知的成分是[[二氧化碳]] (CO2),由[[杰拉德·柯伊伯]]在1947 年通过光谱确定<ref>Sheehan, 1996, p. 150.</ref>。直到1963年,才在火星上明确检测到了水蒸气<ref>{{cite journal |last1=Spinrad |first1=H. |last2=Münch |first2=G. |last3=Kaplan |first3=L. D. |date=1963 |title=Letter to the Editor: the Detection of Water Vapor on Mars |journal=Astrophysical Journal |volume=137 |page=1319 |doi=10.1086/147613 |bibcode=1963ApJ...137.1319S}}</ref>。 |
|||
=== [[水手9號]] === |
|||
水手9號拍攝的影像中發現河床、峽谷(包含[[水手號谷]],一個長達4200公里的峽谷系統)、水流侵蝕、[[鋒 (氣象)|鋒面]]、[[霧]]等<ref>{{Cite web |url=http://marsprogram.jpl.nasa.gov/missions/past/mariner8-9.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2011-06-05 |archive-url=https://web.archive.org/web/20110605092444/http://marsprogram.jpl.nasa.gov/missions/past/mariner8-9.html |dead-url=no }}</ref>,首先揭露火星表面曾經有水的證據。之後的[[海盜號]]接續水手9號。巨大的水手號峽谷系統命名就是為了對水手9號任務表達敬意。 |
|||
[[File:Mariner 4 craters.gif|thumb|left|1965年,[[水手4号]]拍摄了这张显示一颗贫瘠荒芜星球的照片。]] |
|||
<gallery> |
|||
File:Scamander Vallis from Mars Global Surveyor.jpg|水手9號拍攝的[[斯卡曼德洛斯谷]]的[[曲流]],這表示曾有大量水流在火星表面。 |
|||
自[[乔瓦尼·多梅尼科·卡西尼|卡西尼]](1666年)时代以来,[[火星极冠|极地冰盖]]的成分一直被认为是水冰,但在19世纪末,由于该行星总体温度较低,且明显缺乏可感知的水,一些倾向于二氧化碳冰的科学家对此提出了质疑。[[罗伯特·莱顿]]和[[布鲁斯·穆雷 (行星科学家)|布鲁斯· 穆雷]]在1966年从理论上证实了这一假说<ref>{{cite journal |last1=Leighton |first1=R.B. |last2=Murray |first2=B.C. |date=1966 |title=Behavior of Carbon Dioxide and Other Volatiles on Mars |journal=Science |volume=153 |issue=3732 |pages=136–144 |doi=10.1126/science.153.3732.136 |pmid=17831495|bibcode=1966Sci...153..136L |s2cid=28087958 }}</ref>。今天,我们知道火星两极的冬季冰盖主要由[[干冰|二氧化碳冰]]组成,但北极夏季仍保留有永久(或常年)的水冰盖,在南极,夏季仍有一小部分二氧化碳冰存在,但这层冰盖下也有水冰。 |
|||
File:Warrego Valles from Mars Global Surveyor.jpg|水手9號拍攝的[[瓦伊哥谷]],这是雨或雪的作用形成此種河道系統的證據。 |
|||
</gallery> |
|||
[[火星气候]]的最后一块拼图由[[水手4号]]在1965年补齐,来自航天器雪花点般的电视图像显示,[[撞击坑|撞击陨石坑]]占据了整个表面,这意味着该地表非常古老,没有经历过地球上所见的[[侵蚀作用|侵蚀]]和[[地壳运动|构造活动]]。极少的侵蚀意味着液态水可能在几十亿年的时间里都没有在行星[[地貌学|地貌]]中扮演重要角色<ref>{{cite journal |last=Leighton |first=R.B. |author2=Murray, B.C. |author3=Sharp, R.P. |author4=Allen, J.D. |author5=Sloan, R.K. |date=1965 |title=Mariner IV Photography of Mars: Initial Results |journal=Science |volume=149 |issue=3684 |pages=627–630 |doi=10.1126/science.149.3684.627 |pmid=17747569|bibcode=1965Sci...149..627L |s2cid=43407530 }}</ref>。此外,当宇宙飞船从火星背面经过时,无线电信号的变化使科学家能够计算出[[火星大气层|大气层]]的密度,结果表明火星大气压不到地球海平面的1%,彻底排除了液态水的存在,在如此低的压力下,液态水会迅速沸腾或冻结<ref>{{cite journal |last1=Kliore |first1=A. |display-authors=etal |date=1965 |title=Occultation Experiment: Results of the First Direct Measurement of Mars's Atmosphere and Ionosphere |journal=Science |volume=149 |issue=3689 |pages=1243–1248 |doi=10.1126/science.149.3689.1243 |pmid=17747455|bibcode=1965Sci...149.1243K |s2cid=34369864 }}</ref>。由此,诞生出了一种与[[月球]]世界极为相似,仅拥有一缕大气吹拂周围尘埃的火星印象,这一印象将持续近十年,直到[[水手9号]]揭示出一颗更具活力、过去环境比现在更温和的火星。 |
|||
=== [[海盜號]] === |
|||
海盜號在火星表面發現許多因為大量水流才能造成的地表特徵,引發學界對火星表面是否有水的觀點革命。巨大的河谷在火星許多地方發現,這些峽谷可看到洪水突破障礙切出深谷,在岩床上留下痕跡且移動數千公里<ref>http:history.nasa.gov/SP-441/ch4.htm</ref>。南半球有大片區域有河道網路顯示曾經有降雨。一些火山的邊緣被認為是因為降雨而暴露出岩石,因為在夏威夷群島的火山也有類似地形特徵<ref>{{Cite web |url=http://history.nasa.gov/SP-441/ch5.htm |title=存档副本 |accessdate=2010-03-30 |archive-date=2012-03-24 |archive-url=https://web.archive.org/web/20120324103705/http://history.nasa.gov/SP-441/ch5.htm |dead-url=no }}</ref>。許多撞擊坑的型態看起來就像撞擊物撞入濕泥地;當撞擊坑形成時,土壤中的冰可能融化使表面變成濕泥地在表面流動<ref>{{Cite web |url=http://history.nasa.gov/SP-441/ch7.htm |title=存档副本 |accessdate=2010-03-30 |archive-date=2007-01-13 |archive-url=https://web.archive.org/web/20070113001757/http://history.nasa.gov/SP-441/ch7.htm |dead-url=no }}</ref>。正常情況下表面物質在撞擊後會上升再下降,但在火星一些撞擊坑並不會在表面流動,因為周圍有許多障礙<ref name="ISBN 0-8165-1257-4"/><ref>Raeburn, P. 1998. Uncovering the Secrets of the Red Planet Mars. National Geographic Society. Washington D.C.</ref><ref>Moore, P. et al. 1990. The Atlas of the Solar System. Mitchell Beazley Publishers NY, NY.</ref>。[[混沌地形]]看起來像有大量的水流過,在較下游處造成大型的河道。這些水流的規模是難以想像的-可能是[[密西西比河]]流量的十倍<ref>Morton, O. 2002. Mapping Mars. Picador, NY, NY</ref>。地下的火山活動可能曾經融化冰層,大量水流流失以後地表塌陷形成混沌地形。 |
|||
2014年1月24日,美国宇航局报告说,“[[好奇号]]”和“[[机遇号火星漫游车|机遇号]]”火星车目前对火星的研究将是寻找古代生命的证据,包括基于[[自养生物|自养]]、[[化能生物|化能]]和/或化能无机自养[[微生物]][[生物圈]],以及包括可能[[行星适居性|宜居]]的[[河积平原|河湖环境]](与古代河流或湖泊有关的[[平原]])的古代水<ref name="SCI-20140124a">{{cite journal |last=Grotzinger |first=John P. |title=Introduction to Special Issue – Habitability, Taphonomy, and the Search for Organic Carbon on Mars |journal=[[Science (journal)|Science]] |date=January 24, 2014 |volume=343 |number=6169 |pages=386–387 |doi=10.1126/science.1249944 |bibcode=2014Sci...343..386G |pmid=24458635|doi-access=free }}</ref><ref name="SCI-20140124special">{{cite journal |author=Various |title=Special Issue – Table of Contents – Exploring Martian Habitability |url=http://www.sciencemag.org/content/343/6169.toc#SpecialIssue |date=January 24, 2014 |journal=[[Science (journal)|Science]] |volume=343 |number=6169 |pages=345–452}}</ref><ref name="SCI-20140124c">{{cite journal |author=Grotzinger, J.P. |display-authors=etal |title=A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars |date=January 24, 2014 |journal=[[Science (journal)|Science]] |volume=343 |number=6169 |doi=10.1126/science.1242777 |pages=1242777 |pmid=24324272|bibcode=2014Sci...343A.386G |citeseerx=10.1.1.455.3973 |s2cid=52836398 }}</ref>。 |
|||
以下部分影像是從海盜號多張窄視野,高解析度影像拼接而成。部分影像有標上地名。 |
|||
多年来,人们一直认为观测到的洪水遗迹是由全球地下水释放所造成,但2015年发表的研究揭示,4.5亿年前形成的局部沉积物和冰才是洪水的源头<ref name="Rodriguez 2015">{{cite journal |title=Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly? |journal=Scientific Reports |date=September 8, 2015 |last1=Rodriguez |first1=J. Alexis P. |last2=Kargel |first2= Jeffrey S. |last3=Baker |first3=Victor R. |last4=Gulick |first4=Virginia C. |volume=5 |doi=10.1038/srep13404 |pmid=26346067 |pmc=4562069 |display-authors=etal |pages=13404|bibcode=2015NatSR...513404R }}</ref>。“在火星北部低地的原始海洋下,河流和冰川融化的淤积物沉积在巨大的峡谷中,正是这些峡谷沉积物中保存的水,后来释放为大洪泛,其影响在今天仍可看到”<ref name="Floods 2015"/><ref name="Rodriguez 2015"/>。 |
|||
<gallery> |
|||
== 岩石和矿物的证据 == |
|||
{{Main|火星成分}} |
|||
人们普遍认为,火星历史早期曾拥有丰富的水<ref name="Space-20120702">{{cite news |author=Staff |title=Ancient Mars Water Existed Deep Underground |url=http://www.space.com/16335-mars-underground-water-impact-craters.html |date=July 2, 2012 |work=[[Space.com]]}}</ref><ref>{{cite journal |last1=Craddock |first1=R. |last2=Howard |first2=A. |date=2002 |title=The case for rainfall on a warm, wet early Mars |journal=J. Geophys. Res. |volume=107 |issue=E11 |page=E11 |doi=10.1029/2001je001505 |bibcode=2002JGRE..107.5111C}}</ref>,但此后,所有大面积的液态水都消失了。现代火星上只有一小部分水以冰和富含水冰的物质如:粘土矿物(页硅酸盐)、硫酸盐等被保留了下来<ref>{{cite journal |last=Head |first=J. |display-authors=etal |date=2006 |title=Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for the late Amazonian obliquity-driven climate change |journal=Earth Planet. Sci. Lett. |volume=241 |issue=3–4 |pages=663–671 |bibcode=2006E&PSL.241..663H |doi=10.1016/j.epsl.2005.11.016}}</ref><ref name="wwwspaceref.com">{{cite web |author=Staff |publisher=NASA |date=October 28, 2008 |url=http://www.spaceref.com/news/viewpr.html?pid=26817 |title=NASA Mars Reconnaissance Orbiter Reveals Details of a Wetter Mars |website=SpaceRef}}</ref>。氢同位素比值的研究表明,超过2.5个[[天文单位]]距离的[[小行星]]和[[彗星]]提供了火星的水源<ref name="Lunine 2003">{{cite journal |title=The Origin of Water on Mars |journal=Icarus |date=September 2003 |first1=Jonathan I. |last1=Lunine |first2=John |last2=Chambers |display-authors=etal |volume=165 |issue=1 |doi=10.1016/S0019-1035(03)00172-6 |bibcode=2003Icar..165....1L |pages=1–8}}</ref>,目前地球上这种水源占现有海洋总量的6%至27%<ref name="Lunine 2003" />。 |
|||
[[File:History of Water on Mars.jpg|left|thumb|火星上水的历史,数字代表了多少亿年前。]] |
|||
File:Bahram Vallis from Viking.jpg|海盜號拍攝的[[巴赫拉姆谷]],位於[[卢娜高原]](Lunae Planum)北部,[[月沼區]]。位於[[韋德拉谷]]和地勢較低的[[卡塞峽谷]]之間。 |
|||
=== 风化物中的水(含水矿物)=== |
|||
File:Streamlined Islands in Maja Valles.jpg|海盜號拍攝的許多流線型島嶼顯示曾有強大水流在火星表面出現。位於月沼區。 |
|||
火星表面的主要岩石类型为[[玄武岩]],一种主要由[[橄榄石]]、[[辉石]]和[[斜长石]]等[[铁镁质]]硅酸盐矿物组成的细粒[[岩浆岩|火成岩]]<ref>{{cite book |last1=Soderblom |first1=L.A. |last2=Bell |first2=J.F. |date=2008 |chapter=Exploration of the Martian Surface: 1992–2007 |title=The Martian Surface: Composition, Mineralogy, and Physical Properties |url=https://archive.org/details/martiansurfaceco00bell |url-access=limited |editor-first=J.F. |editor-last=Bell |publisher=Cambridge University Press |pages=[https://archive.org/details/martiansurfaceco00bell/page/n22 3]–19|bibcode=2008mscm.book.....B |isbn=9780521866989 }}</ref>。当暴露于水和大气中时,这些矿物会通过[[风化作用#化学风化|化学作用]]风化成新的(次生)矿物,其中一些可能以H<sub>2</sub>O或[[羟基]](OH)的形式将水结合到晶体结构中。水合(或羟基化)矿物的示例包括氢氧化铁[[针铁矿]](地球[[土壤]]中的常见成分)、蒸发岩矿物[[石膏]]和硫镁矾、[[蛋白石]]硅石和[[硅酸盐矿物#页硅酸盐矿物|页硅酸盐]](也称为[[粘土矿物]]),如[[高岭石]]、[[蒙脱石]]等,所有这些矿物在火星都已被检测到<ref>{{cite book |last1=Ming |first1=D.W. |last2=Morris |first2=R.V. |last3=Clark |first3=R.C. |date=2008 |chapter=Aqueous Alteration on Mars |title=The Martian Surface: Composition, Mineralogy, and Physical Properties |url=https://archive.org/details/martiansurfaceco00bell |url-access=limited |editor-first=J.F. |editor-last=Bell |publisher=Cambridge University Press |pages=[https://archive.org/details/martiansurfaceco00bell/page/n570 519]–540|bibcode=2008mscm.book.....B }}</ref>。 |
|||
化学风化的一个直接影响是消耗水和其他活性化学物质,将它们从[[大气层]]、[[水圈]]等流动储层中带走,并隔绝在岩石和矿物中<ref>{{cite book |last=Lewis |first=J.S. |date=1997 |title=Physics and Chemistry of the Solar System |edition=revised |publisher=Academic Press |location=San Diego, CA |isbn=978-0-12-446742-2}}</ref>。目前火星地壳中以[[矿物水合作用|水合矿物]]形式储存的水量尚不清楚,但可能相当大<ref>{{cite journal |last=Lasue |first=J. |display-authors=etal |date=2013 |title=Quantitative Assessments of the Martian Hydrosphere |journal=Space Sci. Rev. |volume=174 |issue=1–4 |pages=155–212 |doi=10.1007/s11214-012-9946-5|bibcode=2013SSRv..174..155L |s2cid=122747118 }}</ref>。例如,[[机遇号火星漫游车|机遇号探测车]]在[[子午线高原]]检测的岩石[[露头]]矿物模型表明,那里的[[硫酸盐]]沉积物按重量计可能含有高达22%的水<ref>{{cite journal |last=Clark |first=B.C. |display-authors=etal |date=2005 |title=Chemistry and Mineralogy of Outcrops at Meridiani Planum |journal=Earth Planet. Sci. Lett. |volume=240 |issue=1 |pages=73–94 |doi=10.1016/j.epsl.2005.09.040 |bibcode=2005E&PSL.240...73C}}</ref>。 |
|||
File:Viking Teardrop Islands.jpg|海盜號拍攝從[[邁亞谷]]流出的水流造成水滴狀島嶼群。位於[[歐克西亞沼區]]。這些島嶼是在[[盧德撞擊坑|卢德陨击坑]]、[[博克陨击坑]]和[[戈尔德陨击坑]]的噴出物上。 |
|||
在地球上,所有的化学风化反应都或多或少与水有关<ref>{{cite book |last=Bloom |first=A.L. |date=1978 |title=Geomorphology: A Systematic Analysis of Late Cenozoic Landforms |url=https://archive.org/details/geomorphologysys0000bloo |url-access=registration |publisher=Prentice-Hall |location=Englewood Cliffs, N.J <!-- Please check |ISBN=0-13-353080-68 --> |page=[https://archive.org/details/geomorphologysys0000bloo/page/114 114]|isbn=9780133530865 }}</ref>,因此,许多次生矿物实际上虽不含水,但仍需要水才能形成。一些无水次生矿物包括很多种[[碳酸盐]]、部分[[硫酸盐]](如[[硬石膏]])和金属氧化物,如氧化铁矿物[[赤铁矿]]。在火星,理论上这些风化产物中的一些可以在无水,或少量以冰或分子级水膜(单层)形式存在的水中形成<ref>{{cite journal |last=Boynton |first=W.V. |display-authors=etal |date=2009 |title=Evidence for Calcium Carbonate at the Mars Phoenix Landing Site |journal=Science |volume=325 |pages=61–4 |doi=10.1126/science.1172768 |pmid=19574384 |issue=5936|bibcode=2009Sci...325...61B |s2cid=26740165 |url=https://semanticscholar.org/paper/897742b1232931c89299a13134bab7ea1a7b33ad }}</ref><ref>{{cite book |last1=Gooding |first1=J.L. |last2=Arvidson |first2=R.E. |last3=Zolotov |first3=M. YU. |date=1992 |chapter=Physical and Chemical Weathering |title=Mars |editor-first=H.H. |editor-last=Kieffer |display-editors=etal |publisher=University of Arizona Press |location=Tucson, AZ |pages=[https://archive.org/details/mars0000unse/page/626 626–651] |isbn=978-0-8165-1257-7 |chapter-url=https://archive.org/details/mars0000unse/page/626 }}</ref>,这种奇特的风化过程在火星上所起的作用程度仍不确定。含有水或在水中形成的矿物通常被称为“含水矿物”。 |
|||
File:Chryse Planitia Scour Patterns.jpg|照片中可見沖刷模式是水流從左側的[[邁亞谷]]流出。位於月沼區。 |
|||
含水矿物是矿物形成时所处环境类型的敏感指标。水反应发生的难易程度(参见[[吉布斯能|吉布斯自由能]])取决于压力、温度以及所涉及气体和可溶性物质的浓度<ref>{{cite book |last=Melosh |first=H.J. |date=2011 |title=Planetary Surface Processes |url=https://archive.org/details/planetarysurface00melo |url-access=limited |publisher=Cambridge University Press |isbn=978-0-521-51418-7 |page=[https://archive.org/details/planetarysurface00melo/page/n316 296]}}</ref>。两个重要的特性指标是[[PH值|酸碱值]]([[PH值|pH]])和[[还原电位|氧化还原电位]](E<sub>h</sub>),如硫酸盐矿物黄钾铁矾仅在低pH值(高酸性)水中形成;而页硅酸盐通常则生成于中性至高pH值(碱性)水中。氧化还原电位(E<sub>h</sub>)是一种测量水系统[[氧化数|氧化状态]]的量度,E<sub>h</sub>和pH值共同表明热力学上最稳定的矿物类型,因此最有可能给出一系列含水成分的类型。因此,过去火星上的环境条件,包括那些有利于生命的环境条件,可从岩石的矿物类型上推断出来。 |
|||
File:Detail_of_Maja_Valles_Flow.jpg|在這幅海盜號拍攝影像中可見大量的水流造成侵蝕。位於月沼區。水流侵蝕造成[[德羅摩爾撞擊坑]]周圍的撞擊噴發物形成現在形態。 |
|||
===热液蚀变=== |
|||
含水矿物也可以通过[[海底热泉|热液]]经孔隙和裂缝的迁移在地下形成,驱动热液系统的热源可能来自附近的[[岩浆]]体或大型[[撞击事件|撞击]]产生的余热<ref>{{cite journal |last1=Abramov |first1=O. |last2=Kring |first2=D.A. |date=2005 |title=Impact-Induced Hydrothermal Activity on Early Mars |journal=J. Geophys. Res. |volume=110 |issue=E12 |page=E12S09 |doi=10.1029/2005JE002453 |bibcode=2005JGRE..11012S09A|s2cid=20787765 |doi-access=free }}</ref>。地球海洋地壳中一种重要的热液蚀变类型为[[蛇纹岩|蛇纹岩化]],当海水流经[[超基性岩]]和[[玄武岩]]时就会发生。水-岩反应导致橄榄石和辉石中的[[亚铁|二价铁]]氧化为[[三价铁离子|三价铁]](如[[磁铁矿]]),并产生出副产品-分子[[氢]] (H<sub>2</sub>) 。该过程创造出了一种高碱性和低氧化还原电位的环境,有利于形成某些页硅酸盐(蛇纹石矿物)和各类碳酸盐矿物,它们共同形成了一种称作[[蛇纹岩]]的岩石<ref>{{cite journal |last1=Schrenk |first1=M.O. |last2=Brazelton |first2=W.J. |last3=Lang |first3=S.Q. |date=2013 |title=Serpentinization, Carbon, and Deep Life |journal=Reviews in Mineralogy & Geochemistry |volume=75 |issue=1 |pages=575–606 |doi=10.2138/rmg.2013.75.18|bibcode=2013RvMG...75..575S |s2cid=8600635 |url=https://semanticscholar.org/paper/778e1cb021137cfb2bb986456c72da9c3d2306b7 }}</ref>,所产生的氢气则可能成为[[化能合成]]生物的重要能源,也可与[[二氧化碳]]反应生成[[甲烷]]气体,这一过程被认为是所报道火星大气层中痕量甲烷的非生物来源<ref>{{cite journal |last=Baucom |first=Martin |title=Life on Mars? |journal=American Scientist |date=March–April 2006 |volume=94 |issue=2 |pages=119 |doi=10.1511/2006.58.119 |url=http://www.americanscientist.org/issues/pub/life-on-mars}}</ref>。蛇纹石矿物也能在晶体结构中储存大量的水(如羟基)。最近的一项研究表明,火星古高地地壳中推断的蛇纹岩可容纳500米(1600英尺)厚的全球等效水层<ref>{{citation |last1=Chassefière |first1=E |last2=Langlais |first2=B |last3=Quesnel |first3=Y |last4=Leblanc |first4=F. |date=2013 |title=The Fate of Early Mars' Lost Water: The Role of Serpentinization |work=EPSC Abstracts |volume=8 |page=EPSC2013-188 |url=http://meetingorganizer.copernicus.org/EPSC2013/EPSC2013-188.pdf }}</ref>。尽管在火星上已发现了一些蛇纹岩矿物,但从遥感数据来看,尚没有明显的大面积露头<ref>{{cite journal |last1=Ehlmann |first1=B. L. |last2=Mustard |first2=J.F. |last3=Murchie |first3=S.L. |date=2010 |title=Geologic Setting of Serpentine Deposits on Mars |journal=Geophys. Res. Lett. |volume=37 |issue=6 |page=L06201 |doi=10.1029/2010GL042596 |bibcode=2010GeoRL..37.6201E|url=https://authors.library.caltech.edu/34912/1/2010GL042596.pdf }}</ref>,而这一事实并不排除隐藏在火星地壳深处大量蛇纹岩的存在。 |
|||
===风化速率=== |
|||
原生矿物转化为次生含水矿物的速率各不相同,来自岩浆中的原生硅酸盐矿物是在远高于行星表面温度和压力条件下结晶的,一旦暴露在地表环境中,这些矿物将会失去[[化学平衡|平衡]],倾向于与所接触到的化学成分相互作用,形成更稳定的矿物相。一般来说,在最高温度下结晶(先在冷却岩浆中凝固)的硅酸盐矿物风化速度最快<ref>{{cite book |last=Bloom |first=A.L. |date=1978 |title=Geomorphology: A Systematic Analysis of Late Cenozoic Landforms |url=https://archive.org/details/geomorphologysys0000bloo |url-access=registration |publisher=Prentice-Hall |location=Englewood Cliffs, N.J. <!-- Please check |ISBN=0-13-353080-68 -->}}., p. 120</ref>。在地球和火星上,符合这一标准的最常见矿物是[[橄榄石]],它在有水的情况下很容易风化成[[粘土矿物]]。 |
|||
橄榄石在火星上分布广泛<ref>{{cite journal |last=Ody |first=A. |display-authors=etal |date=2013 |title=Global Investigation of Olivine on Mars: Insights into Crust and Mantle Compositions |journal=J. Geophys. Res. |volume=118 |issue=2 |pages=234–262 |doi=10.1029/2012JE004149 |bibcode=2013JGRE..118..234O|doi-access=free }}</ref>,表明火星表面并没有被水彻底改变,而大量的地质证据又显示情况并非如此<ref>{{cite journal |title=Noble Gases in Iddingsite from the Lafayette meteorite: Evidence for Liquid water on Mars in the last few hundred million years |journal=Meteoritics and Planetary Science |volume=35 |issue=1 |pages=107–115 |date=2000 |doi=10.1111/j.1945-5100.2000.tb01978.x |last1=Swindle |first1=T. D. |last2=Treiman |first2=A. H. |last3=Lindstrom |first3=D. J. |last4=Burkland |first4=M. K. |last5=Cohen |first5=B. A. |last6=Grier |first6=J. A. |last7=Li |first7=B. |last8=Olson |first8=E. K. |bibcode=2000M&PS...35..107S |doi-access=free }}</ref><ref>{{cite journal |last1=Head |first1=J. |last2=Kreslavsky |first2=M. A. |last3=Ivanov |first3=M. A. |last4=Hiesinger |first4=H. |last5=Fuller |first5=E. R. |last6=Pratt |first6=S. |date=2001 |title=Water in Middle Mars History: New Insights From MOLA Data |journal= AGU Spring Meeting Abstracts|volume=2001 |pages=P31A–02 INVITED |bibcode=2001AGUSM...P31A02H }}</ref><ref>{{cite journal |last=Head |first=J. |display-authors=etal |date=2001 |title=Exploration for standing Bodies of Water on Mars: When Were They There, Where did They go, and What are the Implications for Astrobiology? |bibcode=2001AGUFM.P21C..03H |journal= AGU Fall Meeting Abstracts|volume=21 |pages=P21C–03 }}</ref>。 |
|||
File:Vedra,_Maumee,_and_Maja_valles.jpg|在這幅海盜號拍攝影像中可見[[韋德拉谷]]、[[茂米谷]]和[[邁亞谷]]的水流都從影像左側的月神高原流入右側[[克里斯平原|克律塞平原]]。位於[[月沼區]]。 |
|||
===火星陨石=== |
|||
[[File:ALH84001.jpg|thumb|200px|火星[[艾伦丘陵陨石84001]]。]] |
|||
现已发现了60多颗来自火星的陨石<ref>Meyer, C. (2012) The Martian Meteorite Compendium; National Aronautics and Space Administration. http://curator.jsc.nasa.gov/antmet/mmc/.</ref>,其中一些有证据表明在火星上时就曾接触过水。部分被称为[[玄武岩|玄武质]][[火星陨石#辉玻无粒陨石(Shergottites)|辉玻无球陨石]]([[休格地陨石]])的[[火星陨石]],似乎(由于存在水合[[碳酸盐]]和[]硫酸盐]])在被弹射到太空前就已暴露在液态水中了<ref>{{cite web |url=http://www2.jpl.nasa.gov/snc/shergotty.html |title=Shergotty Meteorite – JPL, NASA |publisher=NASA |access-date=December 19, 2010}}</ref><ref>{{cite journal |last1=Hamiliton |first1=W. |last2=Christensen |first2=Philip R. |last3=McSween |first3=Harry Y. |date=1997 |title=Determination of Martian meteorite lithologies and mineralogies using vibrational spectroscopy |journal=Journal of Geophysical Research |volume=102 |issue=E11 |pages=25593–25603 |doi=10.1029/97JE01874 |bibcode=1997JGR...10225593H}}</ref>;而另一类[[火星陨石#辉橄无粒陨石(Nakhlites)|辉橄无球陨石]](奈克拉陨石),已被证明形成于火星上到处都布满液态水的6.2亿年前,并约在1075万年前,因小行星撞击而从火星上溅射出来,在过去一万年中坠入到地球<ref name=Nakhlites>{{cite journal |url=http://www.lpi.usra.edu/science/treiman/nakhlite_rev.pdf |last=Treiman |first=A. |title=The nakhlite meteorites: Augite-rich igneous rocks from Mars |access-date=September 8, 2006 |journal=Chemie der Erde – Geochemistry |volume=65 |pages=203–270 |date=2005 |doi=10.1016/j.chemer.2005.01.004 |bibcode=2005ChEG...65..203T |issue=3}}</ref>;火星陨石[[NWA 7034|西北非7034]]比大多数其他火星陨石含水量多一个数量级,与火星车研究过的玄武岩相似,约形成于[[亚马逊纪|早亚马逊世]]<ref>{{cite journal|title=Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034|first1=Carl B.|last1=Agee|first2=Nicole V.|last2=Wilson|first3=Francis M.|last3=McCubbin|first4=Karen|last4=Ziegler|first5=Victor J.|last5=Polyak|first6=Zachary D.|last6=Sharp|first7=Yemane|last7=Asmerom|first8=Morgan H.|last8=Nunn|first9=Robina|last9=Shaheen|first10=Mark H.|last10=Thiemens|first11=Andrew|last11=Steele|first12=Marilyn L.|last12=Fogel|first13=Roxane|last13=Bowden|first14=Mihaela|last14=Glamoclija|first15=Zhisheng|last15=Zhang|first16=Stephen M.|last16=Elardo|date=February 15, 2013|journal=Science|volume=339|issue=6121|pages=780–785|doi=10.1126/science.1228858|pmid=23287721|bibcode=2013Sci...339..780A|s2cid=206544554|url=https://semanticscholar.org/paper/a4c70332c5389eacc0e667d69755d8bc77d99e79}}</ref><ref>Agree, C., et al. 2013. Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034. Science: 339, 780–785.</ref>。 |
|||
1996年,一组科学家报告说,来自火星的[[艾伦丘陵陨石84001]]可能含有微化石<ref>{{cite journal |doi=10.1126/science.273.5277.924 |last1=McKay |first1=D. |last2=Gibson Jr. |first2=EK |last3=Thomas-Keprta |first3=KL |last4=Vali |first4=H |last5=Romanek |first5=CS |last6=Clemett |first6=SJ |last7=Chillier |first7=XD |last8=Maechling |first8=CR |last9=Zare |first9=RN |date=1996 |title=Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite AL84001 |journal=Science |volume=273 |issue=5277 |pages=924–930 |pmid=8688069 |bibcode=1996Sci...273..924M|s2cid=40690489 |url=https://semanticscholar.org/paper/1e45c90e676bbf880e9df60db2586188d09b532a }}</ref>,但许多研究主要基于这些假定化石的形状,因此,对其解释的有效性受到质疑<ref>{{cite news |last1=Gibbs |first1=W. |first2=C. |last2=Powell |title=Bugs in the Data? |date=August 19, 1996 |work=Scientific American |url=http://www.scientificamerican.com/article.cfm?id=bugs-in-the-data}}</ref><ref>{{cite web |url=http://www.space.com/scienceastronomy/solarsystem/mars_meteorite_020320.html |title=Controversy Continues: Mars Meteorite Clings to Life – Or Does It? |publisher=SPACE.com |date=March 20, 2002}}</ref>,人们发现陨石中所含大部分[[有机物质]]其实均源自地球<ref>{{cite journal |doi=10.1126/science.279.5349.362 |last1=Bada |first1=J. |last2=Glavin |first2=DP |last3=McDonald |first3=GD |last4=Becker |first4=L |date=1998 |title=A Search for Endogenous Amino Acids in Martian Meteorite AL84001 |journal=Science |volume=279 |issue=5349 |pages=362–365 |pmid=9430583 |bibcode=1998Sci...279..362B|s2cid=32301715 |url=https://semanticscholar.org/paper/b2520866e045c7e05f24cb31548faaa2561aaa33 }}</ref>。此外,科学界的共识是“形态学本身不能明确用作探测原始生命的工具”<ref name=morphology>{{cite journal | title = Morphological behavior of inorganic precipitation systems – Instruments, Methods, and Missions for Astrobiology II | journal = SPIE Proceedings | date = December 30, 1999 | first = Juan-Manuel Garcia-Ruiz | volume = Proc. SPIE 3755 | pages = 74–82 | doi = 10.1117/12.375088 | quote = It is concluded that "morphology cannot be used unambiguously as a tool for primitive life detection."| series = Instruments, Methods, and Missions for Astrobiology II | last1 = Garcia-Ruiz | s2cid = 84764520 }}</ref><ref>{{cite news|author=Agresti|author2=House|author3=Jögi|author4=Kudryavstev|author5=McKeegan|author6=Runnegar|author7=Schopf|author8=Wdowiak|title=Detection and geochemical characterization of Earth's earliest life|date=December 3, 2008|publisher=NASA|url=http://astrobiology.ucla.edu/pages/res3e.html|work=NASA Astrobiology Institute|access-date=January 15, 2013|url-status=dead|archive-url=https://web.archive.org/web/20130123132429/http://astrobiology.ucla.edu/pages/res3e.html|archive-date=January 23, 2013}}</ref><ref>{{cite journal | title = Evidence of Archean life: Stromatolites and microfossils | journal = Precambrian Research | date = April 28, 2007 | first1 = J. William | last1 = Schopf | first2 = Anatoliy B. | last2 = Kudryavtsev | first3 = Andrew D. | last3 = Czaja | first4 = Abhishek B. | last4 = Tripathi | volume = 158 | issue = 3–4 | pages = 141–155 | url = http://www.cornellcollege.edu/geology/courses/greenstein/paleo/schopf_07.pdf | access-date = January 15, 2013 | doi = 10.1016/j.precamres.2007.04.009 | bibcode = 2007PreR..158..141S | archive-url = https://web.archive.org/web/20121224202951/http://www.cornellcollege.edu/geology/courses/greenstein/paleo/schopf_07.pdf | archive-date = December 24, 2012 | url-status = dead }}</ref>,形态学的解释是出了名的主观,它的单独使用曾导致过无数错误的解释<ref name=morphology/>。 |
|||
File:Flow from Arandas Crater.jpg|海盜號拍攝的[[亚兰斯撞击坑]]外的噴發物類似泥漿在周圍的小撞擊坑(箭頭所指處)運動,而不是降落。這種撞擊坑形成原因被認為是當撞擊時造成大量水冰溶化所致。位於[[阿西达里亚海区]]。 |
|||
== 地貌证据 == |
|||
=== 湖泊和河 === |
|||
{{see also|火星湖泊}} |
|||
1971年的[[水手9号]]宇宙飞船引发了一场对火星之水认知的革命,在许多地区发现了巨大的河谷。图像显示,洪水冲溃了堤坝,蚀刻出深谷,在岩床上冲刷出道道沟壑,一路肆虐数千公里<ref name="Floods 2015"/>;南半球的分支溪流区域表明,那里曾经有过降雨<ref name="Raeburn" /><ref name="Moore" />。随着时间的推移,被认出的河谷数量在不断增加。2010年6月发表的一项研究绘制了火星上40000条河谷,大约是之前所确认的四倍<ref name=third />。火星上水流侵蚀的特征可分为两大不同类别:1)[[诺亚纪]]年代的河谷网道,树枝状(分岔),类地规模,分布广泛;2) [[赫斯珀里亚纪]]年代的[[溢出河道]],硕大绵长、孤立单线型。最近的研究表明,在中纬度地区可能还存在一类目前费解的更小更年轻(从[[赫斯佩里亚纪]]到[[亚马逊纪]])河道,可能与偶发的局部冰沉积物融化有关<ref name="Berman">{{cite journal |author=Berman, Daniel C. |author2=Crown, David A. |author3=Bleamaster, Leslie F. |date=2009 |pages=77–95 |volume=200 |issue=1 |journal=Icarus |title=Degradation of mid-latitude craters on Mars |doi=10.1016/j.icarus.2008.10.026 |bibcode=2009Icar..200...77B}}</ref><ref name="Fassett">{{cite journal |author=Fassett, Caleb I. |author2=Head, James W. |date=2008 |pages=61–89 |volume=195 |issue=1 |journal=Icarus |title=The timing of martian valley network activity: Constraints from buffered crater counting |doi=10.1016/j.icarus.2007.12.009 |bibcode=2008Icar..195...61F}}</ref>。 |
|||
[[File:Kasei Valles topo.jpg|thumb[[卡塞谷]]—[[火星轨道器激光高度计]]高程数据中显示的主要溢出河道,流程从左下方往右,图像宽度约为1600公里,河道系统从该图像向南延伸1200公里至[[艾彻斯深谷|厄科深谷]]。]] |
|||
火星某些地区常呈现出[[倒转地形]],当沉积在河床上的沉积物胶结在一起使抗侵蚀力增强后就会发生这种情况。之后,该区域可能被掩埋,外层覆盖层随侵蚀而剥离消失,但原来的河床因耐侵蚀而变得清晰可见。火星全球探勘者号发现了数处这种示例<ref>{{cite journal |last=Malin |first=Michael C. |date=2010 |pages=1–60 |volume=5 |journal=The Mars Journal |title=An overview of the 1985–2006 Mars Orbiter Camera science investigation |doi=10.1555/mars.2010.0001 |bibcode=2010IJMSE...5....1M|s2cid=128873687 |url=https://semanticscholar.org/paper/39f028a110835aef6307ceedd5df43605123f50f }}</ref><ref>{{cite web |url=http://hiroc.lpl.arizona.edu/images/PSP/diafotizo.php?ID=PSP_002279_1735 |title=Sinuous Ridges Near Aeolis Mensae |publisher=Hiroc.lpl.arizona.edu |date=January 31, 2007 |access-date=October 8, 2009 |archive-url=https://web.archive.org/web/20160305025124/http://hiroc.lpl.arizona.edu/images/PSP/diafotizo.php?ID=PSP_002279_1735 |archive-date=March 5, 2016 |url-status=dead }}</ref>。在火星不同地区都发现了许多倒转河流,尤其在[[梅杜莎槽沟层]]<ref>{{cite journal |doi=10.1016/j.icarus.2009.04.003 |last1=Zimbelman |first1=J. |last2=Griffin |first2=L. |date=2010 |title=HiRISE images of yardangs and sinuous ridges in the lower member of the Medusae Fossae Formation, Mars |journal=Icarus |volume=205 |issue=1 |pages=198–210 |bibcode=2010Icar..205..198Z}}</ref>、[[宫本撞击坑]]<ref name="ReferenceB">{{cite journal |doi=10.1016/j.icarus.2009.03.030 |last1=Newsom |first1=H. |last2=Lanza |first2=Nina L. |last3=Ollila |first3=Ann M. |last4=Wiseman |first4=Sandra M. |last5=Roush |first5=Ted L. |last6=Marzo |first6=Giuseppe A. |last7=Tornabene |first7=Livio L. |last8=Okubo |first8=Chris H. |last9=Osterloo |first9=Mikki M. |last10=Hamilton |first10=Victoria E. |last11=Crumpler |first11=Larry S. |date=2010 |title=Inverted channel deposits on the floor of Miyamoto crater, Mars |journal=Icarus |volume=205 |issue=1 |pages=64–72 |bibcode=2010Icar..205...64N}}</ref>、[[佐伯陨击坑]]<ref>{{cite journal |doi=10.1016/j.icarus.2013.11.007 |last1=Morgan |first1=A.M. |last2=Howard |first2=A.D. |last3=Hobley |first3=D.E.J. |last4=Moore |first4=J.M. |last5=Dietrich |first5=W.E. |last6=Williams |first6=R.M.E. |last7=Burr |first7=D.M. |last8=Grant |first8=J.A. |last9=Wilson |first9=S.A. |last10=Matsubara |first10=Y. |date=2014 |title=Sedimentology and climatic environment of alluvial fans in the martian Saheki crater and a comparison with terrestrial fans in the Atacama Desert |journal=Icarus |volume=229 |pages=131–156 |bibcode=2014Icar..229..131M|url=https://repository.si.edu/bitstream/handle/10088/21823/nasm_201440.pdf }}</ref>和朱芬塔高原<ref name=Weitz /><ref name="Icarus Vol 210" />。 |
|||
File:Alba Patera Channels.jpg|在這幅影像中可見[[亞拔山]]邊緣有河道或溝槽。部分溝槽形成原因是因為岩漿的流動;其他的可能是因為水流形成。大規模的溝槽或地塹形成一條崩潰的凹處。位於[[阿耳卡狄亚区]]。 |
|||
[[File:Antoniadi Crater Stream Channels.JPG|left|thumb|[[大瑟提斯区]][[安东尼亚第撞击坑 (火星)|安东尼亚第撞击坑]]中的倒转河道。]] |
|||
在火星上发现了各种各样的湖泊流域<ref name="Cabrol, N 2010" />,部分湖泊与地球上最大的[[里海]]、[[黑海]]和[[贝加尔湖]]等大小相当。在南部高原上发现了由河谷水道供流的湖泊,一些封闭的洼地伴有流入的河谷,这些地区被认为曾经坐落过湖泊。位于[[萨瑞南高地|塞壬高地]]的一座湖泊,它的溢流穿过[[马丁谷]]流入进曾被[[勇气号火星探测器|“勇气号”]][[火星探测漫游者|火星探测车]]勘查过的[[古瑟夫撞击坑]];另一座则靠近[[巴拉那谷]]和卢瓦尔谷(Loire)<ref>{{cite journal |doi=10.1006/icar.2000.6465 |last1=Goldspiel |first1=J. |last2=Squires |first2=S. |date=2000 |title=Groundwater sapping and valley formation on Mars |journal=Icarus |volume=148 |issue=1 |pages=176–192 |bibcode=2000Icar..148..176G}}</ref>。一些湖泊被认为是由降水形成,而另一些则产生于地下水<ref name="Irwin III 2005" /><ref name="Fassett2008" />。据估计,阿耳古瑞盆地<ref name="lpi.usra.edu">{{cite journal |last1=Parker |first1=T. |date=2000 |title=Argyre Planitia and the Mars Global Hydrologic Cycle |volume=XXXI |bibcode=2000LPI....31.2033P |journal=Lunar and Planetary Science |url=http://www.lpi.usra.edu/meetings/lpsc2000/pdf/2033.pdf |last2=Clifford |first2=S. M. |last3=Banerdt |first3=W. B. |page=2033}}</ref><ref name="Heisinger2002" />、希腊盆地<ref name="Moore2001" />和[[水手号谷|水手谷]]<ref name="http" /><ref name="Carr">{{cite book |title=The Surface of Mars |publisher=Cambridge Planetary Science Series (No. 6)|isbn=978-0-511-26688-1 |first=Michael H. |last=Carr <!-- United States Geological Survey, Menlo Park -->}}</ref><ref>{{cite journal |doi=10.1016/0019-1035(87)90086-8 |last1=Nedell |first1=S. |last2=Squyres |first2=Steven W. |last3=Andersen |first3=David W. |date=1987 |title=Origin and evolution of the layered deposits in the Valles Marineris, Mars |journal=Icarus |volume=70 |pages=409–441 |bibcode=1987Icar...70..409N |issue=3}}</ref>都可能存在过湖泊,很可能在[[诺亚纪]]时期,很多撞击坑内都有湖泊。这些湖泊符合寒冷、干燥(按地球标准)的水文环境,有点像[[末次盛冰期]]美国西部[[大盆地]]的水文环境<ref>Matsubara, Yo, Alan D. Howard, and Sarah A. Drummond. "Hydrology of early Mars: Lake basins." Journal of Geophysical Research: Planets 116.E4 (2011).</ref>。 |
|||
File:Branched Channels from Viking.jpg|位於[[陶玛西亚区]]的許多細小河道。這樣的河道網是火星古代有大量降雨的強力證據。 |
|||
2010年的研究表明,火星赤道部分地区也有湖泊。虽然早期的研究表明,火星曾有一段温暖湿润的早期历史,但在很久前就已干涸了,而这些湖泊却存在于[[赫斯佩里亚纪]]年代,一个更晚的时期。利用美国宇航局[[火星勘测轨道飞行器]]的详细图像,研究人员推测,在这段时期中,火山活动、陨石撞击或火星轨道移动可能增强,从而使火星大气层变暖,足以融化地面上丰富的水冰。火山释放出的气体,也使大气层在一段时间内变厚,吸收了更多的太阳光,使气温让液态水得以存在。在这项研究中,发现了连接[[阿瑞斯谷]]附近湖盆的河道。当一座湖泊被注满时,湖水会漫过堤岸,切刻出一条流向更低地区的河道,在那里形成另一座湖泊<ref>{{cite web |url=https://www.sciencedaily.com/releases/2012/01/100104092452.htm |title=Spectacular Mars images reveal evidence of ancient lakes |publisher=Sciencedaily.com |date=January 4, 2010 |access-date=February 28, 2018 |archive-url=https://web.archive.org/web/20160823210537/https://www.sciencedaily.com/releases/2012/01/100104092452.htm |archive-date=August 23, 2016 |url-status=dead }}</ref><ref>{{cite journal |doi=10.1130/G30579.1 |last1=Gupta |first1=Sanjeev |last2=Warner |first2=Nicholas |last3=Kim |first3=Rack |last4=Lin |first4=Yuan |last5=Muller |first5=Jan |last6=-1#Jung- |first6=Shih- |date=2010 |title=Hesperian equatorial thermokarst lakes in Ares Vallis as evidence for transient warm conditions on Mars |journal=Geology |volume=38 |issue=1 |pages=71–74|bibcode=2010Geo....38...71W }}</ref>这些干涸的湖床将成为寻找以往生命证据([[生命印迹]])的目标。 |
|||
2012年9月27日,美国宇航局科学家宣布,[[好奇号|好奇号火星车]]在[[盖尔撞击坑]]发现了一条古[[河床]]的直接证据,表明火星上曾有一股古老的“奔腾水流”<ref name="NASA-20120927" /><ref name="NASA-20120927a" /><ref name="AP-20120927" /><ref name="ancient life">{{cite news |title=NASA Rover Finds Conditions Once Suited for Ancient Life on Mars |date=March 12, 2013 |url=http://www.nasa.gov/mission_pages/msl/news/msl20130312.html |publisher=NASA}}</ref>。特别是对现在干涸河床的分析表明,水流流速为3.3公里/时(0.92米/秒)<ref name="NASA-20120927" />,可能深及髋部。流水的证据来自只能被强劲液流磨损的圆润鹅卵石和砾石碎块,它们的形状和方位表明,从撞击坑边缘上方流入[[冲积扇]]的[[皮斯谷]]河道,将它们长距离搬运至此。 |
|||
File:Dissected Channels, as seen by Viking.jpg|位於[[珍珠灣區]]的許多細小河道是火星古代曾有降雨的證據。 |
|||
[[艾瑞达尼亚湖|埃里达尼亚湖]]是一座理论上的古湖,面积约110万平方公里<ref>Parker, T., D. Curie. 2001. ''Geomorphology'' 37. 303–328.</ref><ref>de Pablo, M., M. Druet. 2002. XXXIII LPSC. Abstract #1032.</ref><ref>de Pablo, M. 2003. VI Mars Conference, Abstract #3037.</ref>,其最大深度为2400米,容积562000公里<sup>3</sup>。它比地球上最大的内陆海[[里海]]还要大,贮水量比所有其他火星湖泊加在一起还要多,埃里达尼亚湖的水量是北美[[五大湖]]的9倍多<ref>{{cite web|url=https://www.astrobio.net/also-in-news/mars-study-yields-clues-possible-cradle-life/|title=Mars Study Yields Clues to Possible Cradle of Life – Astrobiology Magazine|date=October 8, 2017|website=astrobio.net}}</ref><ref>{{cite web|url=http://www.sci-news.com/space/mars-eridania-basin-vast-sea-05301.html|title=Mars' Eridania Basin Once Held Vast Sea - Planetary Science, Space Exploration - Sci-News.com|website=sci-news.com}}</ref><ref name="ReferenceC">{{cite journal | last1 = Michalski | first1 = J. |display-authors=etal | year = 2017 | title = Ancient hydrothermal seafloor deposits in Eridania basin on Mars | journal = Nature Communications | volume = 8 | page = 15978 | bibcode = 2017NatCo...815978M | doi = 10.1038/ncomms15978 | pmid = 28691699 | pmc = 5508135 }}</ref>。该湖湖面被推测位于环湖河谷水道的高海拨处,因为它们都终止于同一海拔高度,表明流入进同一座湖泊<ref>Baker, D., J. Head. 2014. 44th LPSC, abstract #1252</ref><ref>{{cite journal | last1 = Irwin | first1 = R. |display-authors=etal | year = 2004 | title = Geomorphology of Ma'adim Vallis, Mars, and associated paleolake basins | url = https://semanticscholar.org/paper/556f1500c001670a7cd033d3164ef8e7c18d5306| journal = J. Geophys. Res. Planets | volume = 109 | issue = E12| page = E12009 | doi=10.1029/2004je002287 | bibcode=2004JGRE..10912009I| s2cid = 12637702 }}</ref><ref>{{cite journal | last1 = Hynek | first1 = B. |display-authors=etal | year = 2010 | title = Updated global map of Martian valley networks and implications for climate and hydrologic processes | journal = J. Geophys. Res. | volume = 115 | issue = E9| page = E09008 | doi=10.1029/2009je003548 | bibcode=2010JGRE..115.9008H| doi-access = free }}</ref>。 |
|||
File:Ravi Vallis.jpg|海盜號拍攝的[[拉維谷]],可能是災難性的巨大洪水從右邊的[[混沌地形]]流出。位於珍珠灣區。 |
|||
通过[[火星专用小型侦察影像频谱仪]]的研究发现了厚度大于400米的沉积物,其中含有皂石、滑石皂石、富铁云母(例如海绿石-绿脱石)、铁/镁蛇纹石、镁/铁/钙碳酸盐和可能的[[硫化物|硫化铁]],硫化铁可能形成于被[[火山]]加热的深水中,这种被归类为热液的过程可能是地球上生命起源的地方<ref name="ReferenceC"/>。 |
|||
</gallery> |
|||
海盜號登陸器的實驗結果顯示火星在古代和現代都有水存在;在海盜號[[氣相層析質譜分析儀]](Gas chromatograph-mass spectrometer)內加熱的試體釋放出水,但是比例只有約1%<ref name="Arvidson, R 1989">Arvidson, R et al. 1989. The Martian surface as Imaged, Sampled, and Analyzed by the Viking Landers. Review of Geophysics:27. 39-60.</ref>。化學分析顯示火星表面過去曾有許多水。部分火星表面的土壤含有[[硫]]和[[氯]],可能是古代海水蒸發後留下的。硫元素集中在火星的土層表面,因此可能原因是因為地殼上部份的硫酸鹽被水溶解後向上輸送到地表;這在地球上的沙漠是很常見的現象。這些硫可能與鈉、鎂、鈣或鐵形成[[硫酸鹽]]或鐵的硫化物存在<ref>Clark, B. et al. 1976. Inorganic Analysis of Martian Samples at the Viking Landing Sites. Science: 194. 1283-1288.</ref>。海盜號登陸器的火星表面試體化學實驗結果顯示火星表面礦物有約90%是富含鐵的[[黏土]]混合物;其中約10%是[[硫酸鎂]](可能是[[硫酸鎂石]])、約5%是[[碳酸鹽]]([[方解石]])、約5%是[[鐵氧化物]](可能有[[赤鐵礦]]、[[磁鐵礦]]、[[針鐵礦]])。這些礦物是典型的基性[[火成岩]]風化產物,這些礦物是水曾經存在的證據<ref>Baird, A. et al. 1976. Mineralogic and Petrologic Implications of Viking Geochemical Results From Mars: Interim Report. Science: 194. 1288-1293.</ref>。硫酸鹽礦物內有結晶水,是水在古代曾經存在的證據;[[維京2號]]發現相似礦物聚集存在的區域,因為維京2號的位置更北,拍攝到火星冬季表面的霜。 |
|||
<gallery> |
|||
File:Mars Viking 22e169.png|火星表面的霜 |
|||
File:PSP 001501 2280 RED VL-2 lander.png|2006年12月[[火星偵察軌道器]]拍攝海盜2號登陸器。 |
|||
<gallery class="center" widths="190px" heights="180px"> |
|||
File:Mars Viking 21i093.png|登陸地點的霜。 |
|||
PIA22059 fig1eridaniadepths.jpg|显示了埃里达尼亚湖不同地区估测水深的地图,地图宽约530英里。 |
|||
PIA22058 hireseridanaregion.jpg|来自埃里达尼亚湖底深水盆地的沉积物。地表上存在的桌山因受到深水/冰盖的保护而免受强烈侵蚀。[[火星专用小型侦察影像频谱仪]]的测量表明,矿物可能来自湖底热液矿床,生命有可能起源于这片湖泊。 |
|||
PIA22060 hireseridania.jpg|图中显示了火山活动如何导致埃里达尼亚湖底矿物的堆积,氯化物通过蒸发沿湖岸线沉积。 |
|||
</gallery> |
</gallery> |
||
=== 湖泊三角洲 === |
|||
[[File:Distributary fan-delta.jpg|thumb|[[埃伯斯瓦尔德撞击坑中]]的三角洲。]] |
|||
研究人员发现了许多形成于火星湖泊中的[[三角洲]]<ref name="ReferenceA">{{cite journal |last1=Di Achille |first1=Gaetano |last2=Hynek |first2=Brian M. |title=Ancient ocean on Mars supported by global distribution of deltas and valleys |journal=Nature Geoscience |volume=3 |pages=459–463 |date=2010 |doi=10.1038/ngeo891 |bibcode=2010NatGe...3..459D |issue=7}}</ref>,三角洲的发现是火星上曾拥有大量液态水的重要标志。三角洲通常需要在很长时间的深水中才能形成,此外,还需要水位稳定,以避免[[沉积物]]被冲走。三角洲在广泛的地理范围内被发现<ref name="Irwin III 2005" />,尽管有一些迹象表明三角洲可能集中于假想的[[火星海洋假说|火星前北方洋]]边缘<ref>{{cite journal | last1 = Di Achille | first1 = Gaetano | last2 = Hynek | first2 = Brian M. | year = 2010 | title = Ancient ocean on Mars supported by global distribution of deltas and valleys | journal = Nature Geoscience | volume = 3 | issue = 7| pages = 459–463 | doi=10.1038/ngeo891 | bibcode=2010NatGe...3..459D}}</ref>。 |
|||
=== 地下水 === |
|||
{{Main|火星的地下水}} |
|||
[[File:Groundwaterseries8final.jpg|thumb|left|可能由[[火星的地下水|地下水]]逐渐上升而形成的地层。]] |
|||
到1979年,人们认为火星上的[[溢出河道]]可能形成于偶发的地下水冰封层破裂,造成巨量液态水被排放到干涸表面的事件<ref>{{cite journal |last=Carr |first=M.H. |date=1979 |title=Formation of Martian flood features by release of water from confined aquifers |url=http://www.es.ucsc.edu/~rcoe/eart206/Carr_MarsFloodFeatures_JGR79.pdf |journal=J. Geophys. Res. |volume=84 |pages=2995–3007 |bibcode=1979JGR....84.2995C |doi=10.1029/JB084iB06p02995}}</ref><ref>{{cite journal |doi=10.1016/0019-1035(74)90101-8 |last1=Baker |first1=V. |last2=Milton |first2=D. |date=1974 |title=Erosion by Catastrophic Floods on Mars and Earth |journal=Icarus |volume=23 |issue=1 |pages=27–41 |bibcode=1974Icar...23...27B}}</ref>,在[[阿萨巴斯卡谷]]巨流涟漪中发现了显示严重甚至灾难性洪水的证据<ref>{{cite web |url=http://www.msss.com/mars_images/moc/2004/09/27/ |title=Mars Global Surveyor MOC2-862 Release |publisher=Msss.com |access-date=January 16, 2012 |archive-url=https://web.archive.org/web/20090412041936/http://www.msss.com/mars_images/moc/2004/09/27/ |archive-date=April 12, 2009 |url-status=dead }}</ref><ref name="DOInature">{{cite journal |doi=10.1038/nature05594 |title=Meridiani Planum and the global hydrology of Mars |date=2007 |last1=Andrews-Hanna |first1=Jeffrey C. |last2=Phillips |first2=Roger J. |last3=Zuber |first3=Maria T. |journal=Nature |volume=446 |issue=7132 |pages=163–6 |pmid=17344848 |bibcode=2007Natur.446..163A |s2cid=4428510 }}</ref>。许多发源于[[混沌地形]]或峡谷特征的溢出河道,为地下水冰封层破裂提供了佐证<ref name="Carr" />。 |
|||
=== [[火星全球探勘者號]] === |
|||
[[File:Hematite region Sinus Meridiani sur Mars.jpg|thumb|[[熱輻射光譜儀]]資料繪製的子午線灣的[[赤鐵礦]]分布圖。這些資料是作為[[機遇號]]登陸地點的選擇。赤鐵礦經常是在水的存在下形成。機遇號在此登陸並找到水存在的證據。]] |
|||
火星上分支河谷网的形成与地下水大规模突发性释放并不一致,这既表现在河谷网道并非来源于单一流出点的树杈形状上,也表现在沿各支流的流量上<ref>{{cite journal |last1=Irwin |last2=Rossman |first2=P. |first3=Robert A. |last3=Craddock |first4=Alan D. |last4=Howard |title=Interior channels in Martian valley networks: Discharge and runoff production |journal=Geology |volume=33 |issue=6 |date=2005 |pages=489–492 |doi=10.1130/g21333.1|bibcode=2005Geo....33..489I |s2cid=5663347 |url=https://semanticscholar.org/paper/6b111cbd9fbe8f254d4db25d66e60f38820d5245 }}</ref>。相反,一些作者认为它们是由地下水缓慢渗出形成的,基本上属于泉流<ref name="Jakosky1999">{{cite journal |last=Jakosky |first=Bruce M. |date=1999 |title=Water, Climate, and Life |journal=Science |volume=283 |issue=5402 |pages=648–649 |doi=10.1126/science.283.5402.648 |pmid=9988657|s2cid=128560172 }}</ref>,这一解释的论点是,此类河网中许多河谷的源头都起始于箱形峡谷或“盆状地形”端,在地球上这通常与地下水渗漏有关,也几乎没有证据表明在河道源头存在水流突然从地下出现,并伴有明显流量,非逐渐积聚的更细水道或河谷<ref name="Carr" />。另一些人则以地球事例为由,对河谷盆状地形端和地下水形成之间的联系提出了质疑<ref>Lamb, Michael P., et al. "Can springs cut canyons into rock?." ''Journal of Geophysical Research: Planets'' (1991–2012) 111.E7 (2006).</ref>,并认为由于[[风化作用|风化]]或[[撞击翻搅]]的清除作用,河谷水网缺乏细小的源头<ref name="Carr" />。但大部分作者承认,多数河谷网道至少部分受到地下水渗漏过程的影响和塑造。 |
|||
火星全球探勘者號的[[热辐射光谱仪]](TES)是用來偵測火星表面礦物組成的儀器。礦物成分提供水是否在古代火星存在的資訊。热辐射光谱仪調查很大的範圍(約30000平方公里),發現在[[尼利槽溝]]有[[橄欖石]]。一般認為早期的撞擊事件形成[[伊希地平原]],造成的斷層暴露橄欖石。橄欖石可在許多種基性火成岩中發現;而水的侵蝕可讓橄欖石產生變成其他礦物,例如[[針鐵礦]]、[[亞氯酸鹽]]、[[蒙脫石]]、[[磁赤鐵礦]]和[[赤鐵礦]]。橄欖石的發現是火星表面部分地區長期以來極為乾燥的強力證據。橄欖石也發現在其他許多位於北緯或南緯60度左右的露頭<ref>Hoefen, T. et al. 2003. Discovery of Olivine in the Nili Fossae Region of Mars. Science: 302. 627-630.</ref>。橄欖石已在[[火星隕石|SNC火星隕石]](輝玻無球隕石、輝橄無球隕石和純橄無球隕石)中被發現<ref>Hamiliton, W. et al. 1997. Journal of Geophysical Research: 102. 25593</ref>。後續研究發現富含橄欖石的岩石覆蓋超過11.3萬平方公里的火星表面,是[[夏威夷島]]五座火山面積的11倍<ref>http:www.soest.hawaii.edu/SOEST_News/News/PressReleases/amilton/</ref>。 |
|||
[[File:Burns cliff.jpg|thumb|right|[[坚忍撞击坑]]中伯恩斯峭壁风成沙丘[[地层学|层]]的保存和胶结被认为是受浅地层流水的控制<ref name="BurnsCliff">{{cite journal |last1=Grotzinger |first1=J.P. |first2=R.E. |last2=Arvidson |first3=J.F. |last3=Bell III |first4=W. |last4=Calvin |first5=B.C. |last5=Clark |first6=D.A. |last6=Fike |first7=M. |last7=Golombek |first8=R. |last8=Greeley |first9=A. |last9=Haldemann |first10=K.E. |last10=Herkenhoff |first11=B.L. |last11=Jolliff |first12=A.H. |last12=Knoll |first13=M. |last13=Malin |first14=S.M. |last14=McLennan |first15=T. |last15=Parker |first16=L. |last16=Soderblom |first17=J.N. |last17=Sohl-Dickstein |first18=S.W. |last18=Squyres |first19=N.J. |last19=Tosca |first20=W.A. |last20=Watters |title=Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum |journal=Earth and Planetary Science Letters |volume=240 |issue=1 |date=November 25, 2005 |pages=11–72 |issn=0012-821X |doi=10.1016/j.epsl.2005.09.039 |bibcode=2005E&PSL.240...11G}}</ref>。]] |
|||
[[地下水]]在控制火星上大范围沉积模式和过程中也起到至关重要的作用<ref name="Michalski">{{cite journal |title=Groundwater activity on Mars and implications for a deep biosphere |journal=Nature Geoscience |date=January 20, 2013 |first1=Joseph R. |last1=Michalski |first2=Paul B. |last2=Niles |first3=Javier |last3=Cuadros |first4=John |last4=Parnell |first5=A. Deanne |last5=Rogers |first6=Shawn P. |last6=Wright |volume=6 |pages=133–138 |doi=10.1038/ngeo1706 |quote=Here we present a conceptual model of subsurface habitability of Mars and evaluate evidence for groundwater upwelling in deep basins. |bibcode=2013NatGe...6..133M |issue=2}}</ref>,根据这一假设,含有溶解矿物的地下水进入地表、陨坑及陨坑周边,通过添加矿物质,尤其是硫酸盐并胶结沉积物促进了地层的形成<ref name="BurnsCliff" /><ref name=Zuber /><ref>{{cite journal |last1=Andrews‐Hanna |first1=J. C. |first2=M. T. |last2=Zuber |first3=R. E. |last3=Arvidson |first4=S. M. |last4=Wiseman |date=2010 |title=Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra |journal=J. Geophys. Res. |volume=115 |issue=E6 |page=E06002 |doi=10.1029/2009JE003485 |bibcode=2010JGRE..115.6002A|doi-access=free }}</ref><ref>{{cite journal |last=McLennan |first=S. M. |display-authors=etal |date=2005 |title=Provenance and diagenesis of the evaporitebearing Burns formation, Meridiani Planum, Mars |journal=Earth Planet. Sci. Lett. |volume=240 |issue=1 |pages=95–121 |doi=10.1016/j.epsl.2005.09.041 |bibcode=2005E&PSL.240...95M}}</ref><ref>{{cite journal |last1=Squyres |first1=S. W. |first2=A. H. |last2=Knoll |date=2005 |title=Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars |journal=Earth Planet. Sci. Lett. |volume=240 |issue=1 |pages=1–10 |doi=10.1016/j.epsl.2005.09.038 |bibcode=2005E&PSL.240....1S}}.</ref><ref>{{cite journal |last=Squyres |first=S. W. |display-authors=etal |date=2006 |title=Two years at Meridiani Planum: Results from the Opportunity rover |journal=Science |volume=313 |issue=5792 |pages=1403–1407 |doi=10.1126/science.1130890 |url=https://eprints.utas.edu.au/2614/1/Science2007.pdf |bibcode=2006Sci...313.1403S |pmid=16959999 |s2cid=17643218 }}.</ref>。换言之,某些地层可能是由地下水上升沉积的矿物质和胶结现有松散[[风蚀|风成]]沉积物而形成,因此,硬化层更能抵抗[[侵蚀作用]]。2011年一项利用[[火星勘测轨道飞行器]]数据进行的研究表明,包括[[阿拉伯台地 (火星)|阿拉伯高地]]在内的大片区域都存在着相同种类的沉积物<ref>{{cite conference |first1=M. |last1=Wiseman |first2=J. C. |last2=Andrews-Hanna |first3=R. E. |last3=Arvidson |first4=J. F. |last4=Mustard |first5=K. J. |last5=Zabrusky |title=Distribution of Hydrated Sulfates Across Arabia Terra Using CRISM Data: Implications for Martian Hydrology |url=https://www.lpi.usra.edu/meetings/lpsc2011/pdf/2133.pdf |conference=42nd Lunar and Planetary Science Conference |date=2011 }}</ref>。有人认为,沉积岩丰富的地区也最有可能是经历过局部范围地下水上涌的地区 <ref>{{cite journal |last1=Andrews‐Hanna |first1=Jeffrey C. |first2=Kevin W. |last2=Lewis |title=Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs |journal=Journal of Geophysical Research: Planets |volume=116 |issue=E2 |page=E2 |date=2011 |doi=10.1029/2010je003709 |bibcode=2011JGRE..116.2007A|s2cid=17293290 |doi-access=free }}</ref>。 |
|||
2006年12月6日美国宇航局公開[[薩瑞南高地|塞壬高地]]和[[半人馬山]]的照片,發現在1999和2001年的照片比較有液態水的證據<ref>[http://www.timesonline.co.uk/article/0,,3-2491082,00.html Water has been flowing on Mars within past five years, Nasa says.] {{Wayback|url=http://www.timesonline.co.uk/article/0,,3-2491082,00.html |date=20080905185257 }} ''Times Online''. Retrieved on March 17, 2007</ref><ref>[http://www.csmonitor.com/2006/1207/p01s02-usgn.html Mars photo evidence shows recently running water.] {{Wayback|url=http://www.csmonitor.com/2006/1207/p01s02-usgn.html |date=20101029153840 }} ''The Christian Science Monitor''. Retrieved on March 17, 2007</ref>。 |
|||
2019年2月,欧洲科学家公布了一项古老的全球范围地下水系统地质证据,可以说,该系统与推测的浩瀚海洋有关<ref name="ESA-20190228">{{cite news |author=ESA Staff |title=First Evidence of "Planet-Wide Groundwater System" on Mars Found |url=https://www.esa.int/Our_Activities/Space_Science/Mars_Express/First_evidence_of_planet-wide_groundwater_system_on_Mars |date=28 February 2019 |work=[[European Space Agency]] |access-date=28 February 2019 }}</ref><ref name="FTR-20190228">{{cite news |last=Houser |first=Kristin |title=First Evidence of "Planet-Wide Groundwater System" on Mars Found |url=https://futurism.com/the-byte/mars-groundwater-system-planet-wide |date=28 February 2019 |work=Futurism.com |access-date=28 February 2019 }}</ref><ref>{{Cite journal | doi=10.1029/2018JE005802| pmid=31007995| pmc=6472477| title=Geological Evidence of Planet-Wide Groundwater System on Mars| journal=Journal of Geophysical Research: Planets| volume=124| issue=2| pages=374–395| year=2019| last1=Salese| first1=Francesco| last2=Pondrelli| first2=Monica| last3=Neeseman| first3=Alicia| last4=Schmidt| first4=Gene| last5=Ori| first5=Gian Gabriele| bibcode=2019JGRE..124..374S}}</ref><ref>{{Cite web | url=https://www.leonarddavid.com/planet%E2%80%90wide-groundwater-system-on-mars-new-geological-evidence/ |title = Mars: Planet‐Wide Groundwater System – New Geological Evidence|date = February 19, 2019}}</ref>。2019年9月,研究人员报告说,[[洞察号]]着陆器发现了无法解释的[[磁异常]]和[[米尔诺夫振荡|磁振荡]],这与全球范围内地下深处的液态水水层相一致<ref name="NG-20190920">{{cite news |last=Andrews |first=Robin George |title=Mysterious magnetic pulses discovered on Mars - The nighttime events are among initial results from the InSight lander, which also found hints that the red planet may host a global reservoir of liquid water deep below the surface. |url=https://www.nationalgeographic.com/science/2019/09/mars-insight-feels-mysterious-magnetic-pulsations-at-midnight/ |date=20 September 2019 |work=[[National Geographic Society]] |access-date=20 September 2019 }}</ref>。 |
|||
數百條因為液態水造成的溪谷被認為是最近形成的。這些溪谷在陡坡和特定緯度被發現<ref name="Malin, M 2001">Malin, M. and K. Edgett. 2001. The Mars Global Surveyor Mars Orbiter Camera: Interplanetary ruise through Primary Mission: 106. 23429-23570 Journal of Geophysical Research</ref><ref>{{Cite web |url=http://www.msss.com/mars_images/moc/2006/12/06/gullies/sirenum_crater/index.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2010-07-01 |archive-url=https://web.archive.org/web/20100701180926/http://www.msss.com/mars_images/moc/2006/12/06/gullies/sirenum_crater/index.html |dead-url=yes }}</ref><ref>Malin, M. et al. 2006. Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars. science: 314. 1573-1577</ref><ref>{{Cite web |url=http://www.space.com/scienceastronomy/061206_mars_gullies.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2010-09-12 |archive-url=https://web.archive.org/web/20100912064554/http://www.space.com/scienceastronomy/061206_mars_gullies.html |dead-url=no }}</ref><ref>{{Cite web |url=http://mars.jpl.nasa.gov/mgs/msss/camera/images/june2000/ab1/index.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2011-06-07 |archive-url=https://web.archive.org/web/20110607000201/http://mars.jpl.nasa.gov/mgs/msss/camera/images/june2000/ab1/index.html |dead-url=no }}</ref>。 |
|||
=== 火星海洋假说 === |
|||
{{Main|火星海洋假说}} |
|||
[[Image:MarsTopoMap-PIA02031 modest.jpg|350px|thumb|火星北半球地势低洼的蓝色区域被认为是原始液态水海洋所在地<ref name="Brandenburg 1987">{{citation |first=John E. |last=Brandenburg |contribution=The Paleo-Ocean of Mars |title=MECA Symposium on Mars: Evolution of its Climate and Atmosphere |publisher=Lunar and Planetary Institute |pages=20–22 |date=1987 |bibcode=1987meca.symp...20B }}</ref>。]] |
|||
火星海洋假说提出,[[北方大平原]]盆地至少出现过一次液态水海洋<ref name="Baker" />,提供的证据表明,在[[火星地质史]]早期,火星上将近三分之一的[[火星地理|表面]]被液态海洋覆盖<ref name="Cabrol, N 2010" /><ref name="Clifford">{{cite journal |doi=10.1006/icar.2001.6671 |last1=Clifford |first1=S. M. |last2=Parker |first2=T. J. |date=2001 |title=The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains |journal=Icarus |volume=154 |issue=1 |pages=40–79 |bibcode=2001Icar..154...40C|s2cid=13694518 |url=https://semanticscholar.org/paper/de49a10fe4dc64afe5dbfaf13fc2ac96e10fa25a }}</ref>,该片被称为北方洋<ref name="Baker" />的海洋可能灌满了北半球位于行星平均海拔4-5公里(2.5-3.1英里)以下的北方大平原盆地区。有人提出了两条主要的假定海岸线:其中较高的一条可追溯到约38亿年前,与高原上形成的河谷网同时出现的年代;另一条较低的海岸线,则可能与较年轻的[[溢出河道]]有关。较高的“阿拉伯海岸线”痕迹可在除[[塔尔西斯]]火山区以外的地区找到;较低的“都特罗尼勒斯海岸线”分布则跟随着[[北方大平原]]构造<ref name="Carr" />。 |
|||
2010年6月的一项研究推断,更古老的海洋可能覆盖了36%的火星表面<ref name="ReferenceA" /><ref name="third" />。1999年,测量了火星上所有地形高度的[[火星轨道器激光高度计]]数据确认,该类海洋的[[流域]]可能遍及约75%的火星表面<ref name="Smith">{{cite journal |last=Smith |first=D. |display-authors=etal |date=1999 |title=The Gravity Field of Mars: Results from Mars Global Surveyor |journal=Science |volume= 286|issue=5437 |pages=94–97 |doi=10.1126/science.286.5437.94 |bibcode=1999Sci...286...94S |url=http://seismo.berkeley.edu/~rallen/eps122/reading/Smithetal1999.pdf |pmid=10506567}}</ref>。早期的火星需要更温暖的气候和更稠密的大气层,才能将液态水保留在地表<ref name="ReadandLewis">{{cite book |isbn=978-3-540-40743-0 |last1=Read |first1=Peter L. |first2=S. R. |last2=Lewis |title=The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet |publisher=Praxis |location=Chichester, UK |date=2004 |url=http://www.praxis-publishing.co.uk/9783540407430.htm |format=Paperback |access-date=December 19, 2010 }}</ref><ref>{{cite web |url=http://www.astrobio.net/pressrelease/3322/martian-north-once-covered-by-ocean |title=Martian North Once Covered by Ocean |publisher=Astrobio.net |access-date=December 19, 2010|date=November 26, 2009 }}</ref>。此外,大量的河谷水道有力地支持了火星过去可能存在着[[水文学|水循环]]<ref name="Zuber">{{cite journal |doi=10.1038/447785a |last=Zuber |first=Maria T. |date=2007 |title=Planetary Science: Mars at the tipping point |journal=Nature |volume=447 |issue=7146 |pages=785–786 |pmid=17568733 |bibcode=2007Natur.447..785Z |s2cid=4427572 }}</ref><ref>{{cite web |url=http://www.space.com/scienceastronomy/091123-mars-ocean.html |title=New Map Bolsters Case for Ancient Ocean on Mars |publisher=SPACE.com |date=November 23, 2009 }}</ref>。 |
|||
以下照片是火星全球探勘者號拍攝的溪谷照片作為範例: |
|||
科学家们对是否存在原始火星海洋仍有争议,“古海岸线”某些特征的解释也受到挑战<ref name="2003JGRE..108.5042C">{{cite journal |last1=Carr |first1=M. |last2=Head |first2=J. |date=2003 |title=Oceans on Mars: An assessment of the observational evidence and possible fate |journal=Journal of Geophysical Research |volume=108 |issue=E5 |page=5042 |bibcode=2003JGRE..108.5042C |doi=10.1029/2002JE001963 |s2cid=16367611 |url=https://semanticscholar.org/paper/9c3a363edbe0327caa2891d7bb96aaefb55a9e77 }}</ref><ref>{{cite web |url=http://astrobiology.nasa.gov/articles/mars-ocean-hypothesis-hits-the-shore/ |title=Mars Ocean Hypothesis Hits the Shore |work=NASA Astrobiology |publisher=NASA |date=January 26, 2001 |archive-url=https://web.archive.org/web/20120220081803/http://astrobiology.nasa.gov/articles/mars-ocean-hypothesis-hits-the-shore/ |archive-date=February 20, 2012}}</ref>。推测有20亿年历史的海岸线所面临的一个问题是,它的起伏并不平缓,即不遵循恒定重力势线,这也许是由火山喷发或流星撞击造成的火星质量分布变化所致<ref>{{cite journal |last1=Perron |first2=J. |last2=Taylor |display-authors=etal |title=Evidence for an ancient Martian ocean in the topography of deformed shorelines |journal=Nature |volume=447 |issue=7146 |date=2007 |pages=840–843 |doi=10.1038/nature05873 |pmid=17568743|bibcode=2007Natur.447..840P |s2cid=4332594 }}</ref>。[[埃律西昂火山区]]或被埋在北方平原下的巨大[[乌托邦平原|乌托邦盆地]]被认为是最可能的肇因<ref name="Zuber" />。 |
|||
<gallery> |
|||
File:Gully in Phaethontis.jpg|位於[[牛頓撞擊坑 (火星)|牛頓撞擊坑]]附近的坑洞北側環型山的溪谷群(南緯41.3047°,東經192.89°)。影像位於[[法厄同區]]。 |
|||
2015年3月,科学家们表示,有证据表明存在一座古老的火星海洋,可能位于行星的北半球,大约相当于地球[[北冰洋]]的大小,约占火星表面的19%。这一发现是将现代火星大气层中水和[[氘]]的比例与地球上这一比例相比较得出的。在火星上发现的氘是地球上氘含量的八倍,这表明古代火星的含水量明显更高。[[好奇号]]探测车先前曾在[[盖尔撞击坑]]中发现了更高比例的氘,虽还不足以表明存在海洋。其他科学家警示说,这项新的研究尚未得到证实,并指出火星气候模型尚未表明过去火星的气温足以支持液态水体<ref name="NYT-20150305">{{cite news |url=https://www.nytimes.com/2015/03/06/science/mars-had-an-ocean-scientists-say-pointing-to-new-data.html |title=Mars Had an Ocean, Scientists Say, Pointing to New Data |work=[[The New York Times]] |last=Kaufman |first=Marc |date=March 5, 2015 |access-date=March 5, 2015}}</ref>。 |
|||
File:Gullies and tongue-shaped glacier.jpg|在厄立特里亚區內[[克卜勒撞擊坑 (火星)|克卜勒撞擊坑]]以北某坑洞內的溪谷。該地形特徵也許是古代冰川的遺跡。右側其中一個形狀類似舌頭。 |
|||
2016年5月发表了有关北方洋的其他证据,描述了[[伊斯墨纽斯湖区|伊斯墨诺斯湖区]]的一些地表如何被两次[[海啸]]改变的过程。海啸是由[[小行星]]撞击海洋所引发,二次撞击的强度足以形成二座直径30公里的[[陨石坑]]。第一次海啸冲走了汽车或小屋般大小的巨石,巨浪的回冲通过改变巨石位置形成了水道。第二次携载着大量被抛落在河谷中的冰块。计算表明,浪潮平均高度为50米,具体从10米到120米不等。数值模拟表明,在海洋的这一特定区域,每隔3000万年就会形成两座直径30公里的撞击坑。这意味着一座巨大的北方洋可能已存在了数百万年,反方意见所提出的海岸线特征,可能已在历次海啸中被冲走。这项研究所涉及的地区为[[克律塞平原]]和[[阿拉伯台地 (火星)|阿拉伯高地]]西北部,这些海啸影响了伊斯墨诺斯湖区和[[阿西达里亚海区]]的部分地表<ref>{{cite web|url=http://astrobiology.com/2016/05/ancient-tsunami-evidence-on-mars-reveals-life-potential.html|title=Ancient Tsunami Evidence on Mars Reveals Life Potential – Astrobiology|website=astrobiology.com}}</ref><ref>Rodriguez, J., et al. 2016. Tsunami waves extensively resurfaced the shorelines of an early Martian ocean. Scientific Reports: 6, 25106.</ref><ref>{{cite journal|title=Tsunami waves extensively resurfaced the shorelines of an early Martian ocean|first1=J. Alexis P.|last1=Rodriguez|first2=Alberto G.|last2=Fairén|first3=Kenneth L.|last3=Tanaka|first4=Mario|last4=Zarroca|first5=Rogelio|last5=Linares|first6=Thomas|last6=Platz|first7=Goro|last7=Komatsu|first8=Hideaki|last8=Miyamoto|first9=Jeffrey S.|last9=Kargel|first10=Jianguo|last10=Yan|first11=Virginia|last11=Gulick|first12=Kana|last12=Higuchi|first13=Victor R.|last13=Baker|first14=Natalie|last14=Glines|date=May 19, 2016|journal=Scientific Reports|volume=6|issue=1|pages=25106|doi=10.1038/srep25106|pmid=27196957|pmc=4872529|bibcode=2016NatSR...625106R}}</ref><ref>Cornell University. "Ancient tsunami evidence on Mars reveals life potential." ScienceDaily. ScienceDaily, May 19, 2016. <https://www.sciencedaily.com/releases/2016/05/160519101756.htm>.</ref>。 |
|||
File:Kaiser Gullies.JPG|[[凱撒撞擊坑]]壁內的溪谷。一般來說溪谷地形特徵經常只在撞擊坑一側被發現。位於挪亚區。 |
|||
2019年7月,据报道,火星上一座[[火星海洋假说|古海洋]]曾在形成[[罗蒙诺索夫撞击坑 (火星)|罗蒙诺索夫撞击坑]]的[[撞击事件|陨石撞击]]中产生过一场[[大海啸|特大海啸]]<ref name="NYT-20190730">{{cite news |last=Andrews |first=Robin George|title=When a Mega-Tsunami Drowned Mars, This Spot May Have Been Ground Zero - The 75-mile-wide crater could be something like a Chicxulub crater for the red planet. |url=https://www.nytimes.com/2019/07/30/science/mars-tsunami-crater.html |date=July 30, 2019 |work=[[The New York Times]] |access-date=July 31, 2019 }}</ref><ref name="JGRP-20190626">{{cite journal |author=Costard, F. |display-authors=et al. |title=The Lomonosov Crater Impact Event: A Possible Mega‐Tsunami Source on Mars |date=June 26, 2019 |journal=[[Journal of Geophysical Research: Planets]] |volume=124 |issue=7 |pages=1840–1851 |doi=10.1029/2019JE006008 |bibcode=2019JGRE..124.1840C |hdl=20.500.11937/76439 |hdl-access=free }}</ref>。 |
|||
File:Gullies in Gorgonum.jpg|[[戈耳貢混沌]]地形內溪谷的全彩影像。影像位於法厄同區。 |
|||
=== 近期流体的证据 === |
|||
{{Main|火星暖坡上的季节性流}} |
|||
{{See also|火星冲沟}} |
|||
[[File:Warm Season Flows on Slope in Newton Crater (animated).gif|thumb|left|[[牛顿撞击坑 (火星)|牛顿撞击坑]]斜坡上的暖季流。]] |
|||
[[File:Branched gullies.jpg|thumb|分支冲沟群]] |
|||
[[File:Deep Gullies.jpg|thumb|深沟群]] |
|||
在目前的低温低压下,纯液水无法以稳定的形态存在于火星表面,除非仅短时间内在海拔最低处<ref name="Kostama" /><ref name="flows" />,所以,2006年美国宇航局[[火星勘测轨道飞行器]]观测到的十年前并不存在的[[火星冲沟|冲沟]]群,可能是火星最温暖月份由流动的液态[[卤水 (水域)|卤水]]所造成,由此揭开了一个地质谜团<ref name="Impact Cratering Rate">{{cite journal |title=Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars |journal=Science |date=December 8, 2006 |first1=Michael C. |last1=Malin |first2=Kenneth S. |last2=Edgett |first3=Liliya V. |last3=Posiolova |first4=Shawn M. |last4=McColley |first5=Eldar Z. Noe |last5=Dobrea |volume=314 |issue=5805 |pages=1573–1577 |doi=10.1126/science.1135156 |pmid=17158321 |bibcode=2006Sci...314.1573M|s2cid=39225477 }}</ref><ref name="Head 2008 PNAS">{{cite journal |pmid=18725636 |date=2008 |last1=Head |first1=JW |last2=Marchant |first2=DR |last3=Kreslavsky |first3=MA |title=Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin |volume=105 |issue=36 |pages=13258–63 |doi=10.1073/pnas.0803760105 |pmc=2734344 |journal=[[Proceedings of the National Academy of Sciences of the United States of America|PNAS]] |bibcode=2008PNAS..10513258H}}</ref>。在[[萨瑞南高地|塞壬高地]]和[[半人马山]]拍摄到的两座陨石坑照片,似乎显示在1999年至2001年的某些时刻火星上存在(干或湿的)流体<ref name="Impact Cratering Rate" /><ref>{{cite news |url=http://www.timesonline.co.uk/article/0,,3-2491082,00.html |title=Water has been flowing on Mars within past five years, Nasa says |work=[[The Times]] |location=UK |first=Mark |last=Henderson |date=December 7, 2006}}</ref><ref>{{cite journal |last1=Malin |first1=Michael C. |last2=Edgett |first2=Kenneth S. |date=2000 |title=Evidence for Recent Groundwater Seepage and Surface Runoff on Mars |journal=Science |volume=288 |issue=5475 |pages=2330–2335 |doi=10.1126/science.288.5475.2330 |pmid=10875910 |bibcode=2000Sci...288.2330M|s2cid=14232446 |url=https://semanticscholar.org/paper/c7f91d323f8317c41037aa2862f0e5a0f8b6d718 }}</ref>。 |
|||
</gallery> |
|||
对于冲沟是否由液态水造成,科学界存在分歧,切割沟壑的流体也可能是干颗粒<ref name="ICRS-20170928"/><ref>{{cite journal |doi=10.1016/j.icarus.2009.09.009 |last1=Kolb |first1=K. |last2=Pelletier |date=2010 |first2=Jon D. |last3=McEwen |first3=Alfred S. |title=Modeling the formation of bright slope deposits associated with gullies in Hale Crater, Mars: Implications for recent liquid water |journal=Icarus |volume=205 |issue=1 |pages=113–137 |bibcode=2010Icar..205..113K}}</ref>或可能被二氧化碳润滑的颗粒。一些研究证明,由于条件不适,南部高地上出现的冲沟不可能由水流形成。低气压、非地热及更寒冷的地区,在一年中的任何时候都不会出现液态水,但却适合于固体二氧化碳。在温暖的夏季,固体二氧化碳融化会融化成液态,然后在地表冲刷出沟壑<ref>{{cite journal |last=Hoffman |first=Nick |title=Active polar gullies on Mars and the role of carbon dioxide |journal=Astrobiology |volume=2 |issue=3 |date=2002 |pages=313–323 |doi=10.1089/153110702762027899 |pmid=12530241|bibcode=2002AsBio...2..313H }}</ref><ref>{{cite journal |last1=Musselwhite |first1=Donald S. |first2=Timothy D. |last2=Swindle |first3=Jonathan I. |last3=Lunine |title=Liquid CO2 breakout and the formation of recent small gullies on Mars |journal=Geophysical Research Letters |volume=28 |issue=7 |date=2001 |pages=1283–1285 |doi=10.1029/2000gl012496 |bibcode=2001GeoRL..28.1283M|doi-access=free }}</ref>。退一步讲,即便冲沟是由地表流动的水流所蚀刻,目前对水的确切来源及其运动背后的机制仍不清楚<ref name="hirise2">{{cite journal |last1=McEwen |first1=Alfred. S. |last2=Ojha |first2=Lujendra |last3=Dundas |first3=Colin M. |date=June 17, 2011 |title=Seasonal Flows on Warm Martian Slopes |journal=Science |volume=333 |issue=6043 |pages=740–743 |publisher=American Association for the Advancement of Science |doi=10.1126/science.1204816 |issn=0036-8075 |bibcode=2011Sci...333..740M |pmid=21817049|s2cid=10460581 |url=https://semanticscholar.org/paper/d37a7c84f8aaaeafa562746dee765b438d1f50ac }}</ref>。 |
|||
部分火星上的河道顯示曾經存在水流,最有名的是在[[納內迪谷]];另外在[[尼尔格谷]]也發現同樣的地理特徵<ref name="Malin, M 2001"/>。 |
|||
干涸的冲沟是凿刻在斜坡上的深槽,常年存在。火星上还有许多其他的特征,其中一些属于季节性变化。 |
|||
[[File:Nanedi channel.JPG|thumb|納內迪峽谷河床底的內河道(靠近影像頂部),這是水流曾長時間穩定存在的證據。位於月沼區。]] |
|||
2011年8月,美国宇航局宣布本科生“琳德拉·奥哈”(LujendraOjha)<ref>{{cite web |url=http://nepaliblogger.com/news/nepali-scientist-lujendra-ojha-spots-possible-water-on-mars/2793 |title=Nepali Scientist Lujendra Ojha spots possible water on Mars |publisher=Nepali Blogger |date=August 6, 2011 |url-status=dead |archive-url=https://web.archive.org/web/20130604112105/http://nepaliblogger.com/news/nepali-scientist-lujendra-ojha-spots-possible-water-on-mars/2793/ |archive-date=June 4, 2013 }}</ref>在南半球陨石坑边缘附近的岩石露头下方陡坡上发现了季节性变化流,这些黑色条纹,现在称为[[火星暖坡上的季节性流|复发性斜坡线]](RSL),在火星夏季最温暖时节,会向下生长延伸,然后在一年中的其余时间里逐渐消失,数年之中会定期重复出现<ref name="NASA-20131210" />。研究人员认为,这些痕迹与盐水(卤水)沿山坡向下流动、蒸发,并可能留下一些残留物相一致<ref>{{cite web |url=http://www.nasa.gov/mission_pages/MRO/news/mro20110804.html |title=NASA Spacecraft Data Suggest Water Flowing on Mars |publisher=[[NASA]] |date=August 4, 2011}}</ref><ref name=SeasonalFlowsScience>{{cite journal| last1=McEwen| first1=Alfred| last2=Lujendra| first2=Ojha| last3=Dundas| first3=Colin| last4=Mattson| first4=Sarah| last5=Bryne| first5=S| last6=Wray| first6=J| last7=Cull| first7=Selby| last8=Murchie| first8=Scott| last9=Thomas| first9=Nicholas| last10=Gulick| first10=Virginia| title=Seasonal Flows On Warm Martian Slopes.| journal=Science| date=August 5, 2011| volume=333| issue=6043| pages=743| doi=10.1126/science.1204816| pmid=21817049| archive-url=https://web.archive.org/web/20150929112931/https://sciencescape.org/paper/21817049| archive-date=September 29, 2015| df=mdy-all| bibcode=2011Sci...333..740M| s2cid=10460581| url=https://semanticscholar.org/paper/d37a7c84f8aaaeafa562746dee765b438d1f50ac}}</ref>。此后,[[火星专用小型侦察影像频谱仪]]直接观察到了与这些复发性斜坡线同时出现的含水盐类,并于2015年确认这些线纹是由液体卤水流经浅层土壤时所产生。这些线条包含了含液态水分子的水合氯酸盐和[[高氯酸盐]]({{chem|Cl|O|4}}<sup>−</sup>)。在火星夏季,当气温高于摄氏−23度(华氏−9度;250 K)时<ref>{{Cite web|title = Water Flows on Mars Today, NASA Announces|url = http://www.scientificamerican.com/article/water-flows-on-mars-today-nasa-announces/|access-date = September 30, 2015|first = Clara|last = Moskowitz}}</ref>,线条流开始向坡下流动<ref>{{Cite web| title = NASA Finds 'Definitive' Liquid Water on Mars|url = http://news.nationalgeographic.com/2015/09/150928-mars-liquid-water-confirmed-surface-streaks-space-astronomy/|website = National Geographic News|access-date = September 30, 2015|first1 = Nadia|last1 = Drake|first2 = National Geographic September|last2 = 28|date = September 28, 2015}}</ref>,但水源仍然不明<ref name="Ojhaetal2015"/><ref>{{Cite web|url = https://www.youtube.com/watch?v=bDv4FRHI3J8|title = NASA News Conference: Evidence of Liquid Water on Today's Mars|date = September 28, 2015|publisher = NASA}}</ref><ref>{{Cite web|title = NASA Confirms Evidence That Liquid Water Flows on Today's Mars|url = http://www.nasa.gov/press-release/nasa-confirms-evidence-that-liquid-water-flows-on-today-s-mars/|access-date = September 30, 2015|date = September 28, 2015}}</ref>。2017年12月公布的[[2001火星奥德赛号|火星奥德赛号]]轨道器过去十年所获得的中子光谱仪数据显示,没有证据表明在这些活动地点有水存在(氢化表岩屑),因此,作者也支持短期大气层水蒸汽潮解或干燥颗粒流假设<ref name="ICRS-20170928"/>。他们得出的结论是,今天火星上的液态水可能仅限于大气层和薄膜中溶解的水分痕迹,这对我们所知的生命来说是一种具有挑战的环境<ref name="jpl.nasa.gov">[https://www.jpl.nasa.gov/news/news.php?release=2017-299 Recurring Martian Streaks: Flowing Sand, Not Water?]. JPL NASA News. November 20, 2017.</ref>。 |
|||
火星上許多地方发现在陡坡上有暗條紋(暗黑斜坡条纹或陡坡上的暗黑条纹),例如撞擊坑壁。陡坡暗纹自[[水手號計劃|水手號]]任務和[[海盜號]]任務開始被研究<ref>{{Cite web |url=http://hirise.lpl.arizona.edu/PSP_003570_1915 |title=存档副本 |accessdate=2010-03-30 |archive-date=2010-11-11 |archive-url=https://web.archive.org/web/20101111172813/http://hirise.lpl.arizona.edu/PSP_003570_1915 |dead-url=no }}</ref>。這些條紋看起來是一開始形成時是暗色,之後隨著年代變淡色。這些條紋一開始形成時有小而窄的斑點,之後開始變寬且下降數百公尺。這些條紋看起來並未與其他特定地層的物質有關,因為它們並非在一個共同高度上延著山丘開始延伸。雖然這些條紋看起來非常暗,但只有約10%或更少的條紋比周圍物質更暗。火星全球探勘者號發現有新的條紋在1年內形成。 |
|||
== 现在的水 == |
|||
{{multiple image |
|||
|align=right |
|||
|direction=vertical |
|||
|width=200 |
|||
|image1=Water equivalent hydrogen abundance in the lower latitudes of Mars 01.jpg |
|||
|image2=Water equivalent hydrogen abundance in the high latitudes of Mars.jpg |
|||
|caption2=较低(顶部)和较高(底部)纬度区存在于火星表面1米以下地层中的水冰比例,该百分比是通过基于超热中子通量的化学计量估算得出,而这些通量是由2001火星奥德赛号上中子光谱仪所探测到。}} |
|||
[[2001火星奥德赛号|火星奥德赛号]]中子光谱仪和伽马射线光谱仪在火星全球范围内观测到了大量的表面[[氢]]<ref name="Boynton2007">{{cite journal |last=Boynton |first=W. V. |display-authors=etal |date=2007 |title=Concentration of H, Si, Cl, K, Fe, and Th in the low and mid latitude regions of Mars |journal=[[Journal of Geophysical Research: Planets]] |volume=112 |issue=E12 |pages=E12S99 |doi=10.1029/2007JE002887 |bibcode=2007JGRE..11212S99B|doi-access=free }}</ref>,这种氢被认为是与冰的分子结构结合在一起的,通过[[化学计量数]计算,观测到的通量已被转化为火星表面1米以上地层中水冰的密度。这一数据处理表明,目前火星地表中冰的分布广泛而且丰富。60度以下的纬度区,冰集中在数个地区,特别是[[埃律西昂山|埃律西昂火山]]周围、[[示巴高地]]和[[萨瑞南高地|塞壬高地]]西北部,地下冰的密度高达18%;在纬度60度以上地区,冰层分布非常丰富;纬度70度的极地,几乎所有地方的冰密度都超过25%,在极地接近100%<ref>{{cite journal |last1=Feldman |first1=W. C. |last2=Prettyman |first2=T. H. |last3=Maurice |first3=S. |last4=Plaut |first4=J. J. |last5=Bish |first5=D. L. |last6=Vaniman |first6=D. T. |last7=Tokar |first7=R. L. |date=2004 |title=Global distribution of near-surface hydrogen on Mars |journal=Journal of Geophysical Research |volume=109 |issue=E9 |page=E9 |id=E09006 |doi=10.1029/2003JE002160 |bibcode=2004JGRE..109.9006F|doi-access=free }}</ref>。[[火星勘测轨道飞行器]]的浅地层雷达(SHARAD)和[[火星快车号]]地下和电离层探测高新雷达(MARSIS)也证实,个别地表特征富含水冰。由于已知在目前火星表面条件下冰的不稳定性,因此认为几乎所有的冰都被一层薄薄的岩石或尘埃物质所覆盖。 |
|||
火星奥德赛中子光谱仪的观测表明,如果火星表面离顶部一米深处的所有冰都均匀分布,那么将会形成至少全球约14厘米(5.5英寸)深的水层。-换言之,火星全球平均14%的表面是水<ref name=Feldman2004>{{cite journal |last=Feldman |first=W. C. |display-authors=etal |date=2004 |title=Global distribution of near-surface hydrogen on Mars|journal= Journal of Geophysical Research|doi=10.1029/2003JE002160 |bibcode=2004JGRE..109.9006F |volume=109 |issue=E9|pages=E09006 |doi-access=free }}</ref>。当前锁定在火星两极的水冰相当于30米(98英尺)深的全球平均水层。地貌证据表明,过去地质时期,地表水的数量明显更大,全球平均水层深达500米(1600英尺)<ref name="ChristensenIceBudget">{{cite journal |last=Christensen |first=P. R. |date=2006 |title=Water at the Poles and in Permafrost Regions of Mars |journal=Elements |issue=2 |volume=3 |pages=151–155|doi=10.2113/gselements.2.3.151 }}</ref><ref name="Feldman2004" />。人们认为,火星上过去的水一部分流入到了更深的地下,另一部分则散失在太空中,尽管对这些作用过程的详细质量平衡仍然知之甚少<ref name="Carr" />。目前大气蓄水层是一条非常重要的管道,它可让冰季节性和在更长时间跨度上从一地迁移至另一地,但其体积微不足道,折算全球平均水深不超过10微米(0.00039英寸)<ref name="Feldman2004" />。 |
|||
有些觀點被提出以解釋這些暗條紋形成的原因;這些因素也包括水<ref>http://www.space.com/scienceastronomy/streaks_mars_021200.html</ref>或者是[[火星生命|火星上生命]]的滋長<ref>{{Cite web |url=http://www.spcae.com/scienceastronomy/streaks_mars_021211.html |title=存档副本 |access-date=2010-03-30 |archive-url=https://web.archive.org/web/20150221231430/http://www.spcae.com/scienceastronomy/streaks_mars_021211.html |archive-date=2015-02-21 |dead-url=yes }}</ref><ref>http://www.space.com/scienceastronomy/streaks_mars_streaks_030328.html</ref>主要被接受的解釋是這些暗條紋來自於覆蓋在較暗物質地層上的明亮物質薄地層山崩而形成。比較亮的塵土在一段時期後在火星整個表面落下<ref>Malin, M. and K. Edgett. 2001. The Mars Global Surveyor Mars Orbiter Camera: Interplanetary ruise through Primary Mission: 106. 23429-23570Journal of Geophysical Research</ref>。 |
|||
=== 极地冰冠 === |
|||
{{Main|火星极冠}} |
|||
[[File:Martian north polar cap.jpg|thumb|[[火星全球探勘者号]]在北半球夏季之初拍摄得火星北极冰盖照片。]] |
|||
[[File:Perspective view of Korolev crater.jpg|thumb|[[科罗廖夫撞击坑 (火星)|科罗廖夫撞击坑]]中估计含有2200公里<sup>3</sup>(530英里<sup>3</sup>)的水冰。]] |
|||
火星北极([[北极高原]])和南极([[南极高原 (火星)|南极高原]])极冠自[[水手9号]]轨道飞行器以来就为人所知<ref>{{Cite journal|last=Cutts|first=James A.|date=1973-07-10|title=Nature and origin of layered deposits of the Martian polar regions|journal=Journal of Geophysical Research|language=en|volume=78|issue=20|pages=4231–4249|doi=10.1029/JB078i020p04231|bibcode=1973JGR....78.4231C}}</ref>,但是,这种冰的数量和纯度直到21世纪初才被了解清楚。2004年,欧洲[[火星快车号]]上的玛西斯(MARSIS)雷达探测仪证实了南极冰盖下至地下3.7公里(2.3英里)处存在相对洁净的水冰<ref name="NASAwater">{{cite web |publisher=NASA |date=March 15, 2007 |title=Mars' South Pole Ice Deep and Wide |work=NASA News & Media Resources |url=http://www.nasa.gov/mission_pages/mars/news/mars-20070315.html}}</ref><ref name="Plaut2007">{{cite journal |last=Plaut |first=J. J. |display-authors=etal |title=Subsurface Radar Sounding of the South Polar Layered Deposits of Mars |journal=Science |date=March 15, 2007 |doi=10.1126/science.1139672 |volume=316 |issue=5821 |pages=92–95 |pmid=17363628|bibcode=2007Sci...316...92P |s2cid=23336149 |url=https://semanticscholar.org/paper/d2ce5227bdec0b59e02260d7c4459ab19ee1d8d9 }}</ref>。同样,[[火星勘测轨道飞行器]]上搭载的萨拉德浅地层雷达测深仪也观测到了地表下1.5–2公里处的北极冰盖底部,总之,火星南北极冰盖中的冰容量与格陵兰冰原相类似<ref>{{Cite journal|last=Byrne|first=Shane|date=2009|title=The Polar Deposits of Mars|journal=Annual Review of Earth and Planetary Sciences|volume=37|issue=1|pages=535–560|doi=10.1146/annurev.earth.031208.100101|bibcode=2009AREPS..37..535B|s2cid=54874200|url=https://semanticscholar.org/paper/9eb1359f6bce519c342cab34f71e3e24b8822142}}</ref>。 |
|||
以下是火星全球探勘者號拍攝的暗條紋影像: |
|||
[[File:PIA13164 North Polar Cap Cross Section, Annotated Version.jpg|thumb|left|由卫星雷达探测出的火星北极冰盖横截面图,黄线为冰盖表层;红线为内部层;蓝线为冰盖底部。]] |
|||
<gallery> |
|||
File:Layers in a crater in Arabia.JPG|[[吉洪拉沃夫撞擊坑]]內地層。這些地層可能是因為火山、風或者水的作用沉積形成的。左邊的數個撞擊坑是[[底座形撞擊坑]](Pedestal crater)。陡坡上的暗條紋可以發現是來自某些地層(請點選影像放大)。 |
|||
南极区冰盖上一片更大的冰原被怀疑在远古时期([[赫斯珀里亚纪]])就已消退,其中可能含有2000万公里<sup>3</sup>的水冰,相当于整个行星上一层137米深的水层<ref>Scanlon, K., et al. 2018. The Dorsa Argentea Formation and the Noachian-Hesperian climate transition. Icarus: 299, 339–363.</ref><ref>Head, J, S. Pratt. 2001. Extensive Hesperian-aged south polar ice sheet on Mars: Evidence for massive melting and retreat, and lateral flow and pending of meltwater. J. Geophys. Res.-Planet, 106 (E6), 12275-12299.</ref>。 |
|||
<!-- 檔案不存在 File:Tikonravev Crater Floor.JPG|位於阿拉伯區的[[吉洪拉沃夫撞擊坑]]。點選影像放大可見陡坡上的暗條紋和地層。 ,可從英文維基百科取得 --> |
|||
File:Dark streaks in Diacria.JPG|狄阿克里亚區的暗條紋。 |
|||
当通过剖析其体积的螺旋槽图像进行检查时发现,两处极地冰盖都有丰富的内部冰层和尘埃层,地下雷达的测量显示这些分层在冰原上不断延伸。就像地球上记录了地球气候的冰盖一样,这种分层也包含了火星过去的气候记录。然而,阅读这些记录并不简单<ref>{{cite journal|last1=Fishbaugh|first1=KE|last2=Byrne|first2=Shane|last3=Herkenhoff|first3=Kenneth E.|last4=Kirk|first4=Randolph L.|last5=Fortezzo|first5=Corey|last6=Russell|first6=Patrick S.|last7=McEwen|first7=Alfred|date=2010|title=Evaluating the meaning of "layer" in the Martian north polar layered depsoits and the impact on the climate connection|url=http://www.lpl.arizona.edu/~shane/publications/fishbaugh_etal_icarus_2010.pdf|journal=Icarus|volume=205|issue=1|pages=269–282|bibcode=2010Icar..205..269F|doi=10.1016/j.icarus.2009.04.011}}</ref>,因此,许多研究人员研究这种分层现象,不仅是为了了解冰盖的结构、历史和流动特性<ref name="Carr" />,也是为了了解火星气候的演变<ref>{{Cite web|url=https://eos.org/research-spotlights/how-mars-got-its-layered-north-polar-cap|title=How Mars Got Its Layered North Polar Cap|website=Eos|language=en-US|access-date=2019-09-26}}</ref><ref>{{Cite web|url=https://eos.org/editor-highlights/peeling-back-the-layers-of-the-climate-of-mars|title=Peeling Back the Layers of the Climate of Mars|website=Eos|language=en-US|access-date=2019-09-26}}</ref>。 |
|||
File:Dark Streaks in Crater.JPG|阿拉伯區的暗條紋。影像內撞擊坑大小與美國[[亞利桑那州]]的[[巴林傑隕石坑]]相近。 |
|||
围绕极冠还有很多位于陨石坑内较小的冰盖,其中一些覆盖在厚厚的沙粒或火星尘埃沉积物之下<ref>{{Cite journal|last1=Conway|first1=Susan J.|last2=Hovius|first2=Niels|last3=Barnie|first3=Talfan|last4=Besserer|first4=Jonathan|last5=Le Mouélic|first5=Stéphane|last6=Orosei|first6=Roberto|last7=Read|first7=Natalie Anne|date=2012-07-01|title=Climate-driven deposition of water ice and the formation of mounds in craters in Mars' north polar region|journal=Icarus|volume=220|issue=1|pages=174–193|doi=10.1016/j.icarus.2012.04.021|issn=0019-1035|bibcode=2012Icar..220..174C|url=https://hal-insu.archives-ouvertes.fr/insu-02276816/file/HAL_Conway_icarus_2012.pdf}}</ref><ref>{{Cite web|url=https://phys.org/news/2019-09-ice-islands-mars-pluto-reveal.html|title=Ice islands on Mars and Pluto could reveal past climate change|website=phys.org|language=en-us|access-date=2019-09-26}}</ref>。特别是直径81.4公里(50.6英里)的[[科罗廖夫撞击坑 (火星)|科罗廖夫撞击坑]],据估计,含有约2200公里<sup>3</sup>(530英里<sup>3</sup>)暴露在地表上的水冰<ref name="DLR">{{cite web |title=A winter wonderland in red and white – Korolev Crater on Mars |url=https://www.dlr.de/content/en/articles/news/2018/4/20181220_korolev-crater-on-mars.html |website=German Aerospace Center (DLR) |access-date=20 December 2018}}</ref>。科罗廖夫撞击坑的坑底位于坑口下方约2公里(1.2英里)处,上面覆盖着1.8公里(1.1英里)深的永久性中央水冰丘,直径可达60公里(37英里)<ref name="DLR"/><ref name="TG1218">{{cite news|url=https://www.theguardian.com/science/2018/dec/21/mars-express-beams-back-images-of-ice-filled-korolev-crater|newspaper=The Guardian|access-date=December 21, 2018|title=Mars Express beams back images of ice-filled Korolev crater|date=December 21, 2018|last1=Editor|first1=Ian Sample Science}}</ref>。 |
|||
</gallery> |
|||
===={{anchor|Subglacial liquid water}}冰川下的液态水==== |
|||
[[File:Mars-SubglacialWater-SouthPoleRegion-20180725.jpg|thumb[[南极高原 (火星)|南极]]冰川下的水体位置(2018年7月报告)。]] |
|||
曾推测火星上存在冰下湖,当在对[[南极洲]][[沃斯托克湖]]进行建模时显示,该湖泊可能在南极冰期之前就已存在,类似的情况也可能发生在火星上<ref>{{cite journal |url=http://www.agu.org/journals/je/v106/iE01/2000JE001254/2000JE001254.pdf |last1=Duxbury |first1=N. S. |last2=Zotikov |first2=I. A. |last3=Nealson |first3=K. H. |last4=Romanovsky |first4=V. E. |last5=Carsey |first5=F. D. |title=A numerical model for an alternative origin of Lake Vostok and its exobiological implications for Mars |doi=10.1029/2000JE001254 |date=2001 |page=1453 |volume=106 |issue=E1 |journal=Journal of Geophysical Research |bibcode=2001JGR...106.1453D|doi-access=free }}</ref>。2018年7月,[[意大利航天局]]的科学家报告,在火星上发现了一座这样的冰下湖,位于[[南极高原 (火星)|南极冰盖]]下1.5公里(1英里)处,水平范围为20公里(10英里),这是该行星上出现的首个稳定液态水体的证据<ref name="SCI-20180725">{{cite journal |author=Orosei, R. |display-authors=etal |title=Radar evidence of subglacial liquid water on Mars |date=July 25, 2018 |journal=[[Science (journal)|Science]] |volume=361 |issue=6401 |pages=490–493 |doi=10.1126/science.aar7268 |pmid=30045881 |arxiv=2004.04587 |bibcode=2018Sci...361..490O |hdl=11573/1148029 |s2cid=206666385 |hdl-access=free }}</ref><ref name="NYT-20180725">{{cite news |last1=Chang |first1=Kenneth |last2=Overbye |first2=Dennis |author-link2=Dennis Overbye |title=A Watery Lake Is Detected on Mars, Raising the Potential for Alien Life – The discovery suggests that watery conditions beneath the icy southern polar cap may have provided one of the critical building blocks for life on the red planet. |url=https://www.nytimes.com/2018/07/25/science/mars-liquid-alien-life.html |date=July 25, 2018 |work=[[The New York Times]] |access-date=July 25, 2018 }}</ref><ref>{{cite web |title=Huge reservoir of liquid water detected under the surface of Mars |url=https://www.eurekalert.org/pub_releases/2018-07/aaft-hro072318.php |work=[[EurekAlert]]|date=July 25, 2018 |access-date=July 25, 2018 }}</ref><ref>{{cite news |title=Liquid water 'lake' revealed on Mars |url=https://www.bbc.co.uk/news/science-environment-44952710 |work=BBC News|date=July 25, 2018 |access-date=July 25, 2018 }}</ref>。该火星湖的证据是2012年5月至2015年12月期间,从[[火星快车号]]上玛西斯雷达回波信号中的亮点推断出来的<ref name="Suppl material">[http://science.sciencemag.org/content/sci/suppl/2018/07/24/science.aar7268.DC1/aar7268_Orosei_SM.pdf Supplementary Materials] for: {{cite journal | doi = 10.1126/science.aar7268 | pmid=30045881 | volume=361 | title=Radar evidence of subglacial liquid water on Mars | year=2018 | journal=Science | pages=490–493 | last1 = Orosei | first1 = R | last2 = Lauro | first2 = SE | last3 = Pettinelli | first3 = E | last4 = Cicchetti | first4 = A | last5 = Coradini | first5 = M | last6 = Cosciotti | first6 = B | last7 = Di Paolo | first7 = F | last8 = Flamini | first8 = E | last9 = Mattei | first9 = E | last10 = Pajola | first10 = M | last11 = Soldovieri | first11 = F | last12 = Cartacci | first12 = M | last13 = Cassenti | first13 = F | last14 = Frigeri | first14 = A | last15 = Giuppi | first15 = S | last16 = Martufi | first16 = R | last17 = Masdea | first17 = A | last18 = Mitri | first18 = G | last19 = Nenna | first19 = C | last20 = Noschese | first20 = R | last21 = Restano | first21 = M | last22 = Seu | first22 = R | issue=6401 | bibcode = 2018Sci...361..490O| doi-access = free }}</ref>。检测到的湖泊中心点位于东经193度、南纬81度处,这是一片平坦区,没有任何特殊的地形特征,除东侧洼地外,其它三面被更高的地面环绕<ref name="SCI-20180725"/>。美国宇航局[[火星勘测轨道飞行器]]上的沙拉德雷达没有看到湖泊迹象。沙拉德雷达的工作频率设计用于更高的分辨率,但穿透深度较低,因此,如果覆盖在冰下湖上的冰层含有大量[[硅酸盐]]矿物,该雷达就不太可能探测到推断的湖泊。 |
|||
2020年9月28日,采用新数据和新技术重新分析了所有数据,确认了玛西斯雷达的发现。这些新的雷达研究报告了火星上另外的三座冰下湖,它们都位于南极冰盖下方1.5公里(0.93英里)处。发现的第一座湖,也是最大的一座其大小已经被修正为30公里(19英里)宽,它被三座较小的湖泊包围,每座湖泊都有数公里宽<ref name="NatAstro">{{cite journal |last1=Lauro |first1=Sebastian Emanuel |last2=Pettinelli |first2=Elena |last3=Caprarelli |first3=Graziella |last4=Guallini |first4=Luca |last5=Rossi |first5=Angelo Pio |last6=Mattei |first6=Elisabetta |last7=Cosciotti |first7=Barbara |last8=Cicchetti |first8=Andrea |last9=Soldovieri |first9=Francesco |last10=Cartacci |first10=Marco |last11=Di Paolo |first11=Federico |last12=Noschese |first12=Raffaella |last13=Orosei |first13=Roberto |title=Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data |journal=Nature Astronomy |date=28 September 2020 |volume=5 |pages=63–70 |doi=10.1038/s41550-020-1200-6 |arxiv=2010.00870 |bibcode=2020NatAs.tmp..194L |s2cid=222125007 |language=en |issn=2397-3366}}</ref>。 |
|||
火星部分地區出現[[倒轉地形]];原因是沉積物沉積在河床上之後膠結在一起增加對侵蝕的抵抗能力,之後這區域可能被掩埋,外層覆蓋物被侵蝕撥落後,以前的河床因為對侵蝕能力抵抗較強而留下來。火星全球探勘者號找到這類過程的證據<ref>Malin, M., et al. 2010. An overview of the 1985-2006 Mars Orbiter Camera science investigation. http://marsjournal.org {{Wayback|url=http://marsjournal.org/ |date=20170912005256 }}</ref>。火星表面許多區域都可發現倒轉地形,尤其是[[梅杜莎槽溝層]]<ref>Zimbelman, J. and L. Griffin. 2010. HiRISE images of yardangs and sinuous ridges in the lower member of the Medusae Fossae Formation, Mars. Icarus: 205. 198-210. </ref>、[[宮本撞擊坑]]<ref>Newsom, H. et al. 2010. Inverted channel deposits on the floor of Miyamoto crater, Mars. Icarus: 205. 64-72.</ref>和朱芬塔高原(Juventae Plateau)<ref>Weitz, C. et al. 2010. Mars Reconnaissance Orbiter observations of light-tones layered deposits and associated fluvial landforms on the plateaus adjacent to Vallis Marineris. Icarus:205. 73-102.</ref><ref>www.sciencedirect.com/science/journal/00191035</ref> |
|||
因为极冠底部的温度估计为205 K(摄氏−68度;华氏−91度),科学家们假设,通过镁和[[高氯酸盐]]的防冻作用,水可以保持在液体状态<ref name="SCI-20180725"/><ref>{{cite news |url=https://www.bbc.com/news/science-environment-44952710 |title=Liquid water 'lake' revealed on Mars |first=Mary |last=Halton |work=BBC News |date=July 25, 2018}}</ref>。湖面上覆盖着一层1.5公里(0.93英里)厚,由10%至20%尘埃与水冰混合组成的冰层,季节性地被一层1米(3英尺3英寸)厚的二氧化碳霜覆盖<ref name="SCI-20180725"/>。由于南极冰盖的原始数据覆盖范围有限,发现者表示“没有理由断定火星上的地下水仅限于一处单一的地方”<ref name="SCI-20180725"/>。 |
|||
以下影像是其中一個例子: |
|||
2019年,发表了一项探讨存在这样一座湖泊所需物理条件的研究<ref>{{Cite journal|last1=Sori|first1=Michael M.|last2=Bramson|first2=Ali M.|date=2019|title=Water on Mars, With a Grain of Salt: Local Heat Anomalies Are Required for Basal Melting of Ice at the South Pole Today|journal=Geophysical Research Letters|language=en|volume=46|issue=3|pages=1222–1231|doi=10.1029/2018GL080985|issn=1944-8007|bibcode=2019GeoRL..46.1222S|hdl=10150/633584|hdl-access=free}}</ref>。该研究计算了达到液态水和高氯酸盐混合物在冰下稳定的温度所需地热量。作者得出的结论是“即使南极冰层底部局部聚集了大量的高氯酸盐,但典型的火星条件太冷,无法融化冰……需要地壳内的局部热源来提高温度,而距离冰10公里的岩浆室可以提供这样的热源。这一结果表明,如果观测的液态水解释是正确的,那么火星上的岩浆活动可能是最近才活跃起来的”。 |
|||
<gallery> |
|||
File:Inverted Streams in Juventae Chasma.jpg|火星全球探勘者號拍攝的[[朱芬塔峽谷]]附近的倒轉地形。這些溪流在山脊的頂部發源,然後一起流動。 |
|||
如果确实存在一座液态湖,它的咸水也可能与土壤混合形成污泥<ref name="RTE2018-07-25a">{{cite web |title=Giant liquid water lake found under Martian ice|url=https://www.rte.ie/news/2018/0725/981031-mars-lake/|date=July 25, 2018|access-date=July 26, 2018 |website=[[RTÉ]]}}</ref>,湖中的高含盐量会对大多数生命形式带来困难。在地球上,有一种被称为嗜盐生物的细菌,能在极端盐分的环境中旺盛生长,但它们也并非生活在黑暗、寒冷、浓缩的高氯酸盐溶液中<ref name="RTE2018-07-25a" />。 |
|||
</gallery> |
|||
=== 地面冰 === |
|||
多年来,许多科学家都认为火星表面看起来像地球上的冰缘地区<ref name="Kieffer1992" />,通过与这些陆地特征对比,多年来一直争论它们可能是永久冻土区,表明水冰就存在于地表之下<ref name="ICRS-20170928">{{cite journal |author=Wilson, Jack T. |display-authors=etal |title=Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data |date=January 2018 |journal=[[Icarus (journal)|Icarus]] |doi=10.1016/j.icarus.2017.07.028 |bibcode=2018Icar..299..148W |volume=299 |pages=148–160|arxiv=1708.00518 |s2cid=59520156 }}</ref><ref name="SP-20171002">{{cite web |last=Howell |first=Elizabeth |title=Water Ice Mystery Found at Martian Equator |url=https://www.space.com/38330-water-ice-mystery-at-mars-equator.html |date=October 2, 2017 |work=[[Space.com]] |access-date=October 2, 2017 }}</ref>。高纬度地区的一个共同特征是具有以多种形状出现的[[图案地面]],包括条纹和多边形。在地球上,这些形状是由土壤的冻结和融化所造成<ref>{{cite web |url=http://www.spaceref.com/news/viewnews.html?id=494 |title=Polygonal Patterned Ground: Surface Similarities Between Mars and Earth |publisher=SpaceRef |date=September 28, 2002}}</ref>。还有其他类型的证据表明火星表面下存在大量的冷冻水,比如[[地形软化]],这会使锐化的地形特征变得更圆钝<ref>{{cite journal |doi=10.1016/0019-1035(89)90078-X |last=Squyres |first=S. |date=1989 |title=Urey Prize Lecture: Water on Mars |journal=Icarus |volume=79 |pages=229–288 |bibcode=1989Icar...79..229S |issue=2}}</ref>。来自火星奥德赛号伽马射线光谱仪的证据和凤凰号着陆器的直接测量证实,这些特征中许多与地面冰存在密切相关<ref>{{cite journal |doi=10.1016/j.icarus.2009.06.005 |last1=Lefort |first1=A. |last2=Russell |date=2010 |first2=P.S. |last3=Thomas |first3=N. |title=Scaloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE |journal=Icarus |volume=205 |issue=1 |pages=259–268 |bibcode=2010Icar..205..259L}}</ref>。 |
|||
[[File:Mars exposed subsurface ice.jpg|thumb|暴露在峭壁上的一段地下水冰剖面,在[[火星勘测轨道飞行器]]增强色彩视图中显示为亮蓝色<ref name='exposed ice 2018'/>。现场宽约500米,悬崖从水平地面下落约128米,冰层从地表向下延伸至100米或更深处<ref>{{cite journal | year = 2018| title = Exposed subsurface ice sheets in the Martian mid-latitudes| journal = Science | volume = 359| issue = 6372| pages = 199–201| doi = 10.1126/science.aao1619 | last1 = Dundas | first1 = Colin M. | last2 = Bramson | first2 = Ali M. | last3 = Ojha | first3 = Lujendra | last4 = Wray | first4 = James J. | last5 = Mellon | first5 = Michael T. | last6 = Byrne | first6 = Shane | last7 = McEwen | first7 = Alfred S. | last8 = Putzig | first8 = Nathaniel E. | last9 = Viola | first9 = Donna | last10 = Sutton | first10 = Sarah | last11 = Clark | first11 = Erin | last12 = Holt | first12 = John W. | pmid = 29326269 | bibcode = 2018Sci...359..199D| doi-access = free }}</ref>.]] |
|||
=== [[火星探路者]] === |
|||
火星探路者發現火星表面氣溫的變化循環。最低溫時候是在日出前(約 -78℃),最高溫的時候則是剛過火星的中午不久(約 -8℃)。如此極端的變化發生在溫度上升与下降最快的地方。在這些地方的最高溫度從不會到水的冰點(0°C),所以火星探路者號確定登陸地點溫度過低使液態水不可能存在。但是液態水如果含多種鹽類的話就可能存在<ref>Fairen, A. et al. 2009. Stability against freezing of aqueous solutions on early Mars. Nature:459. 401-404.</ref>。 |
|||
2017年,研究人员使用[[火星勘测轨道飞行器]]上的高分辨率成像科学设备相机发现了至少八处被侵蚀的斜坡,显示出100米厚的裸露水冰层,上面覆盖着一层约1或2米厚的[[火星土壤|土壤]]<ref name='exposed ice 2018'>[https://www.jpl.nasa.gov/news/news.php?feature=7038 Steep Slopes on Mars Reveal Structure of Buried Ice]. NASA Press Release. January 11, 2018.</ref><ref>[http://www.sciencemag.org/news/2018/01/ice-cliffs-spotted-mars Ice cliffs spotted on Mars]. ''Science News''. Paul Voosen. January 11, 2018.</ref>。这些地点位于南北纬55到58度之间,表明火星表面大约三分之一的地方都分布有浅层地面冰<ref name='exposed ice 2018'/>。这幅图像证实了[[2001火星奥德赛号]]上的光谱仪、火星勘测轨道飞行器和[[火星快车号]]上的探地雷达以及[[凤凰号火星探测器|凤凰号着陆器]]在“[[In situ|原位]]”挖掘中探测到的情况<ref name='exposed ice 2018'/>。这些冰层包含了易于获取的火星气候史线索,并使未来的机器人或人类探索者可得到冰冻水<ref name='exposed ice 2018'/>。部分研究人员认为,这些沉积物可能是数百万年前行星自转轴和轨道不同时遗留的冰川残迹(见下文火星冰期一节)。2019年发表的一项更详细的研究发现,北纬35度和南纬45度存在着水冰,一些冰块被尘埃覆盖着,距地表仅数厘米,在这些环境中提取水冰不需要复杂的设备<ref>{{cite journal|url= https://www.hou.usra.edu/meetings/ninthmars2019/pdf/6027.pdf |title=Widespread Shallow Water Ice on Mars at High and Mid Latitudes |journal=[[Geophysical Research Letters]] |first1=Sylvain |last1=Piqueux |first2=Jennifer |last2=Buz |first3=Christopher S. |last3=Edwards |first4=Joshua L. |last4=Bandfield |first5=Armin |last5=Kleinböhl |first6=David M. |last6=Kass |first7=Paul O. |last7=Hayne |doi=10.1029/2019GL083947 |date=December 10, 2019 }}</ref><ref>{{cite web|url= https://www.jpl.nasa.gov/news/news.php?feature=7557 |title=NASA's Treasure Map for Water Ice on Mars |date=2019-12-10 |publisher=Jet Propulsion Laboratory}}</ref>。 |
|||
表面氣壓每日的變化範圍約0.2毫巴,但每天有兩個最低點和最高點。日平均氣壓從6.75毫巴降低至6.7毫巴,因為這時候有最大量的二氧化碳被凝結在火星南極。地球表面的氣壓大約是1000毫巴,所以火星的氣壓非常低。火星探路者測量到的氣壓過低,因此液態水和冰不可能在火星表面存在。但如果火星的冰是存在泥土中,也許就可以存在很長的時間<ref>[http://mars.jpl.nasa.gov/MPF/science/atmospheric.html Atmospheric and Meteorological Properties] {{Wayback|url=http://mars.jpl.nasa.gov/MPF/science/atmospheric.html |date=20091231023402 }}, NASA</ref>。 |
|||
<gallery class="center" widths="190" heights="180"> |
|||
其他的觀測認為火星過去曾經存在液態水。一些位在火星探路者登陸地點的覆瓦狀岩石互相斜靠。因此一般相信古代曾經有強力水流推動岩石周圍直到岩石轉過水流方向。有些卵石是圓的,可能是因為在水流中翻滾。部分地表相當堅硬,可能是因為水流攜帶的礦物造成凝聚<ref name="Golombek, M 1997"/>。 |
|||
File:50345 1230icelayersangular.jpg|高分辨率成像科学设备显示的三角形洼地坡壁近景,这些地层中含有冰,较低层倾斜,而近表地层或多或少呈水平平行,这种地层排列被称为“角度[[非整合|不整合]]”<ref>Supplementary Materials Exposed subsurface ice sheets in the Martian mid-latitudes Colin M. Dundas, Ali M. Bramson, Lujendra Ojha, James J. Wray, Michael T. Mellon, Shane Byrne, Alfred S. McEwen, Nathaniel E. Putzig, Donna Viola, Sarah Sutton, Erin Clark, John W. Holt</ref>。 |
|||
File:ESP 053867 2245hotejecta.jpg|[[HiWish计划]]下高分辨率成像科学设备在[[伊斯墨纽斯湖区|伊斯墨诺斯湖区]]看到的形成于富冰地面的撞击陨坑。 |
|||
火星探路者號也發現雲和霧存在的證據<ref name="Golombek, M 1997">Golombek, M. et. al. 1997. Overview of the Mars Pathfinder Mission and Assesment of Landing Site Predictions. Science. Science: 278. p 1743-1748</ref>。 |
|||
File:53867 2245hotejectamargin.jpg|[[HiWish计划]]下高分辨率成像科学设备显示的可能形成于富冰地面的撞击陨坑近景,注意,喷出物似乎低于周围地表,炽热的喷射物可能导致周边一些冰的消失,从而降低了喷出物的水平高度。 |
|||
=== [[2001火星奧德賽號]] === |
|||
2003年7月,在加州舉辦的一場研討會中,火星奧德賽號團隊公佈奧德賽號上的伽馬射線光譜儀(GRS)發現了有大量的水存在於火星廣大地區。火星表面以下的水冰量可以充滿兩個[[密西根湖]]<ref name="mars.jpl.nasa.gov">{{Cite web |url=http://mars.jpl.nasa.gov/odyssey/newsroom/pressreleases/20020528a.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2011-06-06 |archive-url=https://web.archive.org/web/20110606235941/http://mars.jpl.nasa.gov/odyssey/newsroom/pressreleases/20020528a.html |dead-url=yes }}</ref>。在火星南緯和北緯55°到南極和北極點的地表之下有大量的水冰;每一公斤的火星土壤含有500公克的水冰。但在火星的赤道附近,火星的土壤中只含水約2%到10%<ref name="space.com">http://www.space.com/astronomy/mars_water_030725.html</ref><ref>Feildman, T. et al. 2004. Global distribution of near-surface hydrogen on Mars. J. Geographical Research: 109. </ref>。科學家相信有大量的水在礦物的結構內,例如[[黏土]]和[[硫酸鹽]]。以紅外線光譜的資料研究結果顯示有少量的水因為化學或物理因素固定在礦物中<ref>Murche, S. et al. 1993. Spatial Variations in the Spectral Properties of Bright Regions on Mars. Icarus: 105. 454-468</ref><ref>{{Cite web |url=http://marswatch.tn.cornell.edu/burns.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2010-07-24 |archive-url=https://web.archive.org/web/20100724202536/http://marswatch.tn.cornell.edu/burns.html |dead-url=no }}</ref>。海盜號的登陸器在火星土壤中也發現少量因為化學反應固定在礦物中的水<ref name="Arvidson, R 1989"/>。一般相信,即使火星表面上半部只含有少許水,水冰可能在數英尺下存在。有些區域,例如[[阿拉伯高地]]、[[亞馬遜區]]和[[埃律西昂區]]有大量的水<ref name="space.com"/><ref>Feldman, et al. 2002. Global Distribution of Neutrons from Mars: Results from Mars Odyssey. Science: 297. 75-78</ref>。根據探測資料分析顯示火星南半球可能有含冰地層結構<ref>Mitrofanov, I. et al. 2002. Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey. Science. 297: 78-81</ref>。火星兩極地區都有埋在地下的冰,但北極地區因為被季節性存在的[[乾冰]]覆蓋,無法看到地下的水冰。當取得完整探測資料後,火星北極已經進入冬季,二氧化碳凝結成乾冰覆蓋在水冰上方<ref name="mars.jpl.nasa.gov"/>。奧德賽號的儀器只能研究深度只有數公尺的土壤,因此火星可能有比我們所探測到更多的水。即使如此,奧德賽號在火星發現的水仍然相當大量。埋在火星土壤中的水含量可能可以淹沒火星0.5到1.5公里深<ref>Boynton, W. et al. 2002. Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits. Science: 297. 81-85.</ref>。 |
|||
[[鳳凰號火星探測器]]確定火星奧德賽號先前的發現<ref>Arvidson, R. et al. 2008. Introduction to special section on the phoenix mission: Landing site characterization experiments, mission overviews, and expected science. J. Geophysical Research: 113. </ref>。鳳凰號在火星表面底下數英吋深處發現水冰,而且水冰至少8英吋深。當水冰暴露在火星大氣層表面時緩慢昇華。事實上,火星暴露在大氣層冰部份是因為鳳凰號的登陸火箭造成的<ref>[http://www.space.com/scienceastronomy/090702-phoenix-soil.html.]</ref>。 |
|||
[[File:PIA10741 Possible Ice Below Phoenix.jpg|thumb|在鳳凰號下方往南方的登陸支架觀察,可看到在明亮表面暴露一些斑點。這些斑點後來被證明是水冰。而這些水冰除了理論預測以外,在[[2001火星奧德賽號]]任務中也被偵測到。]] |
|||
數千幅奧德賽號拍攝的影像顯示火星曾經有大量水流在表面流動。有些影像顯示溪流的地形,其他影像中則找到可能在湖底沉積形成的地層,也找到三角洲地形<ref name="Irwin III 2005">Irwin III, R. et al. 2005. An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. Journal of Geophysical Research: 10. E12S15</ref>。 |
|||
多年以來,許多研究人員相信在火星仍有冰川在一些岩石層下,因為岩石能隔熱,讓水冰能存在<ref name="Head, J. 2005">Head, J. et al. 2005. Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature: 434. 346-350</ref><ref name="marstoday.com">{{cite web |url=http://www.marstoday.com/news/viewpr.html?pid=18050 |title=存档副本 |accessdate=2013-01-04 |deadurl=yes |archiveurl=https://archive.is/20121205041820/http://www.marstoday.com/news/viewpr.html?pid=18050 |archivedate=2012-12-05 }}</ref><ref name="news.brown.edu">{{Cite web |url=http://news.brown.edu/pressreleases/2008/04/martian-glaciers |title=存档副本 |accessdate=2010-03-30 |archive-date=2013-10-12 |archive-url=https://web.archive.org/web/20131012034101/http://news.brown.edu/pressreleases/2008/04/martian-glaciers |dead-url=yes }}</ref><ref name="Plaut, J. 2008">Plaut, J. et al. 2008. Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars. Lunar and Planetary Science XXXIX. 2290.pdf</ref><ref name="Holt, J. 2008">Holt, J. et al. 2008. Radar Sounding Evidence for Ice within Lobate Debris Aprons near Hellas Basin, Mid-Southern Latitudes of Mars. Lunar and Planetary Science XXXIX. 2441.pdf</ref>。線形的沉積物是可能存在被岩石覆蓋的冰川其中一個證據;這些線形沉積物在一些河床底部被發現。沉積物的表面有山脊狀和凹槽狀的物質,而這些物質在一些障礙物周圍轉向。有些地球上的冰川也有同樣的地形特徵;線形的沉積物底部可能和[[舌狀岩屑坡]]有關;後來火星快車號和火星偵察軌道器的透地雷達MARSIS和SHARAD證實這地區有大量的冰<ref name="Plaut, J. 2008"/><ref name="Holt, J. 2008"/><ref name="planetary.brown.edu">http:www.planetary.brown.edu/pdfs/3733.pdf</ref>。 |
|||
以下影像是由[[2001火星奧德賽號]]上的[[熱輻射成像系統]](THEMIS)拍攝的;這些影像內的地表特徵和液態水現在或過去曾經存在有密切關係<ref>{{Cite web |url=http://themis.asu.edu/zoom-20021022a |title=存档副本 |accessdate=2010-03-30 |archive-date=2010-06-17 |archive-url=https://web.archive.org/web/20100617191548/http://themis.asu.edu/zoom-20021022a |dead-url=no }}</ref>: |
|||
<gallery> |
|||
<!-- 檔案不存在 File:Reull Vallis lineated deposits.JPG|底部有線形沉積物的[[魯爾谷]](Reull Vallis)。點選影像可見與線形沉積物相關的其他地形特徵。峽谷底部的沉積物被認為是因為冰的移動而形成。位於希臘區。 --> |
|||
File:Wikiauquakuh.JPG|[[安夸庫谷]]影像中整個區域經被一層暗地層覆蓋,但現在只留下數個類似[[孤峰]](Butte)的地形特徵。點選影像可見當地地層。這些地層也許是在古代的湖底沉積而成。 |
|||
File:Huo Hsing Vallis in Syrtis Major.JPG|位於大瑟提斯區的[[火星谷]]。直線形的山脊可能是熔岩流動後形成的[[岩脈]]。 |
|||
File:Nirgal Vallis in Coprates.JPG|[[尼爾格谷]]存在可能是因為地下水侵蝕造成的地形特徵。尼爾格峽谷是热辐射成像系统拍攝的許多古代河谷其中一個。 |
|||
File:Uzboi Vallis.JPG|[[尼爾格谷]]和[[烏斯缽谷]]相連處。影像中[[卢基撞擊坑]](Luki crater)的直徑為21公里。 |
|||
File:Nirgal Vallis.jpg|尼爾格谷。 |
|||
File:Nirgal Vallis Close-up.JPG|尼爾格谷近拍影像。 |
|||
File:Channels near Warrego in Thaumasia.JPG|[[瓦伊哥谷|沃里戈谷]]附近的河谷,該分支河谷是水流曾經在火星表面存在的強力證據,而水流存在時的火星可能比現在高溫許多。 |
|||
<!-- 檔案不存在 File:Semeykin Crater Drainage.JPG|[[謝梅金撞擊坑]]的外流河道。點選影像可見外流河道系統。位於[[伊斯墨诺斯湖区]]。可從英文維基百科取得 --> |
|||
File:Erosion features in Ares Vallis.JPG|[[阿瑞斯谷]]的侵蝕特徵-可能是因為流水侵蝕形成的流線形狀地形。 |
|||
File:Delta in Ismenius Lacus.jpg|位於[[伊斯墨诺斯湖区]]的[[三角洲]]。 |
|||
File:Delta in Lunae Palus.jpg|位於月沼區的三角洲 |
|||
File:Delta in Margaritifer Sinus.jpg|位於珍珠灣區的三角洲。 |
|||
File:Kasei_Valles.jpg|[[卡塞谷]]。 |
|||
File:Athabasca Valles.JPG|[[阿薩巴斯卡谷]]的影像中可見水流來源是[[科柏洛斯槽溝]]。注意影像中流線型島嶼顯示水流方向是往南。位於埃律西昂區。 |
|||
File:PadusVallis Close-up.JPG|[[帕德丝谷|帕杜斯谷]]的近距離影像。位於门农區。 |
|||
File:Channels West of Echus Chasma.JPG|[[艾徹斯峡谷|厄科深谷]]西側的河道。影像中細小的樹枝狀河床可能是因為水流流經該區域形成。位於科普剌塔斯區。 |
|||
File:Echus Chasma Dendritic Channels.JPG|[[艾徹斯峽谷|厄科深谷]]內一個桌山上的樹枝狀河道。影像寬度20 [[水手号谷|水手谷]]哩。位於科普剌塔斯區。 |
|||
File:Melas Chasma channels.JPG|[[米拉斯峡谷|梅拉斯峽谷]]底部的樹枝狀河道。位於科普剌塔斯區。 |
|||
File:Icemaplargelabeled454arrows.jpg|近地表冰分布图 |
|||
</gallery> |
</gallery> |
||
====扇形地形==== |
|||
{{main|扇形地形}} |
|||
火星的某些区域显示出[[扇形地形|扇贝边状]]的洼地,这些洼地被怀疑是退化的富冰沉积覆盖物残迹。扇贝形状是由冻土中的冰[[升华]]所致,在目前火星气候条件下,水冰升华造成的地下损失可形成了扇贝状地貌。模型预测,当地表有大量深达数十米的纯冰时,就会出现类似形状<ref>Dundas, C., S. Bryrne, A. McEwen. 2015. Modeling the development of martian sublimation thermokarst landforms. Icarus: 262, 154–169.</ref>。地表覆盖物可能是火星极地倾斜变化导致气候改变时,从大气层中降落堆积的尘埃冰(见下文“[[#冰河时代|冰河时代]]”)<ref name="Head, J. 2003" /><ref name="hirise">{{cite web |url=http://hirise.lpl.arizona.edu/PSP_002917_2175 |title=HiRISE Dissected Mantled Terrain (PSP_002917_2175) |publisher=Arizona University |access-date=December 19, 2010}}</ref>。扇贝状地形通常有几十米深,直径从数百米到数千米不等,外观接近圆形或细长,有些似乎已合并到一起,形成了一片宽阔而坑洼崎岖的地形。这种地形的形成过程可能起始于裂缝中的冻升华,形成扇贝地形的地方通常伴有多边形裂缝,扇形地形的存在似乎是一种冻土迹象<ref name="Icarus Vol 210" /><ref>{{cite journal |doi=10.1016/j.icarus.2009.06.005 |last1=Lefort |first1=A. |last2=Russell |date=2010 |first2=P.S. |last3=Thomas |first3=N. |title=Scalloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE |journal=Icarus |volume=205 |issue=1 |pages=259–268 |bibcode=2010Icar..205..259L}}</ref>。 |
|||
2016年11月22日,美国宇航局报告称,在火星[[乌托邦平原]]区发现了大量地下冰<ref>{{cite web|url=http://www.space.com/34811-mars-ice-more-water-than-lake-superior.html|title=Huge Underground Ice Deposit on Mars Is Bigger Than New Mexico|website=space.com}}</ref>。据估计,探测到的贮量相当于一座[[苏必利尔湖]]<ref name="NASA-20161122"/><ref name="Register-2016"/><ref name="NASA-20161122jpl" />。 |
|||
火星表面有大片區域被水冰和土壤混合的厚而平坦的地層覆蓋<ref>Mustard, J. et al. 2001. Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature: 412.411-414</ref><ref>Kreslavsky, M. and J. Head. 2002. Mars: Nature and evolution of young latitude-dependent water-ice-rich mantle. Geophysical Research Letters: 29.</ref>。這些富含冰的地層厚達數公尺,而且這些物質的沉積可以使火星表面變平坦;但在這些沉積地區表面卻出現類似籃球表面崎嶇不平的地表特徵。這些區域撞擊坑數量較少也表示這些區域相對年輕。 |
|||
该地区的水冰容量是根据[[火星勘测轨道飞行器]]上的探地雷达(简称“萨拉德”)测得的 |
|||
火星軌道和自轉軸傾斜角的變化使火星上水冰的分布有明顯變化。在一些時期水蒸氣離開兩極的冰冠進入大氣層,並在較低緯度區域回到火星表面變成霜或雪與土壤混合後沉積。火星大氣層有許多細沙顆粒,而且水蒸氣會附著在這些顆粒上造成沙粒變重而落到地表。當土壤表面的冰昇華成水蒸氣後就離開沙粒;留下的沙粒則有很好的隔熱效果,能保留更下層的冰<ref name="sciencedaily.com">MLA NASA/Jet Propulsion Laboratory (2003, December 18). Mars May Be Emerging From An Ice Age. ScienceDaily. Retrieved February 19, 2009, from http://www.sciencedaily.com {{Wayback|url=http://www.sciencedaily.com/ |date=20160821182128 }} /releases/2003/12/031218075443.htmAds by GoogleAdvertise</ref>。 |
|||
“[[电容率]]”或介电常数数据所确定,介电常数值与大密度的水冰相一致<ref>Bramson, A, et al. 2015. Widespread excess ice in Arcadia Planitia, Mars. Geophysical Research Letters: 42, 6566–6574</ref><ref>{{cite web |url=https://planetarycassie.com/2016/11/04/widespread-thick-water-ice-found-in-utopia-planitia-mars/ |title=Archived copy |access-date=November 29, 2016 |url-status=dead |archive-url=https://web.archive.org/web/20161130042608/https://planetarycassie.com/2016/11/04/widespread-thick-water-ice-found-in-utopia-planitia-mars/ |archive-date=November 30, 2016 }}</ref><ref>Stuurman, C., et al. 2016. SHARAD detection and characterization of subsurface water ice deposits in Utopia Planitia, Mars. Geophysical Research Letters: 43, 9484_9491.</ref>。 |
|||
这些扇贝状特征从表面上看类似于在南极冰盖附近发现的[[瑞士干酪特征]]。瑞士干酪特征特征被认为是固体[[二氧化碳]]表层形成的空洞,而不是水冰,尽管这些空洞底部可能也富含了水<ref>{{cite journal |title=A Sublimation Model for the Formation of the Martian Polar Swiss-cheese Features |last1=Byrne |first1=S. |last2=Ingersoll |first2=A. P. |bibcode=2002DPS....34.0301B |volume=34 |date=2002 |page=837 |journal=American Astronomical Society}}</ref>。 |
|||
[[File:Dao Vallis.JPG|[[THEMIS]]拍攝的的[[道谷]]。點選該影像可見該峽谷和附近地形特徵的關係。]] |
|||
====冰块==== |
|||
2005年7月28日,[[欧洲空间局]]宣布发现了一座部分充满冷冻水的陨石坑<ref name="lake">{{cite press release |url=http://www.esa.int/SPECIALS/Mars_Express/SEMGKA808BE_0.html |title=Water ice in crater at Martian north pole |date=July 27, 2005 |publisher=[[ESA]]}}</ref>,随后一些人将这一发现解释为“冰湖”<ref name="BBClake">{{cite news |url=http://news.bbc.co.uk/2/hi/science/nature/4727847.stm |title=Ice lake found on the Red Planet |date=July 29, 2005 |publisher=[[BBC]]}}</ref>。由[[欧洲空间局]][[火星快车号]]上[[高分辨率立体相机]]拍摄的陨石坑图像清楚地显示,在辽阔的[[北方大平原]]北纬70.5度、东经103度处,一座无名陨石坑的坑底覆盖着一大片的冰。该陨坑宽35公里(22英里),深约2公里(1.2 英里),坑底与冰面之间的高度差约为200米(660英尺)。欧空局的科学家将这种高度差主要归因于部分可见的冰下沙丘。虽然科学家们并不把这块冰称为“湖泊”,但该水冰块的大小和全年存在的特点非常引人注目。在火星许多不同的地方都发现了水冰沉积和霜冻层。 |
|||
随着越来越多的火星表面被新一代探测器的拍摄到,越来越明显的事实是,火星表面可能散布着更多的冰块。这些推测中的冰块很多都集中在火星中纬度地区(南北纬30–60°之间), |
|||
位於一座巨大火山[[哈德里亚卡山|哈德里亚卡火山口]]附近的[[道谷]]被認為當炙熱的[[岩漿]]融化火星表面的大量的冰時曾容納大量的冰融化成的水。影像上方在河道左側圓形凹陷的地區被認為是地下水侵蝕造成<ref name="themis.asu.edu">{{Cite web |url=http://themis.asu.edu/zoom-20020807a |title=存档副本 |accessdate=2010-03-30 |archive-date=2016-09-10 |archive-url=https://web.archive.org/web/20160910195853/http://themis.asu.edu/zoom-20020807a |dead-url=no }}</ref>。 |
|||
例如,许多科学家认为,在这些纬度带中被不同地描述为“[[纬度相关覆盖层]]”或“粘贴地形”的普遍特征,是被尘埃或碎片覆盖、正在缓慢退化的冰块<ref name="Carr" />。碎片的覆盖既解释了图像中不像冰一样反射的暗淡表面,也说明了这些冰块为何能长时间存在而不完全升华。这些冰块还被认为是一些神秘的流道特征(如在这些纬度区所看到的[[火星冲沟|冲沟]])的可能水源。 |
|||
在[[埃律西昂平原]]发现了与现有流冰(pack ice)一致的表面特征<ref name="Cabrol, N 2010">{{cite book |editor-last=Cabrol |editor-first=N. |editor2-first=E. |editor2-last=Grin |date=2010 |title=Lakes on Mars |publisher=Elsevier |location=New York}}</ref>,在通往大面积洪泛区的河道中发现了似乎呈片状,大小从30米(98英尺)到30公里不等的特征。这些片状特征显示出破裂和旋转的迹象,清楚地将它们与火星表面其他地区的熔岩区区分开来。洪泛的源头被认为是附近的地质断层[[科柏洛斯槽沟|刻耳柏洛斯堑沟]],该断层喷出了约200万至1000万年的水和[[熔岩]]。并被认为,水从[[科柏洛斯槽沟|刻耳柏洛斯堑沟]]流出,然后在低海拔平原汇聚、冻结,这种冻结的湖泊现今可能仍然存在<ref name="Murray2007">{{cite journal |last=Murray |first=John B. |display-authors=etal |date=2005 |title=Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars' equator |journal=Nature |pmid=15772653 |volume=434 |issue=7031 |pages=352–356 |doi=10.1038/nature03379 |quote=Here we present High Resolution Stereo Camera images from the European Space Agency Mars Express spacecraft that indicate that such lakes may still exist. |bibcode=2005Natur.434..352M|s2cid=4373323 }}</ref><ref>{{cite journal |last1=Orosei |first1=R. |last2=Cartacci |first2=M. |last3=Cicchetti |first3=A. |last4=Federico |first4=C. |last5=Flamini |first5=E. |last6=Frigeri |first6=A. |last7=Holt |first7=J. W. |last8=Marinangeli |first8=L. |last9=Noschese |first9=R. |last10=Pettinelli |first10=E. |last11=Phillips |first11=R. J. |last12=Picardi |first12=G. |last13=Plaut |first13=J. J. |last14=Safaeinili |first14=A. |last15=Seu |first15=R. |title=Radar subsurface sounding over the putative frozen sea in Cerberus Palus, Mars |url=http://www.lpi.usra.edu/meetings/lpsc2008/pdf/1866.pdf |bibcode=2007AGUFM.P14B..05O |doi=10.1109/ICGPR.2010.5550143 |volume=XXXIX |pages=P14B–05 |journal=Lunar and Planetary Science |date=2008 |isbn=978-1-4244-4604-9|s2cid=23296246 }}</ref><ref>{{cite book |title=Mars: an introduction to its interior, surface and atmosphere |last1=Barlow |first1=Nadine G. |publisher=Cambridge University Press |isbn=978-0-521-85226-5|date=2008-01-10 }}</ref>。 |
|||
有些大型河谷是發源自[[混沌地形]]。這種地形的形成一般認為是因為大量的水從地下被釋放造成地表下限。THEMIS拍攝的混沌地形如以下影像: |
|||
=== 冰川 === |
|||
{{Main|火星冰川}} |
|||
[[File:Mars glacial-like lobe deposit.jpg|thumb|right|一道5公里宽、类似冰川的舌状沉积物斜向流入一条箱形峡谷,表面有[[冰碛]]的岩石沉积物显示了冰川的演化。]] |
|||
火星上许多大片区域要么似乎有冰川,要么有证据显示曾经存在过冰川。许多高纬度地区,尤其是[[伊斯墨纽斯湖区|伊斯墨诺斯湖区]]被怀疑仍然含有大量的水冰<ref name="ISBN 0-8165-1257-4">{{cite book |last1=Strom |first1=R.G. |first2=Steven K. |last2=Croft |first3=Nadine G. |last3=Barlow |title=The Martian Impact Cratering Record, Mars |publisher=University of Arizona Press |isbn=978-0-8165-1257-7 |date=1992 |url-access=registration |url=https://archive.org/details/mars0000unse }}</ref><ref name="Express">{{cite web |url=http://www.esa.int/SPECIALS/Mars_Express/SEMBS5V681F_0.html |title=ESA – Mars Express – Breathtaking views of Deuteronilus Mensae on Mars |publisher=Esa.int |date=March 14, 2005}}</ref>。最近的证据让许多行星科学家相信,水冰仍以冰川的形式存在于火星中高纬大部分地区,表面覆盖着一层可阻止升华的岩石/尘埃隔热层<ref name="Holt, J. 2008" /><ref name="Plaut, J. 2008" />。这方面的一则示例是[[都特罗尼勒斯桌山群]]区被称作[[舌状岩屑坡]]的冰川状特征,它显示的大量证据表明,在数米厚的岩石碎屑下就藏有水冰<ref name="Plaut, J. 2008" />。冰川与[[锐蚀地形]]及众多的火山有关。研究人员曾描述过[[赫卡特斯山]]<ref name="Hauber, E. 2005">{{cite journal |last=Hauber |first=E. |display-authors=etal |date=2005 |title=Discovery of a flank caldera and very young glacial activity at Hecates Tholus, Mars |journal=Nature |volume=434 |pages=356–61 |pmid=15772654 |issue=7031 |doi=10.1038/nature03423 |bibcode=2005Natur.434..356H|s2cid=4427179 }}</ref>、[[阿尔西亚山]]<ref name="brown">{{cite journal |last1=Shean |first1=David E. |last2=Head |first2=James W. |last3=Fastook |first3=James L. |last4=Marchant |first4=David R. |title=Recent glaciation at high elevations on Arsia Mons, Mars: Implications for the formation and evolution of large tropical mountain glaciers |page=E03004 |date=2007 |issue=E3 |volume=112 |doi=10.1029/2006JE002761 |journal=Journal of Geophysical Research |url=http://www.planetary.brown.edu/pdfs/3281.pdf |bibcode=2007JGRE..112.3004S|doi-access=free }}</ref>、[[帕弗尼斯山]] <ref name="Shean, D. 2005">{{cite journal |last=Shean |first=D. |display-authors=etal |date=2005 |title=Origin and evolution of a cold-based mountain glacier on Mars: The Pavonis Mons fan-shaped deposit |journal=Journal of Geophysical Research |volume=110 |issue=E5 |page=E05001 |doi=10.1029/2004JE002360 |bibcode=2005JGRE..110.5001S|s2cid=14749707 |url=https://semanticscholar.org/paper/805352f65917ab09ac00532832367bcc113100ba }}</ref>和[[奥林帕斯山 (火星)|奥林帕斯山]]上的冰川沉积<ref name="Basilevsky, A. 2006">{{cite journal |last=Basilevsky |first=A. |display-authors=etal |date=2006 |title=Geological recent tectonic, volcanic and fluvial activity on the eastern flank of the Olympus Mons volcano, Mars |journal=Geophysical Research Letters |volume=33 |issue=13 |at=L13201 |doi=10.1029/2006GL026396 |bibcode=2006GeoRL..3313201B|citeseerx=10.1.1.485.770 }}</ref>。据报道,在中纬度及以上地区的一些较大陨石坑中也有冰川。 |
|||
[[File:Reull Vallis lineated deposits.jpg|thumb|left|[[希腊区]]分布有[[线状谷底沉积]]的[[鲁尔谷]]。]] |
|||
火星上类似冰川的地貌分别被称作粘滞流地貌<ref>{{cite journal |last=Milliken |first=R. |display-authors=etal |date=2003 |title=Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images |journal=Journal of Geophysical Research |volume=108 |issue=E6|page= 5057 | doi = 10.1029/2002je002005 |bibcode=2003JGRE..108.5057M|s2cid=12628857 |url=https://semanticscholar.org/paper/a822f14644d2294b948e101be2f294ac33b57ec3 }}</ref>、火星流地貌、[[舌状岩屑坡]]<ref name="Plaut, J. 2008" />或[[线状谷底沉积]]<ref name="HeadMarchant2006" />等,这取决于特征的形式、位置、相关地形以及作者对它的描述。很多(但不是全部)小型冰川似乎与陨石坑壁上的冲沟及覆盖层材料有关<ref>{{cite journal |doi=10.1016/j.icarus.2004.05.026 |last1=Arfstrom |first1=J. |first2=W. |last2=Hartmann |date=2005 |title=Martian flow features, moraine-like ridges, and gullies: Terrestrial analogs and interrelationships |journal=Icarus |volume=174 |issue=2 |pages=321–35 |bibcode=2005Icar..174..321A}}</ref>;被称为[[线状谷底沉积]]的线性沉积物可能是被岩石覆盖的冰川。发现于北半球[[阿拉伯台地 (火星)|阿拉伯高地]]周围[[锐蚀地形]]中的大多数河道,底部都有这种沉积物,河床表面上的这种脊状和沟槽状材料,可在障碍物周围转偏。线状谷底沉积可能也与[[舌状岩屑坡]]有关,轨道雷达已经证实其中含有大量的水冰<ref name="Holt, J. 2008" /><ref name="Plaut, J. 2008" />。多年来,研究人员一直认为被称为“舌状岩屑坡”的特征也是冰川流,并认为冰就存在一层隔热的岩石之下<ref name="Richard Lewis" /><ref name="Tropical snow">{{cite journal |last1=Head |first1=J. W. |last2=Neukum |first2=G. |last3=Jaumann |first3=R. |last4=Hiesinger |first4=H. |last5=Hauber |first5=E. |last6=Carr |first6=M. |last7=Masson |first7=P. |last8=Foing |first8=B. |last9=Hoffmann |first9=H. |last10=Kreslavsky |first10=M. |last11=Werner |first11=S. |last12=Milkovich |first12=S. |last13=van Gasselt |first13=S. |author14=HRSC Co-Investigator Team |title=Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars |journal=Nature |volume=434 |issue=7031 |pages=346–350 |date=2005 |pmid=15772652 |doi=10.1038/nature03359 |bibcode=2005Natur.434..346H|s2cid=4363630 }}</ref><ref name="in flux">{{cite web |author=Staff |publisher=Brown University |url=http://www.spaceref.com/news/viewpr.html?pid=18050 |title=Mars' climate in flux: Mid-latitude glaciers |work=Marstoday |date=October 17, 2005}}</ref>。根据新的仪器读数,已证实舌状岩屑坡中几乎含有纯冰,上面覆盖着一层岩屑<ref name="Holt, J. 2008" /><ref name="Plaut, J. 2008" />。 |
|||
<gallery> |
|||
[[File:Glacier close up with hirise.JPG|thumb|[[伊斯墨纽斯湖区|伊斯墨诺斯湖区]]被解释为高山冰川末期冰碛的一道山脊。]] |
|||
File:Blocks in Aram.JPG|[[阿倫混沌]]地形的石塊顯示可能的水源。當大量的水流出時,地表塌陷形成混沌地形。這些大型時快可能還有一些水冰。位於[[歐克西亞沼區]]。 |
|||
流动的冰川携带着岩石一起移动,之后随着冰川的消失岩石会被丢落,这通常发生在冰川前锋或冰川边缘。在地球上,这些地貌被称为[[冰碛]],但在火星上,它们通常被称为类“冰碛脊”、“同心脊”或“弧形脊”<ref>{{cite journal |doi=10.1016/j.icarus.2005.05.011 |last=Berman |first=D. |display-authors=etal |year=2005 |title=The role of arcuate ridges and gullies in the degradation of craters in the Newton Basin region of Mars |journal=Icarus |volume=178 |issue=2 |pages=465–86 |bibcode=2005Icar..178..465B}}</ref>。由于火星上的冰趋向于升华而非融化,而且火星的低温往往会使冰川“冻底”(冻结在岩床上,无法滑动),这些冰川遗迹及其留下的山脊与地球上的正常冰川并不完全相同。特别是火星冰碛易于沉积,而不会随下方的地形偏转,这反映了火星冰川中的冰通常被冻结而无法滑动的事实<ref name="Carr" />。冰川表面的碎屑脊表明了冰的移动方向,一些冰川表面因下方冰的[[升华]]而显得相当粗糙。冰蒸发而不融化会留下空隙,使上覆的材料随后塌陷到空隙中<ref name="fretted">{{cite web |url=http://hirise.lpl.arizona.edu/PSP_009719_2230 |title=Fretted Terrain Valley Traverse |publisher=Hirise.lpl.arizona.edu |access-date=January 16, 2012}}</ref>。有时大块的冰从冰川上掉落并被埋入到地表中,当它们融化后,或多或少会留下一些圆孔,火星上发现了许多这样的“[[锅穴|壶穴]]”<ref>{{cite web |url=http://hirise.lpl.arizona.edu/PSP_006278_2225 |title=Jumbled Flow Patterns |publisher=Arizona University |access-date=January 16, 2012}}</ref>。 |
|||
File:Canyons and Mesas of Aureum Chaos in Oxia Palus.JPG|[[歐羅姆混沌]]地形的巨大峽谷。點選影像可見山溝可能是最近幾年流出的水流形成的。在這個緯度很少山溝的存在。位於珍珠灣區。 |
|||
尽管有强有力的证据表明火星上有冰川流动,但几乎没有令人信服的冰川[[侵蚀作用|侵蚀]]地貌证据,如U形山谷、鼻山尾、[[刃脊]]、[[鼓丘]]等。此类特征在地球冰川地区十分丰富,所以,火星上没有这些特征着实令人费解。这些地貌的缺乏被认为与火星上最新冰川中冰的“底冻”性质有关。由于火星上的太阳辐射、大气层温度和密度以及[[地温梯度|地热通量]]都比地球低,模型表明冰川与河床间的界面温度一直处于零度以下,冰实际上是被冻在了地表上,由此阻止了冰在河床上的滑动,这被认为抑制了冰侵蚀表面的能力<ref name="Carr" />。 |
|||
</gallery> |
|||
==火星水资源的演变== |
|||
火星表面水贮量的变化与其大气层的演变密切相关,可能有几个关键阶段。 |
|||
[[File:Channels near Warrego in Thaumasia.JPG|thumb|250px|right|[[瓦伊哥谷]]附近的干涸河道。]] |
|||
===早诺亚纪年代 (46-41亿年前)=== |
|||
{{more information|诺亚纪}} |
|||
早诺亚纪年代的特点是大气因严重的陨石撞击和流体逃逸而散失到太空<ref name = Jakosky2001>{{cite journal | last1 = Jakosky | first1 = B. M. | last2 = Phillips | first2 = R. J. | year = 2001 |title=Mars' volatile and climate history |journal=Nature |volume =412| issue = 6843| pages =237–244| doi = 10.1038/35084184 | pmid=11449285| doi-access = free | bibcode = 2001Natur.412..237J }}</ref>,陨石造成的喷发可能清除了约60%的早期大气<ref name = Jakosky2001/><ref name = Chaufray2007>{{cite journal | last1 = Chaufray | first1 = J. Y. | display-authors = etal | year = 2007 | title =Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space| url = https://hal.archives-ouvertes.fr/hal-00186346/file/Chaufray_et_al-2007-Journal_of_Geophysical_Research__Planets_%281991-2012%29.pdf| journal = Journal of Geophysical Research| volume =112| issue = E9| pages = E09009 | doi = 10.1029/2007JE002915 | bibcode=2007JGRE..112.9009C| doi-access = free}}</ref>。在此期间,大量[[硅酸盐矿物#页硅酸盐矿物页|硅酸盐]]可能已经形成,这需要足够稠密的大气层来维持地表水,因为光谱上占主导地位的页硅酸盐类—[[蒙脱石]]表明水岩比适中<ref name = Chevrier2007>{{cite journal | last1 = Chevrier | first1 = V. | display-authors = etal | year = 2007 | title =Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates| journal = Nature| volume =448| issue = 7149| pages =60–63| doi = 10.1038/nature05961 | pmid=17611538| bibcode =2007Natur.448...60C| s2cid = 1595292 }}</ref>。然而,介于蒙脱石和[[碳酸盐]]之间的pH-pCO<sub>2</sub>显示,蒙脱石的沉淀将[[二氧化碳]][[气体分压|分压]](pCO<sub>2</sub>)值约束在不超过1×10<sup>−2</sup>标准大气压 (1千帕)以内 <ref name = Chevrier2007/。因此,如果粘土是在与火星大气层接触时所形成,特别是考虑到缺乏碳酸盐沉积的证据下,那么早期火星上稠密大气层的主要成分就变得不确定<ref name = Catling2007>{{cite journal | last1 = Catling | first1 = D. C. | year = 2007 | title = Mars: Ancient fingerprints in the clay| journal = Nature| volume = 448| issue = 7149| pages = 31–32| doi = 10.1038/448031a | pmid=17611529| bibcode =2007Natur.448...31C| s2cid = 4387261 }}</ref>。另一项复杂因素是,年轻时期的太阳亮度比现在约低25%,这需要有一种更具显著[[温室效应]]的古老大气层来提高表面气温以维持液态水<ref name = Catling2007/>,但仅靠提高二氧化碳含量无法实现,因为二氧化碳在[[气体分压|分压]]超过1.5个大气压(1500百帕)时会沉淀,[[温室气体]]的有效性反会降低<ref name = Catling2007/>。 |
|||
===诺亚纪中晚期年代(41-38亿年前)=== |
|||
在诺亚纪中晚期,[[塔尔西斯山群|塔尔西斯火山群]]排出了大量的[[水蒸气]]、[[二氧化碳]]和[[二氧化硫]]等气体,构成了火星的次级大气层<ref name = Jakosky2001/><ref name = Chaufray2007/>;火星河谷网也形成于这一时期,表明与灾难性洪水相反,火星全球范围内广泛存在着地表水并暂时稳定<ref name = Jakosky2001/>,这段时期结束于同时发生的内部[[磁场]]终止和陨石[[后期重轰炸期|轰击高峰]]的降临<ref name = Jakosky2001/><ref name = Chaufray2007/>。内部磁场的停止和随后所有局部磁场的减弱使得[[太阳风]]可不受阻碍地剥离大气层。例如,与地球大气层相比,火星大气层中氩<sup>38</sup>/氩<sup>36</sup>、氮<sup>15</sup>/氮<sup>14</sup>和碳<sup>13</sup>/碳<sup>12</sup>的比率与[[太阳风]]通过瑞利分馏作用剥离高层大气层中较轻同位素造成的约60%[[氩]]、[[氮]]和[[二氧化碳]]损失相一致<ref name = Jakosky2001/>。作为太阳风活动的补充,撞击则会在没有同位素分馏的情况下大量喷射掉大气层成分。尽管如此,彗星撞击可能为该行星提供了挥发物的主要来源<ref name = Jakosky2001/>。 |
|||
===赫斯珀里亚纪到亚马逊纪时代(约38亿年前至现今)=== |
|||
{{more information|赫斯珀里亚纪|亚马逊纪}} |
|||
虽然太阳风对大气层的剥离强度已不如太阳年轻时强烈,但还是抵消了零星释气事件的补充作用<ref name = Chaufray2007/>。这一时期爆发的灾难性的洪水,有利于地下挥发物的突然释放,而不是持续的在地表流动<ref name = Jakosky2001/>。虽然该时代早期可能是以酸性水环境和从诺亚晚期起以[[塔尔西斯]]为中心的地下水排放为主<ref name = AndrewsHanna2007>{{cite journal | last1 = Andrews-Hanna | first1 = J. C. | display-authors = etal | year = 2007 | title = Meridiani Planum and the global hydrology of Mars| journal = Nature| volume = 446| issue = 7132| pages = 163–6| doi = 10.1038/nature05594 | pmid=17344848| bibcode =2007Natur.446..163A| s2cid = 4428510 }}</ref>,但后期大部分的表面蚀变过程都是以[[氧化]]为标志,包括形成了使火星表面呈现红棕色的三价氧化铁<ref name = Chaufray2007/>。原生矿物相的这种氧化可通过与形成橙玄玻质(palagonitic)[[火山灰]]有关的低pH值(可能是高温)作用、火星大气层中[[光化学]]形成的[[过氧化氢]]作用<ref name = Chevrier2006>{{cite journal | last1 = Chevrier | first1 = V. | display-authors = etal | year = 2006 | title = Iron weathering products in a CO2+(H2O or H2O2) atmosphere: Implications for weathering processes on the surface of Mars| journal = Geochimica et Cosmochimica Acta| volume = 70| issue = 16| pages = 4295–4317| doi = 10.1016/j.gca.2006.06.1368 | bibcode=2006GeCoA..70.4295C}}</ref>以及水的作用<ref name = Chevrier2007/>来实现,这些都不需自由氧的介入。鉴于近期水和火成岩活动的急剧减少,过氧化氢的作用可能暂时占据了主导地位,使得观察到的三价氧化铁量非常小,虽然它们无处不在,而且在光谱上占主导地位<ref name = Bibring2006>{{cite journal | last1 = Bibring | first1 = J-P. | display-authors = etal | year = 2006 | title = Global mineralogical and aqueous mars history derived from OMEGA/Mars Express data| journal = Science| volume = 312| issue = 5772| pages = 400–4| doi = 10.1126/science.1122659 | pmid = 16627738 | bibcode = 2006Sci...312..400B| doi-access = free}}</ref>。然而,在最近的地质史中,含水层可能驱动了持续但高度局部化的地表水,就如[[莫哈韦陨击坑]]所显示的地貌<ref name = McEwen2007>{{cite journal | last1 = McEwen | first1 = A. S. | display-authors = etal | year = 2007 | title = A Closer Look at Water-Related Geologic Activity on Mars| url = https://semanticscholar.org/paper/4453efb3e8a6c58171da11c832da3e8253553993| journal = Science| volume = 317| issue = 5845| pages = 1706–1709| doi = 10.1126/science.1143987 | pmid=17885125| bibcode =2007Sci...317.1706M| s2cid = 44822691 }}</ref>。此外,拉法耶特(Lafayette)[[火星陨石]]显示了最近6.5亿年前水蚀变的证据<ref name = Jakosky2001/>。 |
|||
[[File:PIA22487-Mars-BeforeAfterDust-20180719.gif|thumb|right|200px|2018年全球沙尘暴前/后期间的火星]] |
|||
=== [[鳳凰號火星探測器]] === |
|||
2020年,科学家们报告说,当前火星从水中失去氢原子的主要原因是季节性因素和直接将水输送至高层大气层的[[火星气候#沙尘暴的影响|沙尘暴]],这可能影响了行星过去10亿年的气候<ref>{{cite news |title=Escape from Mars: How water fled the red planet |url=https://phys.org/news/2020-11-mars-fled-red-planet.html |access-date=8 December 2020 |work=phys.org |language=en}}</ref><ref>{{cite journal |last1=Stone |first1=Shane W. |last2=Yelle |first2=Roger V. |last3=Benna |first3=Mehdi |last4=Lo |first4=Daniel Y. |last5=Elrod |first5=Meredith K. |last6=Mahaffy |first6=Paul R. |title=Hydrogen escape from Mars is driven by seasonal and dust storm transport of water |journal=Science |date=13 November 2020 |volume=370 |issue=6518 |pages=824–831 |doi=10.1126/science.aba5229 |pmid=33184209 |bibcode=2020Sci...370..824S |s2cid=226308137 |url=https://science.sciencemag.org/content/370/6518/824 |access-date=8 December 2020 |language=en |issn=0036-8075}}</ref>。 |
|||
鳳凰號探測器確定有大量的水冰存在於火星北半球<ref>Arvidson, R. et al. 2008. Introduction to special section on the phoenix mission: Landing site characterization experiments, mission overviews, and expected science. J. Geophysical Research: 113. </ref>;這項發現在之前理論已經預測<ref>Mellon, M. and B. Jakosky. 1993. Geographic variations in the thermal and diffusive stability of ground ice on Mars. J. Geographical Research: 98. 3345-3364</ref>,而且由[[2001火星奧德賽號]]上的儀器測定發現<ref>Feildman, T. et al. 2004. Global distribution of near-surface hydrogen on Mars. J. Geographical Research: 109. </ref>。2008年6月19日,美国宇航局公布骰子大小的明亮物質在鳳凰號的機械手臂挖出來的「嘟嘟鳥─金鳳花」(Dodo-Goldilocks)溝槽經過4天後消失。這代表發現的亮塊很可能是曝露後昇華的水冰。即使乾冰在當時也被發現,昇華的速度也比觀測到的要快很多<ref name=Press>[http://www.nasa.gov/mission_pages/phoenix/news/phoenix-20080619.html Bright Chunks at ''Phoenix'' Lander's Mars Site Must Have Been Ice] {{Wayback|url=http://www.nasa.gov/mission_pages/phoenix/news/phoenix-20080619.html |date=20160304075627 }} - Official NASA press release (19.06.2008)</ref><ref>{{cite web |
|||
====冰河时代==== |
|||
| last = Rayl |
|||
[[File:Conical mound in trough on Mars' north pole.jpg|thumb|北极层状冰和尘埃沉积物。]] |
|||
| first = A. J. S. |
|||
在过去的五百万年中,火星表面冰的数量和分布大约经历了40次大规模的变化<ref>{{cite journal | last1 = Schorghofer | first1 = Norbert | year = 2007 | title = Dynamics of ice ages on Mars | url = http://depts.washington.edu/marsweb/papers/PDFs/Schorghofer-2007-Mars-ice-ages.pdf | journal = Nature | volume = 449 | issue = 7159 | pages = 192–194 | bibcode = 2007Natur.449..192S | doi = 10.1038/nature06082 | pmid = 17851518 | s2cid = 4415456 | access-date = January 12, 2018 | archive-url = https://web.archive.org/web/20180113121555/http://depts.washington.edu/marsweb/papers/PDFs/Schorghofer-2007-Mars-ice-ages.pdf | archive-date = January 13, 2018 | url-status = dead }}</ref><ref name="Shean, D. 2005" />,最近一次的变化大约在210至40万年前,发生于[[火星分界]]的晚[[亚马逊纪]]冰川活动<ref name="Dickson2008">{{cite journal |last1=Dickson |first1=James L. |last2=Head |first2=James W. |last3=Marchant |first3=David R. |date=2008 |title=Late Amazonian glaciation at the dichotomy boundary on Mars: Evidence for glacial thickness maxima and multiple glacial phases |journal=[[Geology (journal)|Geology]] |volume=36 |issue=5 |pages=411–4 |doi=10.1130/G24382A.1|bibcode=2008Geo....36..411D |s2cid=14291132 |url=https://semanticscholar.org/paper/6bac4438bca93dfb757b47f1a815ae6b01504355 }}</ref><ref>{{cite journal | last1 = Head | first1 = J. W. | last2 = III | last3 = Mustard | first3 = J. F. | last4 = Kreslavsky | first4 = M. A. | last5 = Milliken | first5 = R. E. | last6 = Marchant | first6 = D. R. | year = 2003 | title = Recent ice ages on Mars | journal = Nature | volume = 426 | issue = 6968| pages = 797–802 | doi=10.1038/nature02114| pmid = 14685228 | bibcode = 2003Natur.426..797H | s2cid = 2355534 }}</ref>,这些变化被称为冰河期<ref name="Smith 2016">{{cite journal |title=An ice age recorded in the polar deposits of Mars |journal=Science |date= May 27, 2016 |last1=Smith |first1=Isaac B. |last2=Putzig |first2=Nathaniel E. |last3=Holt |first3=John W. |last4=Phillips |first4=Roger J. |volume=352 |issue=6289 |pages= 1075–1078 |doi=10.1126/science.aad6968 |pmid=27230372|bibcode=2016Sci...352.1075S |doi-access=free }}</ref>。火星上的冰河期与地球经历的冰河期大不相同,火星上的冰河期是由轨道和[[转轴倾角|倾斜]]—也称为倾角的变化所驱动。轨道计算表明,火星在其轴线上的摆动比地球大得多。地球因其相对较大的卫星而稳定,因此它只摆动几度,而火星的倾角可能会改变几十度<ref name="hirise" /><ref>{{cite journal | last1 = Levrard | first1 = B. | last2 = Forget | first2 = F. | last3 = Montmessian | first3 = F. | last4 = Laskar | first4 = J. | year = 2004 | title = Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity | journal = Nature | volume = 431 | issue = 7012| pages = 1072–1075 | doi=10.1038/nature03055| pmid = 15510141 | bibcode = 2004Natur.431.1072L | s2cid = 4420650 }}</ref>。当倾角很高时,它的两极会得到更多的直射阳光和热量,导致冰盖变暖,并随着冰升华而缩小,气候相应出现变化。火星轨道的偏心率变化是地球的两倍,随着两极的升华,冰被重新沉积到更靠近赤道的地方,在高倾角时期,赤道受到的太阳辐射有所减少<ref name="IceAge­" />。计算机模拟显示,火星自转轴倾斜45度,将导致冰堆积在显示有冰川地貌的区域<ref>{{cite journal |last=Forget |first=F. |display-authors=etal |date=2006 |title=Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity |journal=Science |volume=311 |pages=368–71 |pmid=16424337 |issue=5759 |doi=10.1126/science.1120335 |bibcode=2006Sci...311..368F|s2cid=5798774 |url=https://semanticscholar.org/paper/3ad5c95f77324dbfc4a605773b8964bc64f4fca8 }}</ref>。 |
|||
| title = ''Phoenix'' Scientists Confirm Water-Ice on Mars |
|||
| work = [http://planetary.org/ The Planetary Society web site] |
|||
| publisher = [[行星學會|Planetary Society]] |
|||
| date = 2008-06-21 |
|||
| url = http://www.planetary.org/news/2008/0621_Phoenix_Scientists_Confirm_WaterIce_on.html |
|||
| accessdate = 2008-06-23 |
|||
| archive-date = 2008-06-27 |
|||
| archive-url = https://web.archive.org/web/20080627110632/http://www.planetary.org/news/2008/0621_Phoenix_Scientists_Confirm_WaterIce_on.html |
|||
| dead-url = no |
|||
}}</ref><ref>{{Cite web |url=http://www.nasa.gov/mission_pages/phoenix/news/phoenix-20080620.html |title=Confirmation of Water on Mars |accessdate=2010-03-30 |archive-date=2008-07-01 |archive-url=https://web.archive.org/web/20080701104400/http://www.nasa.gov/mission_pages/phoenix/news/phoenix-20080620.html |dead-url=no }}</ref>。 |
|||
冰盖中的水分以霜或雪与尘埃混合的形式向低纬度地区移动,火星大气层中含有大量细小的尘埃微粒,水蒸气在这些颗粒上凝结,然后由于水膜层的额外重量而落到地面形成一层覆盖层。当覆盖层顶部的冰返回大气层时,会留下尘埃隔离剩余的冰<ref name="IceAge­" />。蒸发的水分总量只占冰盖的百分之几,或者在整个火星表面形成一层1米深的水层。大部分来自冰盖的水分都形成一层冰尘混合的平整、厚实的覆盖层<ref name="Head, J. 2003" /><ref>{{cite journal |last=Mustard |first=J. |display-authors=etal |date=2001 |title=Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice |journal=Nature |volume=412 |pages=411–4 |pmid=11473309 |issue=6845 |doi=10.1038/35086515 |bibcode=2001Natur.412..411M |s2cid=4409161 }}</ref><ref>{{cite journal |last1=Kreslavsky |first1=M. |first2=J. |last2=Head |date=2002 |title=Mars: Nature and evolution of young latitude-dependent water-ice-rich mantle |issue=15 |journal=Geophysical Research Letters |volume=29 |url=http://www.planetary.brown.edu/pdfs/2756.pdf |doi=10.1029/2002GL015392 |bibcode=2002GeoRL..29.1719K |pages=14–1–14–4|doi-access=free }}</ref>,这层富含冰的覆盖层,在中纬度区可达100米厚<ref name='exposed 100m'>{{cite web |last1=Beatty |first1=Kelly |title=Water Ice Found Exposed in Martian Cliffs - Sky & Telescope |url=https://www.skyandtelescope.com/astronomy-news/cliffs-reveal-water-ice-on-mars/ |website=Sky & Telescope |access-date=3 October 2018 |date=23 January 2018}}</ref>,使低纬度区的陆地变得非常平坦,但在某些地方,它显示出一种凹凸不平的纹理或图案,显示出下面存在着水冰。 |
|||
2008年7月31日,NASA公布鳳凰號在火星上發現水冰的存在。在初始的樣本加熱循環中,熱與蒸發氣體分析儀(TEGA)的質譜儀在樣本溫度達到 0 °C 時偵測到水蒸氣<ref>{{cite web |
|||
== 宜居性评估 == |
|||
| last = Johnson |
|||
{{Main|火星生命}} |
|||
| first = John |
|||
[[File:Mars rover being tested near the Paranal Observatory.jpg|thumb|2013年,正在[[阿塔卡马沙漠]]测试的[[罗莎琳德·富兰克林号|火星太空生物探测车]]原型。]] |
|||
| title = There's water on Mars, NASA confirms |
|||
自1976年海盗号登陆器搜寻当前微生物生命以来,美国宇航局在火星上一直遵循“跟随着水”的战略。然而,正如我们所知,液态水是生命存在的必要条件,但并非充分条件,因为[[行星宜居性]]是多种环境参数的函数<ref name='NASA Astrobio Strategy 2015'>[http://nai.nasa.gov/media/medialibrary/2016/04/NASA_Astrobiology_Strategy_2015_FINAL_041216.pdf Astrobiology Strategy 2015] {{Webarchive|url=https://web.archive.org/web/20161222190939/https://nai.nasa.gov/media/medialibrary/2016/04/NASA_Astrobiology_Strategy_2015_FINAL_041216.pdf |date=December 22, 2016 }} (PDF) NASA.</ref>。化学、物理、地质和地理属性决定了火星上的环境,对这些因素的单独测量尚不足以认定环境的适居住,但测量的总和有助于预测具有更大或更小宜居潜力的位置<ref name="2013 LPS">{{cite journal |bibcode=2013LPI....44.2185C |title=Habitability Assessment at Gale Crater: Implications from Initial Results |last1=Conrad |first1=P. G. |last2=Archer |first2=D. |last3=Coll |first3=P. |last4=De La Torre |first4=M. |last5=Edgett |first5=K. |last6=Eigenbrode |first6=J. L. |last7=Fisk |first7=M. |last8=Freissenet |first8=C. |last9=Franz |first9=H. |last10=Glavin |first10=D. P. |last11=Gómez |first11=F. |last12=Haberle |first12=R. |last13=Hamilton |first13=V. |last14=Jones |first14=J. H. |last15=Kah |first15=L. C. |last16=Leshin |first16=L. A. |last17=Mahaffy |first17=P. M. |last18=McAdam |first18=A. |last19=McKay |first19=C. P. |last20=Navarro-González |first20=R. |last21=Steele |first21=A. |last22=Stern |first22=J. |last23=Sumner |first23=D. |last24=Treiman |first24=A. H. |last25=Wong |first25=M. H. |last26=Wray |first26=J. |last27=Yingst |first27=R. A. |author28=MSL Science Team |display-authors=9 |volume=1719 |issue=1719 |date=2013 |page=2185 |journal=44th Lunar and Planetary Science Conference }}</ref>。 |
|||
| work = Los Angeles Times |
|||
| publisher = |
|||
| date = 2008-08-01 |
|||
| url = http://www.latimes.com/news/science/la-sci-phoenix1-2008aug01,0,3012423.story |
|||
| accessdate = 2008-08-01 |
|||
| archive-date = 2008-08-13 |
|||
| archive-url = https://web.archive.org/web/20080813115920/http://www.latimes.com/news/science/la-sci-phoenix1-2008aug01,0,3012423.story |
|||
| dead-url = no |
|||
}}</ref>。 |
|||
液態水無法在火星表面過低的氣壓存在,除非是在地勢最低的地方可以短暫存在<ref>{{Citation |
|||
| journal= Journal of Geophysical Research |
|||
| date= May 7, 2005 |
|||
| last= Heldmann et al. |
|||
| first= Jennifer L. |
|||
| title= Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions |
|||
| url= http://daleandersen.seti.org/Dale_Andersen/Science_articles_files/Heldmann%20et%20al.2005.pdf |
|||
| volume= 110 |
|||
| pages= Eo5004 |
|||
| doi= 10.1029/2004JE002261 |
|||
| accessdate= 2008-09-14 |
|||
| format= PDF |
|||
| archive-date= 2008-10-01 |
|||
| archive-url= https://web.archive.org/web/20081001162643/http://daleandersen.seti.org/Dale_Andersen/Science_articles_files/Heldmann%20et%20al.2005.pdf |
|||
| dead-url= yes |
|||
}} 'conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water' ... 'Liquid water is typically stable at the lowest elevations and at low latitudes on the planet because the atmospheric pressure is greater than the vapor pressure of water and surface temperatures in equatorial regions can reach 273 K for parts of the day [Haberle et al., 2001]'</ref><ref>{{Citation |
|||
| journal=Geophysical Research Letters |
|||
| volume=33 |
|||
| pages=L11201 |
|||
| date=June 3, 2006 |
|||
| last=Kostama |
|||
| first=V.-P. |
|||
| last2=Kreslavsky |
|||
| first2=M. A. |
|||
| last3=Head |
|||
| first3=J. W. |
|||
| title=Recent high-latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement |
|||
| url=http://www.agu.org/pubs/crossref/2006/2006GL025946.shtml |
|||
| doi=10.1029/2006GL025946 |
|||
| accessdate=2007-08-12 |
|||
| archive-date=2009-03-18 |
|||
| archive-url=https://web.archive.org/web/20090318010946/http://www.agu.org/pubs/crossref/2006/2006GL025946.shtml |
|||
| dead-url=no |
|||
}} 'Martian high-latitude zones are covered with a smooth, layered ice-rich mantle'</ref>。 |
|||
可居住的环境并不需要有人居住,出于行星保护的目的,科学家们正在尝试确定火星上可能会被[[航天器]]上偷渡的地球[[细菌]]污染的潜在栖息地<ref name="strategy">{{cite book | author1=Committee on an Astrobiology Strategy for the Exploration of Mars | author2=National Research Council | date=2007 | chapter=Planetary Protection for Mars Missions | chapter-url=http://www.nap.edu/openbook.php?record_id=11937&page=95 | pages=95–98 | title=An Astrobiology Strategy for the Exploration of Mars | publisher=The National Academies Press | isbn=978-0-309-10851-5 }}</ref>。假如火星上存在或曾存在过生命,则在远离如今[[高氯酸盐]]<ref name="SM-20170706">{{cite news |last=Daley |first=Jason |title=Mars Surface May Be Too Toxic for Microbial Life - The combination of UV radiation and perchlorates common on Mars could be deadly for bacteria |url=http://www.smithsonianmag.com/smart-news/mars-surface-may-be-toxic-bacteria-180963966/ |date=6 July 2017 |work=[[Smithsonian (magazine)|Smithsonian]] |access-date=8 July 2017 }}</ref><ref name="NAT-20170706">{{cite journal|last1=Wadsworth |first1=Jennifer |last2=Cockell |first2=Charles S. |title=Perchlorates on Mars enhance the bacteriocidal effects of UV light |date=6 July 2017 |journal=[[Scientific Reports]] |volume=7 |page=4662 |number=4662 |doi=10.1038/s41598-017-04910-3 |bibcode = 2017NatSR...7.4662W |pmid=28684729 |pmc=5500590}}</ref>、电离辐射、干燥寒冷<ref name='NASA strategy 2015'>{{cite web|url=https://nai.nasa.gov/media/medialibrary/2015/10/NASA_Astrobiology_Strategy_2015_151008.pdf|title=NASA Astrobiology Strategy|year=2015|work=NASA.|access-date=September 5, 2018|archive-url=https://web.archive.org/web/20161222190306/https://nai.nasa.gov/media/medialibrary/2015/10/NASA_Astrobiology_Strategy_2015_151008.pdf|archive-date=December 22, 2016|url-status=dead}}</ref>等严酷表面条件的地下可能会找到证据或[[生命印迹]]。在假设的[[水圈]]中,可居住的位置可能位于地表以下数公里处,或者可能出现在与[[永久冻土]]接触的近地表附近<ref name="Dartnell-1"/><ref name="ionising radiation"/><ref name="subsurface habitability model"/><ref name="Parnell"/><ref name=Steigerwald/>。 |
|||
鳳凰號任務結束後,在科學期刊的一篇論文報告分析結果中提到鳳凰號在分析樣本中發現[[氯化物]]、[[碳酸氫鹽]]、[[鎂]]、[[鈉]]、[[鉀]]、[[鈣]],可能還有[[硫酸鹽]]。[[高氯酸鹽]] (ClO<sub>4</sub>) 這種強[[氧化劑]]也在火星土壤中被確認;這種化合物如果和水混和可以大幅降低水的冰點,和灑鹽在道路上將水冰融化是類似機制。也許高氯酸鹽現在還有少量存在於火星的液態水中。山溝地行在火星一些區域相當常見的原因可能就是因為高氯酸鹽使水冰融化在陡坡上造成侵蝕<ref>Hecht, M. et.al. 2009. Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site. Science: 325. 64-67</ref>。 |
|||
[[好奇号]]火星车正在评估火星过去和现在的宜居性潜力,而[[欧洲]]-[[俄罗斯]]计划启动的“火星太空生物学”任务是一项致力于寻找和识别火星上生命信号的天体生物学项目,包括2018年4月开始绘制[[火星大气层]]甲烷图的“[[火星微量气体任务卫星]]”和2022年将钻探和分析2米深地下样品的“[[罗莎琳德·富兰克林号|火星生物探测漫游车]]”。美国宇航局的[[火星2020]]任务探测车将储存数十个钻孔岩芯样本,以便在2020或2030年代将其带回地球实验室。 |
|||
此外,2008年至2009年初一張鳳凰號著陸支架照片上的一個「斑點」引起許多爭論;許多人認為那可能是水滴或一塊霜<ref name="NYTimes20090316"/>。因為計畫團隊內對於那是什麼東西並無共識,因此並未在NASA的任何新聞發佈記者會上公開<ref name="NYTimes20090316">Chang, Kenneth (2009) [http://www.nytimes.com/2009/03/17/science/17mars.html?ref=space Blobs in Photos of Mars Lander Stir a Debate: Are They Water?] {{Wayback|url=http://www.nytimes.com/2009/03/17/science/17mars.html?ref=space |date=20110512034706 }}, New York Times (online), March 16, 2009, retrieved 2009-04-04;</ref>。其中一位科學家認為是鳳凰號在登陸時保持平衡的鹽水袋被推進器潑濺到著陸支架上。鹽份可能被火星大氣層中的水蒸氣吸收,這也許可以解釋鹽水如何在前44個火星日中,溫度逐漸下降的狀況下逐漸蒸發<ref>name="NYTimes20090316"/></ref><ref>http://articles.latimes.com/2009/mar/14/nation/na-marswater12</ref>。有些影像甚至顯示一些水滴變暗之後移動和合併,這是那些黑點是液體的強力物理性證據<ref>{{Cite web |url=http://www.astrobio.net/index.php?option=com_retrospection&task=detail&id=3350 |title=存档副本 |accessdate=2010-03-30 |archive-date=2009-06-20 |archive-url=https://web.archive.org/web/20090620221343/http://www.astrobio.net/index.php?option=com_retrospection |dead-url=no }}</ref>。 |
|||
== 航天探测器调查 == |
|||
{{Main|火星水探索年表}} |
|||
=== 水手9号 === |
|||
[[File:Scamander Vallis from Mars Global Surveyor.jpg|thumb|蜿蜒的[[斯卡曼德洛谷]],这类图像暗示了火星表面曾经有过大量流动的水,[[火星全球探勘者号]]拍摄。]] |
|||
1971年发射的[[水手9号]]轨道飞行器所获得的图像首次以干涸[[河床]]、[[峡谷]](包括长约4020公里的峡谷系统)、水[[侵蚀作用|侵蚀]]及[[沉积物|沉积]]、[[锋 (气象)|锋面]]、[[雾]]等形式揭示了过去存在过水的直接证据<ref>{{cite web |url=http://marsprogram.jpl.nasa.gov/missions/past/mariner8-9.html |archive-url=https://web.archive.org/web/20040411165457/http://marsprogram.jpl.nasa.gov/missions/past/mariner8-9.html |url-status=dead |archive-date=April 11, 2004 |title=Mars Exploration: Missions |publisher=Marsprogram.jpl.nasa.gov |access-date=December 19, 2010}}</ref>。水手9号任务的发现支持了后来的[[海盗号|海盗计划]],为纪念水手9号取得的成就,以它的名字命名了巨大的[[水手号谷|水手峡谷]]系统。 |
|||
=== 海盗计划 === |
|||
{{Main|海盗号}} |
|||
[[File:Streamlined Islands in Maja Valles.jpg|thumb|left|[[迈亚谷]]中的流线型岛屿表明火星上曾爆发过大洪水。]] |
|||
两艘海盗轨道飞行器和两台着陆器在火星表面发现了很多典型由大规模水流造成的地质形态,引发了学界对火星上是否有水的认知革命。在许多地区发现了巨大的[[溢出河道]],显示洪水曾冲溃河坝、切出深谷、在岩床上凿刻出道道沟壑,一路肆虐数千公里<ref name="history.nasa.gov">{{cite web |url=https://history.nasa.gov/SP-441/ch4.htm |title=Viking Orbiter Views of Mars |publisher=History.nasa.gov |access-date=December 19, 2010}}</ref>;分布于南半球大片地区的分支河谷网道,表明那儿曾经有过降雨<ref>{{cite web |url=https://history.nasa.gov/SP-441/ch5.htm |title=ch5 |work=NASA History |publisher=NASA |access-date=December 19, 2010 }}</ref>;许多陨石坑看上去好像陨石撞进了湿泥里,在它们形成时,土壤中的冰可能被融化,使地面变成四处流动泥浆<ref name="Raeburn">{{cite journal |last=Raeburn |first=P. |date=1998 |title=Uncovering the Secrets of the Red Planet Mars |journal=National Geographic |location=Washington D.C.}}</ref><ref name="Moore">{{cite book |last=Moore |first=P. |display-authors=etal |date=1990 |title=The Atlas of the Solar System |publisher=Mitchell Beazley Publishers |location=New York}}</ref><ref name="Kieffer1992" /><ref>{{cite web |url=https://history.nasa.gov/SP-441/ch7.htm |title=Craters |publisher=NASA |access-date=December 19, 2010}}</ref>;被称为“[[混沌地形]]”的地区似乎快速流失了大量的水,导致下游形成了巨大的河道,据估计这些河道的流量是[[密西西比河]]的一万倍<ref name="Morton, O 2002">{{cite book |last=Morton |first=O. |date=2002 |title=Mapping Mars |url=https://archive.org/details/mappingmarsscien00mort_0 |url-access=registration |publisher=Picador, NY}}</ref>。地下火山的活动可能融化了冰层,在水流大量流失后,地面塌陷形成混沌地形。另外,两台海盗着陆器的常规化学分析表明,火星表面过去要么露出在水面,要么就浸没于水中<ref name="Arvidson, R 1989">{{cite journal |doi=10.1029/RG027i001p00039 |last1=Arvidson |first1=R |last2=Gooding |first2=James L. |last3=Moore |first3=Henry J. |date=1989 |title=The Martian surface as Imaged, Sampled, and Analyzed by the Viking Landers |journal=Reviews of Geophysics |volume=27 |issue=1 |pages=39–60 |bibcode=1989RvGeo..27...39A}}</ref><ref>{{cite journal |doi=10.1126/science.194.4271.1283 |last1=Clark |first1=B. |last2=Baird |first2=AK |last3=Rose Jr. |first3=HJ |last4=Toulmin P |first4=3rd |last5=Keil |first5=K |last6=Castro |first6=AJ |last7=Kelliher |first7=WC |last8=Rowe |first8=CD |last9=Evans |first9=PH |date=1976 |title=Inorganic Analysis of Martian Samples at the Viking Landing Sites |journal=Science |volume=194 |issue=4271 |pages=1283–1288 |pmid=17797084 |bibcode=1976Sci...194.1283C |s2cid=21349024 }}</ref>。 |
|||
===火星全球探勘者号=== |
|||
{{Main|火星全球探勘者号}} |
|||
[[File:Hematite region Sinus Meridiani sur Mars.jpg|thumb|显示[[子午线湾]]中[[赤铁矿]]分布的地图,这些数据被用于确定[[机遇号火星漫游车|机遇号]]探测车目标着陆地,该探测车发现了过去有水的明确证据。]] |
|||
[[火星全球探勘者号]]的[[热辐射光谱仪]](TES)是一台能够测定火星表面矿物成分的仪器,而矿物成分能提供古代是否存在水的信息。热辐射光谱仪在[[尼利槽沟]]地层中发现了一大片(3万平方公里(1.2万平方英里))含有[[橄榄石]]矿物的区域<ref>{{cite journal | last1 = Hoefen | first1 = T.M. | display-authors = etal| year = 2003 | title = Discovery of Olivine in the Nili Fossae Region of Mars | journal = Science | volume = 302 | issue = 5645| pages = 627–630 | doi=10.1126/science.1089647 | pmid=14576430| bibcode = 2003Sci...302..627H | s2cid = 20122017 | url = https://zenodo.org/record/1230836 }}</ref>。据认为,造成[[伊希斯平原|伊希斯盆地]]的古代小行星撞击导致了暴露出橄榄石的[[断层]]。橄榄石的发现有力地证明了火星部分地区极端干燥的时间已经很长。在赤道南北南60度范围内的其他许多小型[[露头]]中也发现了橄榄石<ref>{{cite journal |doi=10.1126/science.1089647 |last1=Hoefen |first1=T. |last2=Clark |first2=RN |last3=Bandfield |first3=JL |last4=Smith |first4=MD |last5=Pearl |first5=JC |last6=Christensen |first6=PR |date=2003 |title=Discovery of Olivine in the Nili Fossae Region of Mars |journal=Science |volume=302 |issue=5645 |pages=627–630 |pmid=14576430 |bibcode=2003Sci...302..627H|s2cid=20122017 |url=https://zenodo.org/record/1230836 }}</ref>。该探测器已拍摄到多条表明过去有持续液体流动的流道,其中两条位于[[纳内迪谷]]和[[尼尔格谷]]<ref name="Malin, M 2001">{{cite journal |last1=Malin |first1=Michael C. |last2=Edgett |first2=Kenneth S. |title=Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission |pages=23429–23570 |journal=Journal of Geophysical Research |date=2001 |doi=10.1029/2000JE001455 |volume=106 |bibcode=2001JGR...10623429M |issue=E10|s2cid=129376333 |doi-access=free }}</ref>。 |
|||
[[File:Nanedi channel.JPG|thumb|[[月沼区]][[纳内迪谷]]底的内河道(靠近图像顶部),表明水流的时间相当长。]] |
|||
=== 火星探路者号 === |
|||
{{Main|火星探路者号}} |
|||
[[火星探路者号]]着陆器记录了白昼气温循环的变化,日出前最冷,大约为零下78摄氏度(华氏零下108度;195 K);午后最暖,约为零下8摄氏度(华氏18度;265 K)。在该位置,最高温从未达到水的冰点(摄氏0度、华氏32度或273 K),由于温度过低,纯液态水无法在地表存在。 |
|||
探路者号在火星上测得的大气压也非常低,约为地球的0.6%,同样也不允许纯液态水存在于表面<ref>{{cite web |url=http://mars.jpl.nasa.gov/MPF/science/atmospheric.html |title=Atmospheric and Meteorological Properties |publisher=NASA}}</ref>。 |
|||
<gallery widths="150px" heights="150px" style="clear:both; margin-left:auto; margin-right:auto;"> |
|||
File:Ice_sublimating_in_the_Dodo-Goldilocks_trench.gif|骰子大小的明亮物質在擴大的「嘟嘟鳥─金鳳花」(Dodo-Goldilocks)溝槽經過4天後消失。這表示水冰曝露後昇華<ref name=Press/>。 |
|||
其他观察结果则与过去存在水的情况一致,探测器着陆点的一些岩石以地质学家称之为“叠瓦”的方式相互斜靠,可能是过去巨大的洪水将岩石推离水流方向时所形成;一些圆润的鹅卵石可能是在溪流中翻滚而致;而部分坚硬的地面则可能是含矿物质流体产生的胶结作用<ref name="Golombek, M 1997" />;另外,还探测到有云的迹象,也许还有雾<ref name="Golombek, M 1997">{{cite journal |doi=10.1126/science.278.5344.1743 |last1=Golombek |first1=M. P. |last2=Cook |first2=R. A. |last3=Economou |first3=T. |last4=Folkner |first4=W. M. |last5=Haldemann |first5=A. F. C. |last6=Kallemeyn |first6=P. H. |last7=Knudsen |first7=J. M. |last8=Manning |first8=R. M. |last9=Moore |first9=H. J. |last10=Parker |first10=T. J. |last11=Rieder |first11=R. |last12=Schofield |first12=J. T. |last13=Smith |first13=P. H. |last14=Vaughan |first14=R. M. |title=Overview of the Mars Pathfinder Mission and Assessment of Landing Site Predictions |journal=Science |volume=278 |issue=5344 |pages=1743–1748 |pmid=9388167 |bibcode=1997Sci...278.1743G |date=1997|doi-access=free }}</ref>。 |
|||
:File:Evaporating ice on Mars Phoenix lander image.jpg|彩色影像顯示冰的昇華;左下角已被擴大的溝槽影像被放大,在右上角顯示。 |
|||
=== 火星奥德赛号== |
|||
</gallery> |
|||
[[File:Semeykin Crater Drainage.JPG|thumb|left|[[伊斯墨纽斯湖区|伊斯墨诺斯湖区]][[谢梅金撞击坑]]复杂的溢流水系。]] |
|||
[[2001火星奥德赛号]]以图像形式发现了许多火星上存在水的证据,通过中子光谱仪,证明了大部分地表都贮藏有水冰,火星地表下的水冰足够填满两座[[密歇根湖]]<ref name="mars.jpl.nasa.gov">{{cite web |url=http://mars.jpl.nasa.gov/odyssey/newsroom/pressreleases/20020528a.html |title=Mars Odyssey: Newsroom |publisher=Mars.jpl.nasa.gov |date=May 28, 2002}}</ref>。在两半球中纬55度到两极的地表下,分布着高密度的冰,每公斤土壤含有约500克(18盎司)的水冰,但靠近赤道的地方,土壤中水分的含量只有2%到10%<ref name="Feildman, T. 2004">{{cite journal |date=2004 |last=Feldman |first=W.C. |display-authors=etal |title=Global Distribution of Near-Surface Hydrogen on Mars |journal=Journal of Geophysical Research |volume=109 |doi=10.1029/2003JE002160 |bibcode=2004JGRE..10909006F|doi-access=free }}</ref>。科学家们认为,这些水分大部分也被锁定在矿物的化学结构中,如[[粘土]]和[[硫酸盐]]<ref>{{cite journal |doi=10.1006/icar.1993.1141 |last1=Murche |first1=S. |last2=Mustard |first2=John |date=1993 |title=Spatial Variations in the Spectral Properties of Bright Regions on Mars |journal=Icarus |volume=105 |pages=454–468 |bibcode=1993Icar..105..454M |issue=2 |last3=Bishop |first3=Janice |author-link3=Janice Bishop|last4=Head |first4=James |last5=Pieters |first5=Carle |last6=Erard |first6=Stephane}}</ref><ref>{{cite web |url=http://marswatch.tn.cornell.edu/burns.html |title=Home Page for Bell (1996) Geochemical Society paper |publisher=Marswatch.tn.cornell.edu |access-date=December 19, 2010}}</ref>。虽然火星上表层只含百分之几的化学结合态水,但冰就位于较下方数米处,尤如在[[阿拉伯台地 (火星)|阿拉伯高地]]、[[亚马逊区]]和[[埃律西昂区]]所显示的那样,那儿含有大量的水冰<ref>{{cite journal |doi=10.1126/science.1073541 |last1=Feldman |first1=W. C. |last2=Boynton |first2=W. V. |last3=Tokar |first3=R. L. |last4=Prettyman |first4=T. H. |last5=Gasnault |first5=O. |last6=Squyres |first6=S. W. |last7=Elphic |first7=R. C. |last8=Lawrence |first8=D. J. |last9=Lawson |first9=S. L. |last10=Maurice |first10=S. |last11=McKinney |first11=G. W. |last12=Moore |first12=K. R. |last13=Reedy |first13=R. C. |title=Global Distribution of Neutrons from Mars: Results from Mars Odyssey |journal=Science |volume=297 |issue=5578 |pages=75–78 |pmid=12040088 |bibcode=2002Sci...297...75F |date=2002|s2cid=11829477 |url=https://semanticscholar.org/paper/2dca86244259b74808141a4e9ca9ab34ba197965 }}</ref>。轨道飞行器还在赤道地区表面附近发现了大量的大块水冰沉积物<ref name="ICRS-20170928"/>,赤道水合作用的证据既有形态上的,也有成分上的,在[[梅杜莎槽沟层]]和[[塔尔西斯山群塔尔西斯山]]都可看到<ref name="ICRS-20170928"/>。数据分析表明,南半球可能具有分层结构,表明在现已消失的大型水域下面存在层状沉积物<ref>{{cite journal |doi=10.1126/science.1073616 |last1=Mitrofanov |first1=I. |last2=Anfimov |first2=D. |last3=Kozyrev |first3=A. |last4=Litvak |first4=M. |last5=Sanin |first5=A. |last6=Tret'yakov |first6=V. |last7=Krylov |first7=A. |last8=Shvetsov |first8=V. |last9=Boynton |first9=W. |last10=Shinohara |first10=C. |last11=Hamara |first11=D. |last12=Saunders |first12=R. S. |title=Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey |journal=Science |volume=297 |issue=5578 |pages=78–81 |pmid=12040089 |bibcode=2002Sci...297...78M |date=2002|s2cid=589477 |url=https://semanticscholar.org/paper/858c313c6dc52b9a51baa182886f02d9ccc5b133 }}</ref>。 |
|||
[[File:Blocks in Aram.JPG|thumb|显示可能为古代水源的[[奥克夏沼区|欧克西亚沼区]][[阿伦混沌]]中的区块。]] |
|||
火星奥德赛号上的仪器可研究地表下1米深的土壤。2002年,利用现有数据计算,如果所有土壤表面都被一层均匀的水层覆盖,则将相当于火星0.5-1.5公里(0.31-0.93英里)深的全球等高水层(GLW)<ref>{{cite journal |doi=10.1126/science.1073722 |last1=Boynton |first1=W. V. |last2=Feldman |first2=W. C. |last3=Squyres |first3=S. W. |last4=Prettyman |first4=T. H. |last5=Brückner |first5=J. |last6=Evans |first6=L. G. |last7=Reedy |first7=R. C. |last8=Starr |first8=R. |last9=Arnold |first9=J. R. |last10=Drake |first10=D. M. |last11=Englert |first11=P. A. J. |last12=Metzger |first12=A. E. |last13=Mitrofanov |first13=Igor |last14=Trombka |first14=J. I. |last15=d'Uston |first15=C. |last16=Wänke |first16=H. |last17=Gasnault |first17=O. |last18=Hamara |first18=D. K. |last19=Janes |first19=D. M. |last20=Marcialis |first20=R. L. |last21=Maurice |first21=S. |last22=Mikheeva |first22=I. |last23=Taylor |first23=G. J. |last24=Tokar |first24=R. |last25=Shinohara |first25=C. |title=Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits |journal=Science |volume=297 |issue=5578 |pages=81–85 |pmid=12040090 |bibcode=2002Sci...297...81B |date=2002|s2cid=16788398 |url=https://semanticscholar.org/paper/dc2d5e8e056d4242dd05bbc6bc468d69ba609efd }}</ref>。 |
|||
鳳凰號視野可及之處是一片大平原,不過這平原上有許多直徑2到3公尺的多邊形構造,每個多邊型之間的邊界是深度20至50公分深的溝槽。這樣地形的由來是因為土壤中的水冰因為溫度熱漲冷縮造成。 |
|||
奥德赛轨道飞行器返回的数千张图像也支持火星上曾有大量的水流淌在表面的观点, |
|||
<gallery widths="150px" heights="150px" perrow="3" style="clear:both; margin-left:auto; margin-right:auto;"> |
|||
一些图像显示了分支河谷的形态,另一些则显示了可能在湖泊下形成的地层,甚至识别出了河流和湖泊[[三角洲]]<ref name="Irwin III 2005">{{cite journal |last1=Irwin |first1=Rossman P. |last2=Howard |first2=Alan D. |last3=Craddock |first3=Robert A. |last4=Moore |first4=Jeffrey M. |title=An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development |journal=Journal of Geophysical Research |volume=110 |issue=E12 |pages=E12S15 |date=2005 |doi=10.1029/2005JE002460 |bibcode=2005JGRE..11012S15I|doi-access=free }}</ref><ref name="themis.asu.edu">{{cite web |url=http://themis.asu.edu/zoom-20020807a |title=Dao Vallis |date=August 7, 2002 |work=Mars Odyssey Mission |publisher=THEMIS |access-date=December 19, 2010 }}</ref>。多年来,研究人员一直怀疑冰川存在于一层隔热岩石之下<ref name="Holt, J. 2008" /><ref name="Richard Lewis" /><ref name="Plaut, J. 2008" />,在一些河道底表上发现的[[线状谷底沉积]]就是这些被岩石覆盖的冰川示例,它们的表面分布有脊状和沟槽状的材料,可在障碍物周围偏转。线性谷底沉积物可能与[[舌状岩屑坡]]有关,轨道雷达显示舌状岩屑坡内含有大量的水冰<ref name="Holt, J. 2008" /><ref name="Plaut, J. 2008" />。 |
|||
File:Phoenix_Sol_0_horizon.jpg|比較鳳凰號在火星上拍攝的多邊形地形... |
|||
===“凤凰号”=== |
|||
File:PSP 008301 2480 cut a.jpg |...和[[火星偵察軌道器]]拍攝的假色影像... |
|||
{{Main|凤凰号火星探测器}} |
|||
File:Patterned_ground_devon_island.jpg | ...和地球上[[北極地區]]加拿大[[德文島]]上的[[圖案地面]]。 |
|||
[[File:Phoenix Sol 0 horizon.jpg|thumb|凤凰号着陆器拍摄的多边形[[永久冻土]]。]] |
|||
[[凤凰号火星探测器|凤凰号]]着陆器也确认了火星北部地区存在大量水冰<ref name="Arvidson, R. 2008">{{cite journal |last1=Smith |first1=P. H. |last2=Tamppari |first2=L. |last3=Arvidson |first3=R. E. |last4=Bass |first4=D. |last5=Blaney |first5=D. |last6=Boynton |first6=W. |last7=Carswell |first7=A. |last8=Catling |first8=D. |last9=Clark |first9=B. |last10=Duck |first10=T. |last11=DeJong |first11=E. |last12=Fisher |first12=D. |last13=Goetz |first13=W. |last14=Gunnlaugsson |first14=P. |last15=Hecht |first15=M. |last16=Hipkin |first16=V. |last17=Hoffman |first17=J. |last18=Hviid |first18=S. |last19=Keller |first19=H. |last20=Kounaves |first20=S. |last21=Lange |first21=C. F. |last22=Lemmon |first22=M. |last23=Madsen |first23=M. |last24=Malin |first24=M. |last25=Markiewicz |first25=W. |last26=Marshall |first26=J. |last27=McKay |first27=C. |last28=Mellon |first28=M. |last29=Michelangeli |first29=D. |last30=Ming |first30=D. |last31=Morris |first31=R. |last32=Renno |first32=N. |last33=Pike |first33=W. T. |last34=Staufer |first34=U. |last35=Stoker |first35=C. |last36=Taylor |first36=P. |last37=Whiteway |first37=J. |last38=Young |first38=S. |last39=Zent |first39=A. |title=Introduction to special section on the phoenix mission: Landing site characterization experiments, mission overviews, and expected science |journal=Journal of Geophysical Research |volume=113 |issue=E12 |pages=E00A18 |doi=10.1029/2008JE003083 |bibcode=2008JGRE..113.0A18S |date=2008|display-authors=29 |hdl=2027.42/94752 |s2cid=38911896 |hdl-access=free |url=https://semanticscholar.org/paper/870d0a00d2827d74d95fcf03e21d3843440f50c1 }}</ref><ref>{{cite web |url=http://www.nasa.gov/mission_pages/phoenix/news/phx20100909.html |title=NASA Data Shed New Light About Water and Volcanoes on Mars |publisher=NASA |date=September 9, 2010 |access-date=March 21, 2014}}</ref>,这一发现是由以前的轨道数据和理论预测<ref>{{cite journal |last1=Mellon |first1=M. |last2=Jakosky |first2=B. |date=1993 |title=Geographic variations in the thermal and diffusive stability of ground ice on Mars |journal=Journal of Geophysical Research |volume=98 |issue=E2 |pages=3345–3364 |doi=10.1029/92JE02355 |bibcode=1993JGR....98.3345M }}</ref>并由火星奥德赛仪器在轨测量得出的<ref name="Feildman, T. 2004" />。2008年6月19日,美国宇航局宣布,机械手臂挖掘的“渡渡鸟-金发姑娘”沟中骰子般大小的明亮团块在四天内蒸发,强烈表明那些明亮团块是暴露后[[升华]]的水冰。虽然二氧化碳霜([[干冰]])在当时条件下也会升华,但它们的速度应该比观测到的要快得多<ref name="Confirmation of Water on Mars">{{cite web |url=http://www.nasa.gov/mission_pages/phoenix/news/phoenix-20080620.html |title=Confirmation of Water on Mars |publisher=Nasa.gov |date=June 20, 2008}}</ref>。2008年7月31日,美国宇航局宣布凤凰号进一步证实了着陆地点存在水冰的证据,在对土壤样品进行加热测试中,当样品温度升到摄氏0度(华氏32度;273 K)时,质谱仪检测到了水蒸气<ref name="LATimes">{{cite news |last=Johnson |first=John |title=There's water on Mars, NASA confirms |work=Los Angeles Times |date=August 1, 2008 |url=https://www.latimes.com/news/science/la-sci-phoenix1-2008aug01,0,3012423.story}}</ref>。在当前极低的大气压和气温环境下,除非短时内位于海拔最低处,否则,液态水不可能存在于火星表面<ref name="Kostama">{{cite journal |journal=Geophysical Research Letters |volume=33 |issue=11 |pages=L11201 |date=June 3, 2006 |last1=Kostama |first1=V.-P. |last2=Kreslavsky |first2=M. A. |last3=Head |first3=J. W. |title=Recent high-latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement |url=http://www.agu.org/pubs/crossref/2006/2006GL025946.shtml |doi=10.1029/2006GL025946 |bibcode=2006GeoRL..3311201K|citeseerx=10.1.1.553.1127 }}</ref><ref name="flows">{{cite journal |journal=Journal of Geophysical Research |date=May 7, 2005 |last=Heldmann |first=Jennifer L. |display-authors=etal |title=Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions |url=http://daleandersen.seti.org/Dale_Andersen/Science_articles_files/Heldmann%20et%20al.2005.pdf |volume=110 |pages=Eo5004 |doi=10.1029/2004JE002261 |bibcode=2005JGRE..11005004H|hdl=2060/20050169988 |hdl-access=free }} 'conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water' … 'Liquid water is typically stable at the lowest elevations and at low latitudes on the planet, because the atmospheric pressure is greater than the vapor pressure of water and surface temperatures in equatorial regions can reach {{convert|220|K|C F}} for parts of the day.</ref><ref name="Arvidson, R. 2008"/><ref name="Dirt find">{{cite web |url=http://www.space.com/scienceastronomy/090702-phoenix-soil.html |title=The Dirt on Mars Lander Soil Findings |publisher=SPACE.com |access-date=December 19, 2010}}</ref>。 |
|||
火星土壤中存在强[[氧化剂]]—[[高氯酸盐]](ClO<sub>4</sub><sup>–</sup>)阴离子,这种盐可以大大降低水的[[熔点|冰点]]。 |
|||
</gallery> |
|||
[[File:PIA10741 Possible Ice Below Phoenix.jpg|thumb|left|凤凰号着陆器下方视图,显示出着陆火箭暴露的水冰。]] |
|||
凤凰号着陆时,减速火箭喷出的气流将泥土和融化的冰溅射到了着陆器上<ref name="martinez2013">{{cite journal | author = Martínez, G. M. | author2 = Renno, N. O. | name-list-style = amp | date = 2013 | title = Water and brines on Mars: current evidence and implications for MSL | journal = Space Science Reviews | volume = 175 | issue = 1–4 | pages = 29–51 | doi = 10.1007/s11214-012-9956-3 | bibcode = 2013SSRv..175...29M | doi-access = free }}</ref>。照片显示,探测器降陆时有一些物质粘在了着陆支架上<ref name="martinez2013" />这些物质以[[潮解]]的速率膨胀,在消失之前变暗(与先[[液化]]后滴落一致),并似乎融合在一起。这些观察结果结合热力学证据,表明这些斑滴很可能是液态卤水水滴<ref name="martinez2013" /><ref name="Renno2009">{{cite journal |doi=10.1029/2009JE003362 |title=Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site |date=2009 |last1=Rennó |first1=Nilton O. |last2=Bos |first2=Brent J. |last3=Catling |first3=David |last4=Clark |first4=Benton C. |last5=Drube |first5=Line |last6=Fisher |first6=David |last7=Goetz |first7=Walter |last8=Hviid |first8=Stubbe F. |last9=Keller |first9=Horst Uwe |last10=Kok |first10=Jasper F. |last11=Kounaves |first11=Samuel P. |last12=Leer |first12=Kristoffer |last13=Lemmon |first13=Mark |last14=Madsen |first14=Morten Bo |last15=Markiewicz |first15=Wojciech J. |last16=Marshall |first16=John |last17=McKay |first17=Christopher |last18=Mehta |first18=Manish |last19=Smith |first19=Miles |last20=Zorzano |first20=M. P. |last21=Smith |first21=Peter H. |last22=Stoker |first22=Carol |last23=Young |first23=Suzanne M. M. |journal=Journal of Geophysical Research |volume=114 |issue=E1 |pages=E00E03 |bibcode=2009JGRE..114.0E03R|hdl=2027.42/95444 |s2cid=55050084 |hdl-access=free |url=https://semanticscholar.org/paper/37d78c6bf855ae9491c486e3434511e86a8e4ce5 }}</ref>;其他研究人员认为这些斑滴可能是“霜冻”<ref name="NYTimes20090316">{{cite web |last=Chang |first=Kenneth |url=https://www.nytimes.com/2009/03/17/science/17mars.html |title=Blobs in Photos of Mars Lander Stir a Debate: Are They Water? |publisher=New York Times (online) |date=March 16, 2009 }}</ref><ref name="Sciencedaily.com">{{cite web |url=https://www.sciencedaily.com/releases/2009/03/090319232438.htm |title=Liquid Saltwater Is Likely Present On Mars, New Analysis Shows |website=ScienceDaily |date=March 20, 2009 }}</ref><ref>{{cite web |url=http://www.astrobio.net/index.php?option=com_retrospection&task=detail&id=3350 |title=Astrobiology Top 10: Too Salty to Freeze |publisher=Astrobio.net |access-date=December 19, 2010}}</ref>。2015年,已证实高氯酸盐在陡坡[[火星冲沟|冲沟]]上形成[[火星暖坡上的季节性流|复发性坡线]]方面发挥了作用<ref name="Ojhaetal2015"/><ref>{{cite journal |last1=Hecht |first1=M. H. |last2=Kounaves |first2=S. P. |last3=Quinn |first3=R. C. |last4=West |first4=S. J. |last5=Young |first5=S. M. M. |last6=Ming |first6=D. W. |last7=Catling |first7=D. C. |last8=Clark |first8=B. C. |last9=Boynton |first9=W. V. |last10=Hoffman |first10=J. |last11=DeFlores |first11=L. P. |last12=Gospodinova |first12=K. |last13=Kapit |first13=J. |last14=Smith |first14=P. H. |title=Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site |journal=Science |volume=325 |issue=5936 |pages=64–67 |pmid=19574385 |doi=10.1126/science.1172466 |bibcode=2009Sci...325...64H |date=2009 |s2cid=24299495 |url=https://semanticscholar.org/paper/bfe5cad54aa9afc5b786d272cd1ca872ae08408d }}</ref>。 |
|||
鳳凰號上的顯微鏡觀測到火星表面多邊形地區的土壤是由平面狀(可能是一種黏土)和球型顆粒組成。黏土是某些種類礦物和水產生反應後的產物;所以找到黏土就可以證明火星表面曾經有水的存在<ref>Smith, P. et.al. H<sub>2</sub>O at the Phoenix Landing Site. 2009. Science:325. p58-61</ref>。目前所發現水冰在火星地表多邊形的中央區域可在地表下數英吋被發現;沿著多邊形的邊緣則至少要在8英吋深以下。當水冰暴露在火星大氣層時,將會緩慢昇華<ref>{{Cite web |url=http://www.space.com/scienceastronomy/090702-phoenix-soil.html |title=The Dirt on Mars Lander Soil Findings |accessdate=2010-03-30 |archive-date=2010-01-26 |archive-url=https://web.archive.org/web/20100126005257/http://www.space.com/scienceastronomy/090702 |dead-url=no }}</ref>。 |
|||
在相机所能看到的范围内,着陆区表面是大致平坦,但形成了一块块直径2-3米(6英尺7英寸-9英尺10英寸),被20-50厘米(7.9-19.7英寸)深凹槽环绕的多边形地面。这些形状縁于土壤中的冰在温度变化较大时产生的膨胀和收缩。显微镜显示,多边形顶部的土壤由圆形和扁平颗粒组成,可能是一种粘土<ref>{{cite journal |last1=Smith |first1=P. H. |last2=Tamppari |first2=L. K. |last3=Arvidson |first3=R. E. |last4=Bass |first4=D. |last5=Blaney |first5=D. |last6=Boynton |first6=W. V. |last7=Carswell |first7=A. |last8=Catling |first8=D. C. |last9=Clark |first9=B. C. |last10=Duck |first10=T. |last11=DeJong |first11=E. |last12=Fisher |first12=D. |last13=Goetz |first13=W. |last14=Gunnlaugsson |first14=H. P. |last15=Hecht |first15=M. H. |last16=Hipkin |first16=V. |last17=Hoffman |first17=J. |last18=Hviid |first18=S. F. |last19=Keller |first19=H. U. |last20=Kounaves |first20=S. P. |last21=Lange |first21=C. F. |last22=Lemmon |first22=M. T. |last23=Madsen |first23=M. B. |last24=Markiewicz |first24=W. J. |last25=Marshall |first25=J. |last26=McKay |first26=C. P. |last27=Mellon |first27=M. T. |last28=Ming |first28=D. W. |last29=Morris |first29=R. V. |last30=Pike |first30=W. T. |last31=Renno |first31=N. |last32=Staufer |first32=U. |last33=Stoker |first33=C. |last34=Taylor |first34=P. |last35=Whiteway |first35=J. A. |last36=Zent |first36=A. P. |title=H<sub>2</sub>O at the Phoenix Landing Site |journal=Science |volume=325 |issue=5936 |pages=58–61 |date=2009 |pmid=19574383 |doi=10.1126/science.1172339 |bibcode=2009Sci...325...58S |s2cid=206519214 |display-authors=29 }}</ref>,冰存在于多边形中间地表下几英寸处,而多边形边缘区冰至少有8英寸(200毫米)深<ref name="Dirt find" />。 |
|||
火星上的雪被發現是從火星大氣層中的卷雲落下。這些卷雲是在大約-65°C的溫度下形成,因此這些卷雲由水冰形成的可能性遠大於乾冰,因為形成乾冰的溫度要-120°C。這次任務的結果顯示,水冰(雪)被認為在任務之後不久會沉積在降落地點<ref>Witeway, J. et. al. 2009. Mars Water-Ice Clouds and Precipation. Science: 325. p68-70</ref>。鳳凰號任務期間測量到的最高溫是-19.6°C,最低溫則是-97.7°C;因此,在該區域的氣溫長期保持在遠低於水的冰點(0°C)以下;而且鳳凰號任務期間是火星北半球的夏季<ref>{{cite web |url=http://www.asc-csa.gc.ca/eng/media/news_releases/2009/0702.asp |title=存档副本 |accessdate=2010-12-19 |deadurl=yes |archiveurl=https://web.archive.org/web/20110705011110/http://www.asc-csa.gc.ca/eng/media/news_releases/2009/0702.asp |archivedate=2011-07-05 }}</ref>。 |
|||
观察到雪从卷云中飘落,云层形成于大气层中温度为摄氏零下65度(华氏-85度;208K)的高度,因此,云必定是由水冰,而非二氧化碳冰(二氧化碳或干冰)所组成,因为形成二氧化碳冰的温度远低于摄氏零下120度(华氏-184度;摄153 K)。根据任务观察结果,现在怀疑今年晚些时候在该地点会积聚水冰(雪)<ref name="Witeway2009">{{cite journal |last1=Whiteway |first1=J. A. |last2=Komguem |first2=L. |last3=Dickinson |first3=C. |last4=Cook |first4=C. |last5=Illnicki |first5=M. |last6=Seabrook |first6=J. |last7=Popovici |first7=V. |last8=Duck |first8=T. J. |last9=Davy |first9=R. |last10=Taylor |first10=P. A. |last11=Pathak |first11=J. |last12=Fisher |first12=D. |last13=Carswell |first13=A. I. |last14=Daly |first14=M. |last15=Hipkin |first15=V. |last16=Zent |first16=A. P. |last17=Hecht |first17=M. H. |last18=Wood |first18=S. E. |last19=Tamppari |first19=L. K. |last20=Renno |first20=N. |last21=Moores |first21=J. E. |last22=Lemmon |first22=M. T. |last23=Daerden |first23=F. |last24=Smith |first24=P. H. |title=Mars Water-Ice Clouds and Precipitation |journal=Science |volume=325 |issue=5936 |pages=68–70 |pmid=19574386 |doi=10.1126/science.1172344 |bibcode=2009Sci...325...68W |date=2009 |s2cid=206519222 }}</ref>。在任务执行期间的火星夏季,测得的最高气温为摄氏零下19.6度(华氏−3.3度;253.6K),最冷气温是摄氏零下97.7度(华氏−143.9度;175.5K),因此,这一地区气温度远低于水的冰点(摄氏0度,华氏32度或273 K)<ref>{{cite web |url=http://www.asc-csa.gc.ca/eng/media/news_releases/2009/0702.asp |title=CSA – News Release |publisher=Asc-csa.gc.ca |date=July 2, 2009 |url-status=dead |archive-url=https://web.archive.org/web/20110705011110/http://www.asc-csa.gc.ca/eng/media/news_releases/2009/0702.asp |archive-date=July 5, 2011 }}</ref>。 |
|||
鳳凰號任務的資料判讀結果在[[科學 (期刊)|科學]]上發表。在資料中顯示,鳳凰號的登錄地點在不久之前的過去曾經是溫暖潮濕的。火星土壤中發現碳酸鈣讓科學家相信鳳凰號登陸地點曾經是潮濕的區域。在季節或時間較長的日夜週期中,液態水在火星表面可能是一層薄膜。火星自轉軸傾斜角的變化程度遠比地球大;因此在火星上多次的潮濕氣候是可能的<ref>Boynton, et. al. 2009. Evidence for Calcium Carbonate at the Mars Phoenix Landing Site. Science. 325: 61-64</ref>。鳳凰號的探測資料也確定[[高氯酸鹽]]的存在。高氯酸鹽在火星土壤中的比例約千分之幾左右。在地球上高氯酸鹽是某些細菌的食物<ref>{{cite news | first= | last= | coauthors= | authorlink= | title=Audio Recording of Phoenix Media Telecon for Aug. 5, 2008 | date=August 5, 2008 | publisher=NASA | url=http://www.jpl.nasa.gov/news/phoenix/podcast-phx20080805.php | work=Jet Propulsion Laboratory | pages= | accessdate=2009-07-14 | language= | archive-date=2009-07-04 | archive-url=https://web.archive.org/web/20090704160109/http://www.jpl.nasa.gov/news/phoenix/podcast-phx20080805.php | dead-url=no }}</ref>。另一份論文則宣稱,之前偵測到的雪可能造成水冰的累積。 |
|||
=== 火星探测漫游者 === |
|||
{{Main|火星探测漫游者}} |
|||
[[File:Opportunity photo of Mars outcrop rock.jpg|thumb|拍摄的石露头特写]] |
|||
[[File:Opp layered sol17-B017R1 br.jpg|thumb|left|薄岩层,相互间并非全都平行。]] |
|||
[[File:07-ml-3-soil-mosaic-B019R1 br.jpg|thumb|[[赤铁矿|赤铁矿物]][[蓝莓石]]。]] |
|||
[[File:nasa mars opportunity rock water 150 eng 02mar04.jpg|thumb|部分嵌入在岩石中的[[蓝莓石]]。]] |
|||
[[勇气号火星探测器|勇气号]]和[[机遇号火星漫游车|机遇号]][[火星探测漫游者|火星探测车]]发现了大量火星上曾经存在过水的证据。勇气号探测车降落在一处被认为是大型湖床的地方。该湖床已被熔岩流覆盖,因此,最初很难发现过去水的证据。2004年3月5日,美国宇航局宣布勇气号在一块名为“[[火星岩石列表#2004年—“勇气号”火星车(MER-A)|汉弗莱]]”的岩石中发现了火星上有水的历史线索<ref>{{cite web |url=http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20040305a.html |title=Mars Exploration Rover Mission: Press Releases |publisher=Marsrovers.jpl.nasa.gov |date=March 5, 2004 }}</ref>。 |
|||
=== [[火星探測漫遊者]] === |
|||
勇气号和机遇号火星探測車找到許多火星古代有水的證據。雖然這兩台探測車原本的設計只預期使用三個月,但這兩台車至今超過六年仍在使用,繼續記錄新發現。 |
|||
当勇气号在2007年12月拖着一只被卡住的轮子倒车时,该车轮刮掉了表层土壤,露出了一块富含[[二氧化硅]]的白色地面。科学家们认为该二氧化硅地面一定是通过两种方式之一产生的<ref>{{cite web |url=http://www.nasa.gov/mission_pages/mer/mer-20070521.html |title=NASA – Mars Rover Spirit Unearths Surprise Evidence of Wetter Past |publisher=NASA |date=May 21, 2007}}</ref>,其一:水在某处溶解的二氧化硅,然后带至另一处(即[[间歇泉]])产生的[[温泉]]沉积物;其二:从岩缝中喷出的酸性蒸汽剥去了岩石的矿物成分,留下了二氧化硅<ref name="20071210a">{{cite web |last=Bertster |first=Guy |title=Mars Rover Investigates Signs of Steamy Martian Past |work=Press Release |publisher=Jet Propulsion Laboratory, Pasadena, California |date=December 10, 2007 |url=http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20071210a.html}}</ref>。勇气号探测车还在[[古瑟夫撞击坑]]的[[哥伦比亚丘陵]]发现了水的证据,在[[火星岩石列表#2004年—“勇气号”火星车(MER-A)|克洛维斯]]岩石群中,[[穆斯堡尔谱学|穆斯堡尔光谱仪]](MB)检测到了只能在有水情况下才会形成<ref>{{cite journal |last=Schroder |first=C. |display-authors=etal |publisher=European Geosciences Union, General Assembly |title=Journal of Geophysical Research |type=abstr. |volume=7 |page=10254 |date=2005}}</ref><ref>{{cite journal |last=Morris |first=S. |display-authors=etal |title=Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journal through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills |journal=J. Geophys. Res. |volume=111|issue=E2 |doi=10.1029/2005je002584 |bibcode=2006JGRE..111.2S13M|year=2006 |pages=n/a |hdl=1893/17159 |hdl-access=free }}</ref><ref>{{cite journal |last1=Ming |first1=D. |last2=Mittlefehldt |first2=D. W.|date=2006 |title=Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars |journal=J. Geophys. Res.|volume=111 |issue=E2 |pages=E02S12 |bibcode=2006JGRE..111.2S12M |last3=Morris |first3=R. V. |last4=Golden |first4=D. C. |last5=Gellert |first5=R. |last6=Yen |first6=A. |last7=Clark |first7=B. C. |last8=Squyres |first8=S. W. |last9=Farrand |first9=W. H. |last10=Ruff |first10=S. W. |last11=Arvidson |first11=R. E. |last12=Klingelhöfer |first12=G. |last13=McSween |first13=H. Y. |last14=Rodionov |first14=D. S. |last15=Schröder |first15=C. |last16=De Souza |first16=P. A. |last17=Wang |first17=A. |doi=10.1029/2005JE002560|hdl=1893/17114 |hdl-access=free }}</ref>的[[针铁矿]]<ref>{{cite journal |last=Klingelhofer |first=G. |display-authors=etal |date=2005 |journal=Lunar Planet. Sci. |title=volume XXXVI |type=abstr. |page=2349}}</ref>。以[[三价铁离子]](Fe<sup>3+</sup>)形态存在的[[铁氧化物]]<ref>{{cite book |editor-last=Bell |editor-first=J |title=The Martian Surface |date=2008 |publisher=Cambridge University Press. |isbn=978-0-521-86698-9}}</ref>、富含[[碳酸根|碳酸盐]]的岩石,这意味着该行星上的一些地区曾经有过水<ref>{{cite journal|url=https://www.sciencedaily.com/releases/2010/06/100603140959.htm |title=Outcrop of long-sought rare rock on Mars found |doi=10.1126/science.1189667 |pmid=20522738 |publisher=Sciencedaily.com |date=June 4, 2010 |journal=Science |volume=329 |issue=5990 |pages=421–424 |first1=R. V. |last1=Morris|last2=Ruff |first2=S. W. |last3=Gellert |first3=R. |last4=Ming |first4=D. W. |last5=Arvidson |first5=R. E. |last6=Clark |first6=B. C. |last7=Golden |first7=D. C. |last8=Siebach |first8=K. |last9=Klingelhofer |first9=G. |last10=Schroder |first10=C. |last11=Fleischer |first11=I. |last12=Yen |first12=A. S. |last13=Squyres |first13=S. W.|bibcode=2010Sci...329..421M|s2cid=7461676 }}</ref><ref>{{cite journal |first1=Richard V. |last1=Morris |first2=Steven W. |last2=Ruff |first3=Ralf |last3=Gellert |first4=Douglas W. |last4=Ming |first5=Raymond E. |last5=Arvidson |first6=Benton C. |last6=Clark |first7=D. C. |last7=Golden |first8=Kirsten |last8=Siebach |first9=Göstar |last9=Klingelhöfer |first10=Christian |last10=Schröder |first11=Iris |last11=Fleischer |first12=Albert S. |last12=Yen |first13=Steven W. |last13=Squyres |display-authors=8 |title=Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover |journal=Science |date=June 3, 2010 |doi=10.1126/science.1189667 |pmid=20522738 |volume=329 |issue=5990 |pages=421–424|bibcode=2010Sci...329..421M|s2cid=7461676 }}</ref>。 |
|||
[[精神號]]原本預期是降落在一個古代的大湖湖床。但實際探測發現湖床已被岩漿流覆蓋,讓古代的水流證據難以被觀測到。當任務繼續執行,探測車找到許多過去水流的線索。 |
|||
[[机遇号火星漫游车|机遇号探测车]]被引导至一处在轨道上检测到有大量[[赤铁矿]]的地点,赤铁矿通常由水形成。探测车确实发现了层状岩石和大理石或蓝莓状[[赤铁矿]][[结核 (地质学)结核]]。在路过其他地方时,机遇号勘查了[[坚忍撞击坑]]中伯恩斯崖中的风成沙丘[[地层学|层]],得出的结论是,这些露头的保存和胶结受到浅层地下水流的控制<ref name="BurnsCliff" />。在它连续运行的数年中,机遇号传回的证据表明,火星上该区域过去曾被液态水浸透过<ref name="marsrovers">{{cite web |url=http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20040302a.html |title=Opportunity Rover Finds Strong Evidence Meridiani Planum Was Wet |access-date=July 8, 2006}}</ref><ref name="SFN-20130125">{{cite web |last=Harwood |first=William |title=Opportunity rover moves into 10th year of Mars operations |url=http://www.spaceflightnow.com/news/n1301/25opportunity/ |date=January 25, 2013 |publisher=Space Flight Now}}</ref>。 |
|||
2004年3月5日,美国宇航局宣布精神號在探測的汉弗瑞(Humphrey)岩石找到水的證據。[[華盛頓大學 (聖路易斯)|聖路易斯華盛頓大學]]地球與行星科學系主任,[[雷蒙·阿維森]](Raymond Arvidson)在美国宇航局記者會宣布:「如果我們在地球上找到這塊岩石,我們會認為這塊火山岩被水流短距離移動過」(If we found this rock on Earth, we would say it is a volcanic rock that had a little fluid moving through it.)。另一台探測車機會號找到的岩石則是由岩漿組成,這塊岩石有一些明亮的礦物,可能是結晶的礦物在裂縫中。假如這是正確的,這些礦物最可能是形成後被帶入岩石或在較大岩石與水作用後被水溶解<ref>{{Cite web |url=http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20040305a.html |title=Mars Exploration Rover Mission: Press Releases<!-- Bot generated title --> |accessdate=2010-03-30 |archive-date=2010-06-11 |archive-url=https://web.archive.org/web/20100611233900/http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20040305a.html |dead-url=no }}</ref>。 |
|||
火星漫游者发现了古代潮湿环境酸性很强的证据,事实上,机遇号发现了[[硫酸]]的证据,这是一种对生命有害的化学物质<ref name="Amos June 2013" /><ref name="Clay clues" /><ref>{{cite journal |last1=Benison |first1=KC |last2=Laclair |first2=DA |title=Modern and ancient extremely acid saline deposits: terrestrial analogs for martian environments? |journal=Astrobiology |volume=3 |issue=3 |pages=609–618 |date=2003 |pmid=14678669 |doi=10.1089/153110703322610690 |bibcode=2003AsBio...3..609B|s2cid=36757620 |url=https://semanticscholar.org/paper/32c1bf753ef936883a5c1a1e908a546d3b717b29 }}</ref><ref>{{cite journal |last1=Benison |first1=K |last2=Bowen |first2=B |title=Acid saline lake systems give clues about past environments and the search for life on Mars |journal=Icarus |volume=183 |issue=1 |pages=225–229 |bibcode=2006Icar..183..225B |date=2006 |doi=10.1016/j.icarus.2006.02.018}}</ref>,但2013年5月17日,美国宇航局宣布机遇号发现了粘土沉积物,这些沉积物通常形成于[[pH值|酸碱度]]接近中性的潮湿环境中。这一发现为潮湿的古代环境可能有利于生命提供了额外的证据[<ref name="Amos June 2013" /><ref name="Clay clues" />。 |
|||
2007年12月當精神號拖著損壞的後輪行駛時,該損壞的車輪在火星表土刮出痕跡,顯示一小塊被視為火星曾有適合古代微生物環境的證據。這個特徵類似地球上從溫泉流出的水或水蒸氣與火山岩反應的產物,在地球上這類地區通常是大量微生物聚集的地方。探測車計畫首席科學家[[史蒂夫·斯奎爾斯]](Steve Squyres)在[[美國地球物理聯盟]](AGU)的一場會議說:「我們對於這個發現相當興奮」。這個區域有大量的[[二氧化矽]]-玻璃的主成分。研究人員總結這些明亮的礦物的形成有兩個可能原因:第一個是溫泉沉積物造成,當水在一處溶解二氧化矽後帶到另一處沉積(如[[間歇泉]])。第二個是酸性水經由岩石縫隙上升,剝去岩石的組成礦物,留下二氧化矽。斯奎爾斯對BBC解釋說:「最重要的是,無論它是否是一個假設,這暗示對於古代火星的適居性是大同小異」。溫泉提供可以使微生物孳生的環境,而且二氧化矽沉積物可以封存和保留這些微生物。斯奎爾斯又說:「你可以去地球上的溫泉和[[火山噴氣孔]];這些地方都充滿微生物」<ref Name="Amos">{{cite web | last = Amos | first = Jonathan | title = Mars robot unearths microbe clue | work = NASA says its robot rover Spirit has made one of its most significant discoveries on the surface of Mars. | publisher = BBC News | date = 2007-12-11 | url = http://news.bbc.co.uk/2/hi/science/nature/7137793.stm | format = web | doi = | accessdate = 2007-12-12 | archive-date = 2011-05-27 | archive-url = https://web.archive.org/web/20110527054606/http://news.bbc.co.uk/2/hi/science/nature/7137793.stm | dead-url = no }}</ref><ref Name="20071210a">{{cite web | last = Bertster | first = Guy | title = Mars Rover Investigates Signs of Steamy Martian Past | work = Press Release | publisher = Jet Propulsion Laboratory, Pasadena, California | date = 2007-12-10 | url = http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20071210a.html | format = Web | doi = | accessdate = 2007-12-12 | archive-date = 2007-12-13 | archive-url = https://web.archive.org/web/20071213175649/http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20071210a.html | dead-url = no }}</ref>。 |
|||
===火星勘测轨道飞行器=== |
|||
[[File:Springs in Vernal Crater.jpg|left|thumb|高分辨率成像科学设备显示的[[奥克夏沼区|欧克西亚沼区]][[维尔诺撞击坑]]中的温泉,这些温泉可能是寻找过去生命证据的最佳之处,因为温泉可以长期保存生命形式的证据。]] |
|||
[[火星勘测轨道飞行器]]的[[高分辨率成像科学设备]]拍摄了许多图像,有力地表明了火星有着丰富的与水有关的历史过程。一项重大发现是找到了古[[温泉]]证据,如果那里曾拥有微生物生命,那么就可能会保留下[[生命印迹]]<ref name="Osterloo2008">{{cite journal |doi=10.1126/science.1150690 |last1=Osterloo |first1=MM |last2=Hamilton |date=2008 |first2=VE |last3=Bandfield |first3=JL |last4=Glotch |first4=TD |last5=Baldridge |first5=AM |last6=Christensen |first6=PR |last7=Tornabene |first7=LL |last8=Anderson |first8=FS |title=Chloride-Bearing Materials in the Southern Highlands of Mars |journal=Science |volume=319 |issue=5870 |pages=1651–1654 |pmid=18356522 |bibcode=2008Sci...319.1651O|citeseerx=10.1.1.474.3802 |s2cid=27235249 }}</ref>。2010年1月发表的研究报告描述了[[水手号谷|水手谷]]周围地区持续降水的有力证据<ref name=Weitz>{{cite journal |doi=10.1016/j.icarus.2009.04.017 |last1=Weitz |first1=C. |last2=Milliken |date=2010 |first2=R.E. |last3=Grant |first3=J.A. |last4=McEwen |first4=A.S. |last5=Williams |first5=R.M.E. |last6=Bishop |first6=J.L. |author-link6=Janice Bishop|last7=Thomson |first7=B.J. |title=Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris |journal=Icarus |volume=205 |issue=1 |pages=73–102 |bibcode=2010Icar..205...73W}}</ref><ref name="Icarus Vol 210">{{cite journal |title=Atmospheric mass loss by stellar wind from planets around main sequence M stars|volume=210 |issue=2 |pages=539–1000 |date=December 2010 |doi=10.1016/j.icarus.2010.07.013 |bibcode=2010Icar..210..539Z |journal=Icarus|last1=Zendejas|first1=J.|last2=Segura|first2=A.|last3=Raga|first3=A.C.|arxiv=1006.0021|s2cid=119243879 }}</ref>,那里的矿物类型与水有关。此外,高密度的小型支流也表明曾经的降水量很大。 |
|||
火星上的岩石被发现经常在许多不同的地方以分层的形式出现<ref>{{cite book |editor-last=Grotzinger |editor-first=J. |editor2-first=R. |editor2-last=Milliken |date=2012 |title=Sedimentary Geology of Mars |publisher=SEPM}}</ref>,这种地层的可通过多种方式形成,包括[[火山]]、风或水等 <ref>{{cite web |url=http://hirise.lpl.arizona.edu?PSP_008437_1750 |title=HiRISE – High Resolution Imaging Science Experiment |publisher=HiriUniversity of Arizona |access-date=December 19, 2010}}</ref>,而火星上浅色调的岩石通常与硫酸盐和粘土等[[矿物水合作用|水合矿物]]有关<ref>{{cite web |url=http://themis.asu.edu/features/nilosyrtis |title=Target Zone: Nilosyrtis? | Mars Odyssey Mission THEMIS |publisher=Themis.asu.edu |access-date=December 19, 2010}}</ref>。 |
|||
[[機會號]]則是被控制行使到一個被軌道器探測出有大量[[赤鐵礦]]的地區;赤鐵礦的形成經常是因為水。當機會號降落在這些沉積岩上,發現到許多可容易被觀測到的赤鐵礦小球。在這幾年觀測中,機會號傳回大量火星古代可能有廣大面積被液態水淹沒的證據。 |
|||
[[File:Asimov Layers Close-up.JPG|thumb|[[挪亚区]][[阿西莫夫撞击坑]]的西侧坡地层。]] |
|||
该轨道器还帮助科学家们确定了火星大部分表面所覆盖的厚厚平坦层为冰和尘混合物<ref name="Head, J. 2003">{{cite journal |last1=Head |first1=James W. |last2=Mustard |first2=John F. |last3=Kreslavsky |first3=Mikhail A. |last4=Milliken |first4=Ralph E. |last5=Marchant |first5=David R. |title=Recent ice ages on Mars |journal=Nature |volume=426 |issue=6968 |pages=797–802 |date=2003 |pmid=14685228 |doi=10.1038/nature02114 |bibcode=2003Natur.426..797H|s2cid=2355534 }}</ref><ref>{{Cite journal |last1=Mellon |first1=M. T. |first2=B. M. |last2=Jakosky |first3=S. E. |last3=Postawko |date=1997 |title=The persistence of equatorial ground ice on Mars |publisher=onlinelibrary.wiley.com |journal=J. Geophys. Res. |volume=102 |issue=E8 |pages=19357–19369 |doi=10.1029/97JE01346 |bibcode=1997JGR...10219357M|doi-access=free }}</ref><ref>{{cite web |first=John D. |last=Arfstrom |url=http://www.lpi.usra.edu/meetings/climatology2012/pdf/8001.pdf |title=A Conceptual Model of Equatorial Ice Sheets on Mars. J |publisher=Lunar and Planetary Institute |work=Comparative Climatology of Terrestrial Planets |date=2012}}</ref>。 |
|||
在2006年3月一個新聞記者會上,科學家們討論關於火星岩床和液態水的證據。他們提出以下原因來解釋岩石中一些經過磨損後可見的小而長的空洞(見以下最後兩個圖)<ref>{{cite web|url=http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20040302a.html|title=Opportunity Rover Finds Strong Evidence Meridiani Planum Was Wet|accessdate=2006-07-08|archive-date=2012-10-18|archive-url=https://www.webcitation.org/6BVeZ5D68?url=http://marsrovers.jpl.nasa.gov/newsroom/pressreleases/20040302a.html|dead-url=no}}</ref>:這些空洞可能是所謂的「[[晶洞]]」。晶洞的形成是因為岩石基質內的結晶因為侵蝕作用而被移除留下。影像內的部分盤狀特徵內有某些種類的礦物,尤其是硫酸鹽類。此外,任務成員還公開第一張由[[穆斯堡爾譜學|穆斯堡爾譜儀]]觀測岩床資料的光譜。從[[酋长火星岩|酋長岩]]的鐵光譜中發現[[黃鉀鐵礬]]。這種礦物含有[[氫氧化物]]離子,這指出當礦物形成時水是存在的。微型熱輻射光譜儀(Mini-TES)觀測酋长岩的資料發現大量含有水的硫酸鹽類。 |
|||
位于浅地表下的冰层被认为是重大气候频繁变化结果,火星轨道和倾角的变化导致从极地到相当于德克萨斯所在纬度区的水冰分布发生重大变化。在某些气候时期,水蒸气离开极地冰层进入大气,在低纬度区形成大量与尘埃混合的霜或雪沉积物。火星大气层中含有大量的尘埃微粒<ref name="Head 2008 PNAS" />,当水蒸气在尘埃颗粒上凝结后,由于额外增加的重量,这些颗粒会落到地面构成一层厚厚的含冰覆盖层。当覆盖层顶部的冰升华返回大气层后,则留下了一层尘埃,从而隔绝了下方剩留的水冰<ref name="IceAge­">{{cite news |publisher=MLA NASA/Jet Propulsion Laboratory |date=December 18, 2003 |title=Mars may be emerging from an ice age |work=ScienceDaily |url=https://www.sciencedaily.com/releases/2003/12/031218075443.htm}}</ref>。 |
|||
<center><gallery> |
|||
File:Opportunity photo of Mars outcrop rock.jpg|岩石露頭的特寫影像。 |
|||
File:Opp layered sol17-B017R1 br.jpg|並非互相平行的薄岩層。 |
|||
File:Xpe First Opp RAT-B032R1 br.jpg|岩石磨損工具鑽出的洞。 |
|||
File:Voids on bedrock on Mars.jpg|岩石內的空洞或晶洞。 |
|||
</gallery></center> |
|||
2008年,利用火星勘测轨道飞行器上浅层雷达进行的研究提供了强有力的证据,证明[[希腊平原]]和中北纬地区的[[舌状岩屑坡]](LDA)是覆盖着一层薄岩屑的[[冰川]]。雷达探测到了来自舌状岩屑坡顶层和底部的强烈反射信号,这意味着该构造大部分是由纯净水冰组成<ref name="Holt, J. 2008" />。舌状岩屑坡中水冰的发现,表明在更低纬度区也能找到水<ref name="Kieffer1992">{{cite book |first=Hugh H. |last=Kieffer |title=Mars |url=https://books.google.com/books?id=NoDvAAAAMAAJ |access-date=March 7, 2011 |date=1992 |publisher=University of Arizona Press |isbn=978-0-8165-1257-7}}</ref>。 |
|||
=== [[火星偵察軌道器]] === |
|||
[[File:Springs in Vernal Crater.jpg|thumb|[[維爾諾撞擊坑]]的泉水,高分辨率成像科学设备拍攝,位於[[歐克西亞沼區]]。這些泉水可能是尋找火星古代生命存在的證據,因為溫泉可以長時間保留生命的證據。]] |
|||
2009年9月发表的研究表明,火星上一些新陨石坑显示出裸露的纯水冰<ref>{{cite journal |last1=Byrne |pmid=19779195 |date=2009 |first1=Shane |last2=Dundas |first2=Colin M. |last3=Kennedy |first3=Megan R. |last4=Mellon |first4=Michael T. |last5=McEwen |first5=Alfred S. |last6=Cull |first6=Selby C. |last7=Daubar |first7=Ingrid J. |last8=Shean |first8=David E. |last9=Seelos |first9=Kimberly D. |last10=Murchie |first10=Scott L. |last11=Cantor |first11=Bruce A. |last12=Arvidson |first12=Raymond E. |last13=Edgett |first13=Kenneth S. |last14=Reufer |first14=Andreas |last15=Thomas |first15=Nicolas |last16=Harrison |first16=Tanya N. |last17=Posiolova |first17=Liliya V. |last18=Seelos |first18=Frank P. |title=Distribution of mid-latitude ground ice on Mars from new impact craters |journal=Science |volume=325 |issue=5948 |pages=1674–1676 |doi=10.1126/science.1175307 |bibcode=2009Sci...325.1674B|s2cid=10657508 |url=https://semanticscholar.org/paper/5bda01acbac26f56e37dedef67134f91ca53b5f8 }}</ref>。一段时间后,这些几英尺厚的冰全部蒸发消失在大气中。火星勘测轨道飞行器上的[[火星专用小型侦察影像频谱仪|小型成像光谱仪]](CRISM)证实了冰的存在<ref>{{cite web |url=http://www.space.com/scienceastronomy/090924-mars-crater-ice.html |title=Water Ice Exposed in Mars Craters |publisher=SPACE.com |access-date=December 19, 2010}}</ref>。 |
|||
火星偵察軌道器的[[高解析度成像科學設備]](HiRISE)拍攝許多照片,這些照片提供火星表面曾有大量液態水流動的證據。一個主要發現就是找到溫泉的證據。溫泉可能維持火星上的生命,而且可能保留火星古代生命的化石。 |
|||
2019年发布的其他合作报告评估了北极的水冰量,一份报告使用了火星勘测轨道飞行器上浅层雷达(SHARAD)的探测数据。该雷达能以15米(49英尺)的跨度扫描地表以下约2公里(1.2英里)的区域,对雷达运行的分析表明,[[北极高原]]下方存在水冰和沙尘层,其中60%至88%为水冰。这支持了由全球冷暖循环构成的火星全球长期天气理论,即在冷冻期,水在两极聚集形成冰层,然后随着全球变暖的发生,未解冻的水冰被火星上频繁沙尘暴带来的尘埃和沙土覆盖。这项研究测定的总冰量表明,火星表面约有2.2×10<sup>5</sup>公里<sup>3</sup>(5.3×10<sup>4</sup>英里<sup>3</sup>),如果融化的活,足以形成一层完全覆盖火星表面的1.5米(4.9英尺)水层<ref>{{cite journal | title = Buried ice and sand caps at the north pole of Mars: revealing a record of climate change in the cavi unit with SHARAD | authors = S. Nerozzi, J.W. Holt | date = May 22, 2019 | doi = 10.1029/2019GL082114 | journal = [[Geophysical Research Letters]] | volume = 46 | issue = 13 | pages = 7278–7286 | bibcode = 2019GeoRL..46.7278N | hdl = 10150/634098 | hdl-access = free }}</ref>。这项研究得到了另一项研究的证实,该研究利用记录到的重力数据估算了北极高原的密度,表明就平均而言,所含水冰比率高达55%<ref>{{cite journal | title = Compositional Constraints on the North Polar Cap of Mars from Gravity and Topography | authors = Lujendra Ojha, Stefano Nerozzi, Kevin Lewis | date = May 22, 2019 | doi = 10.1029/2019GL082294 | journal = [[Geophysical Research Letters]] | volume = 46 | issue = 15 | pages = 8671–8679 | bibcode = 2019GeoRL..46.8671O }}</ref>。 |
|||
在2010年1月一篇《[[伊卡洛斯 (期刊)|伊卡洛斯]]》的論文提到[[水手號峽谷]]周邊地區有長期維持降水的強力證據<ref>Weitz, C. et al. 2010. Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris Icarus: 205. 73-102.</ref><ref>http://www.sciencedirect.com/science/journal/00191035 {{Wayback|url=http://www.sciencedirect.com/science/journal/00191035 |date=20110317063540 }}.</ref>。這區域的礦物形成都和水有關。同樣的,大量的小支流也指出有大量的降水,因為在地球上相同氣候條件的區域也出現類似地理特徵。 |
|||
<gallery> |
|||
File:Ius Channels.jpg|高分辨率成像科学设备拍攝的[[伊烏斯峽谷]]邊緣的河道。河道的特徵和該區高密度的分布是降水的水源。位於科普剌塔斯區。 |
|||
File:Candor Channels.jpg|高分辨率成像科学设备拍攝的坎多尔高原(Candor plateau)河道,位於科普剌塔斯區。點選影像可看到許多小的分支河道,這些河道是支持降水的強力證據。 |
|||
</gallery> |
|||
火星有些地方出現[[倒轉地形]]。在這些地方,河床的位置是比周圍高的,而非形成峽谷。這些倒轉的河道可能是因為大岩石的沉積或是鬆散物質凝結。在以上兩種情況下周圍區域的侵蝕將會形成遠離舊河道的山脊,可以增強對侵蝕的抵抗。以下由高分辨率成像科学设备拍攝的影像顯示舊河道翻轉成彎曲的山脊<ref>{{Cite web |url=http://hiroc.lpl.arizona.edu/images/PSP/diafotizo.php?ID=PSP_002279_1735 |title=存档副本 |accessdate=2013-03-17 |archiveurl=https://web.archive.org/web/20160305025124/http://hiroc.lpl.arizona.edu/images/PSP/diafotizo.php?ID=PSP_002279_1735 |archivedate=2016-03-05 |deadurl=yes }}</ref>。 |
|||
在一篇2010年出版的論文,有許多科學家贊同在[[宮本撞擊坑]]尋找生命,因為倒轉的河道和礦物是以前水曾經存在的證據<ref>Newsom, H. et al. 2010. Inverted channel deposits on the floor of Miyamoto crater, Mars. Icarus: 205. 64-72. </ref><ref>www.sciencedirect.com/science/journal/00191035</ref>。 |
|||
<gallery> |
|||
File:Antoniadi Crater Stream Channels.JPG|[[安東尼亞第撞擊坑 (火星)|安東尼亞第撞擊坑]]內的倒轉河道。位於大瑟提斯區。 |
|||
File:Juventae Chasma Inverted Channels.JPG|[[朱芬塔峽谷]]附近的倒轉河道,這些河道曾經是一般的河道。比例尺500公尺。位於科普剌塔斯區。 |
|||
File:Miyamoto Crater.JPG|[[宮本撞擊坑]]內的倒轉河道,位於珍珠灣區。比例尺500公尺。 |
|||
File:Inverted Channel 012435.jpg|有許多支流的倒轉河道,位於大瑟提斯區。 |
|||
</gallery> |
|||
研究人員利用來自[[火星全球探勘者號]]、[[2001火星奧德賽號]]和[[火星偵察軌道器]]資料找到分布很廣的氯化物鹽類礦物。氯化物通常是溶液溶解礦物最後的產物。以下一張影像顯示在法厄同區一些沉積物的狀態。這些證據表示這些沉積物是富含礦物的水蒸發後留下的。湖泊可能在火星表面大範圍存在。[[碳酸鹽]]、[[硫酸鹽]]和[[二氧化矽]]會在蒸發前先沉澱。硫酸鹽和二氧化矽已被火星探測車發現。氯化物鹽類存在的地區可能曾經有許多種生命形式。因此,這樣的區域可能保存遠古火星生命的遺跡<ref>Osterloo, M. et.al. 2008. Chloride-Bearing Materials in the Southern Highlands of Mars. Science. 319:1651-1654</ref>。 |
|||
[[File:Chloride deposits on Mars.JPG|thumb|氯酸鹽類的沉積物是水存在的證據,位於法厄同區,高分辨率成像科学设备拍攝。]] |
|||
火星上許多地方的岩石多有明顯地層構造,[[哥倫布撞擊坑]]是其中一個有地層構造的撞擊坑。火山、風或水等許多地質作用會讓岩石出現分層構造<ref>{{Cite web |url=http://hirise.lpl.arizona.edu/?PSP_008437_1750 |title=存档副本 |accessdate=2020-09-13 |archive-date=2017-08-08 |archive-url=https://web.archive.org/web/20170808073006/https://hirise.lpl.arizona.edu/?PSP_008437_1750 |dead-url=no }}</ref>。火星許多地方的岩石都有地層構造。科學家對於在火星上找到因為大量水流而形成的地層構造相當興奮。 |
|||
有時候岩石各層會有不同顏色。火星上的淺色調岩石形成原因跟水合礦物,如硫酸鹽有關。[[機會號]]以數個儀器仔細觀察這樣的岩層。有些岩層可能是由細顆粒土壤形成,因為這些岩石似乎會分裂成細顆粒塵埃;相對的,分裂成大塊岩石的地層則可能明顯較堅硬,而這些岩層可能是由[[玄武岩]]構成。玄武岩在火星各地都可被發現。軌道探測器上的儀器在一些岩層發現[[黏土]]([[硅酸盐矿物#页硅酸盐矿物|頁矽酸鹽]])<ref>http://www.jhu.edu/~gazette/21jul08/21wetmars.html</ref><ref>{{Cite web |url=http://www.itv.com/news/articles/Was-there-life-on-mars-930980581.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2011-06-06 |archive-url=https://web.archive.org/web/20110606005447/http://www.itv.com/news/articles/Was-there-life-on-mars-930980581.html |dead-url=no }}</ref>。科學家對於發現水合礦物和黏土相當興奮,因為這些都是和水有關的礦物<ref>{{Cite web |url=http://themis.asu.edu/features/nilosyrtis |title=存档副本 |accessdate=2010-03-30 |archive-date=2009-09-30 |archive-url=https://web.archive.org/web/20090930083502/http://themis.asu.edu/features/nilosyrtis |dead-url=no }}</ref>。黏土和其他水合礦物存在的地方可能是適合尋找生命存在證據的地方<ref>htp://hirise.lpl.arizona.edu/PSP_004046_2080</ref>。 |
|||
以下由高分辨率成像科学设备拍攝的影像是許多火星表面地層的例子。 |
|||
<gallery> |
|||
File:Becquerel Crater layers.JPG|[[貝克勒撞擊坑 (火星)|貝克勒撞擊坑]]的地層;點選放大可看到斷層。位於[[歐克西亞沼區]]。 |
|||
File:Eos Chaos.jpg|[[厄俄斯混沌]]地形的淺色調地層。位於科普剌塔斯区區。 |
|||
File:Columbus Crater Layers.JPG|[[哥倫布撞擊坑]]的地層。這幅假色影像幅寬約800英呎;地層內有水合礦物。位於门农區。 |
|||
File:Asimov Crater Layers.jpg|[[阿西莫夫撞击坑|艾西莫夫撞擊坑]]西側斜坡的地層。位於挪亚區。 |
|||
File:Asimov Layers Close-up.JPG|[[阿西莫夫撞击坑|艾西莫夫撞擊坑]]西側斜坡的地層放大照。影子顯示突出的部分。部分地層對於侵蝕有較強抵抗力,所以較突出。位於挪亚區。 |
|||
<!-- 檔案不存在 File:Ophir Chasma Wall.JPG|[[俄斐峡谷]]岩壁。位於科普剌塔斯區。 可從英文維基百科取得 --> ,可從英文維基百科取得 --> |
|||
File:Tithonium Chasma Layers.JPG|[[提托努利林峽谷]],位於科普剌塔斯區。 |
|||
File:Juventae Chasma Layers.JPG|[[朱芬塔峽谷]]西側地層。比例尺500公尺。位於科普剌塔斯區。 |
|||
</gallery> |
|||
火星表面有很大面積的區域覆蓋一層可能是水冰和塵埃的混合物<ref>Head, J. et al. 2003. Recent ice ages on Mars. Nature:426. 797-802. </ref>。這層數公尺厚,富含水冰的沉積層使火星表面變平坦,但這些區域仍然有類似籃球表面的粗糙地表構造。因為這些區域很少撞擊坑,是相對年輕的區域。以下由高分辨率成像科学设备拍攝的影像可見這類區域的各種狀態。 |
|||
<gallery> |
|||
File:Niger Vallis hirise.JPG|有富含水冰層基層覆蓋的[[尼日谷]],是這個緯度的典型地表特徵。V 形地表特徵是因為含冰物質移動造成。位於希臘區。 |
|||
<!-- 檔案不存在 File:Ptolemaeus Crater Rim.JPG|[[托勒密撞擊坑 (火星)|托勒密撞擊坑]]的環。位於法厄同區。 ,可從英文維基百科取得 --> |
|||
File:Atlantis Chaos.JPG|[[亞特蘭提斯混沌]]地形。這兩張影像是原始影像兩個不同區域,且不同比例,位於法厄同區。 |
|||
File:Dissected Mantle.JPG|地層狀況。位於諾亞區。 |
|||
</gallery> |
|||
火星軌道和自轉傾角的變化造成水冰分布的明顯變化,這相當於從極區到相當於美國德克薩斯州的緯度。在一些時期水蒸氣會從極區離開進入大氣層;並在比較低緯度地區變成霜或雪後和泥沙混合沉積。火星大氣層有大量的細顆粒塵埃,在水蒸氣凝結在這些顆粒後因為重量而下沉到地面。當水冰從淺地層進入大氣,將會留下泥沙,這些留下的泥砂能阻隔剩餘的冰阻止冰的昇華<ref name="sciencedaily.com"/>。 |
|||
HiRISE 拍攝許多可能是水流在近年造成的山溝;許多山溝被拍攝多次影像以觀察是否有發生變化。有些山溝發生變化,部分科學家認為可能是這幾年中液態水造成的<ref> Malin, M. et al. 2006. Present-day impact cratering rate and contemporary gully activity on Mars, Science 314:1573–1577 </ref>;但也有許多人認為可能是乾的泥沙流<ref>Kolb, K. et al. 2010. Modeling the formation of bright slope deposits associated with gullies in Hale Crater, Mars: Implications for recent liquid water. Icarus: 205. 113-137.</ref>。這些是由火星全球探勘者號首先發現。 |
|||
其他理論認為這些山溝或河道的形成是因為風的侵蝕<ref name=Leovy>Leovy, C.B., 1999: Wind and climate on Mars, ''Science'', 284, 1891a</ref>、液態二氧化碳<ref name=ReadandLewis />或液態甲烷<ref name=Tang>Tang, Y., Q. Chen and Y. Huang, 2006: Early Mars may have had a methanol ocean, ''Icarus'', 181, 88-92.</ref>。 |
|||
以下影像是高分辨率成像科学设备拍攝的數百個被研究過的山溝的影像。 |
|||
<gallery> |
|||
File:Crater wall inside Mariner Crater.JPG|[[水手陨击坑]](Mariner Crater)內坑壁的大群山溝。 |
|||
File:Charitum Montes Gullies.JPG|[[查瑞騰山脈]](Charitum Montes)的山溝。位於阿爾及爾區。 |
|||
File:Jezza Crater.JPG|HiISE拍攝[[傑札撞擊坑]]北側坑壁(上方)的山溝。暗線是[[塵捲風]]軌跡。比例尺是500公尺。位於阿爾及爾區。 |
|||
File:Green Crater Gullies.jpg|[[格林撞擊坑 (火星)|格林撞擊坑]]的山溝。 |
|||
File:Close-up of Green Crater Gullies.JPG|[[格林撞擊坑 (火星)|格林撞擊坑]]的山溝特寫影像。位於阿爾及爾门农区 |
|||
File:Scalloped Terrain at Peneus Patera.JPG|[[佩紐斯山]]的[[貝状边缘穹丘|丘狀地形]]。貝狀地形在火星一些地區相當常見。 |
|||
File:Maunder Crater.JPG|[[蒙德撞擊坑]]的突出部分是南側(底部)被侵蝕的坑壁。比例尺是500公尺。 |
|||
File:Asimov Crater.jpg|[[阿西莫夫撞击坑|艾西莫夫撞擊坑]]影像底部是西南側坑壁。影像上半部是填滿大部分撞擊坑的山丘邊緣。 |
|||
File:Close-up of Asimov Crater.JPG|艾西莫夫撞擊坑內山丘上的山溝。位於諾亞區。 |
|||
File:Close up view of gullies.jpg|法厄同區的山溝。注意河道如何環繞障礙物。 |
|||
File:Branched gullies.jpg|法厄同區有支流的的山溝。 |
|||
</gallery> |
|||
[[海盜號]]軌道器拍攝到峭壁周圍有許多堆疊起來的物質長期以來一直讓科學家感興趣;這些岩石碎片的沉積物被稱為[[舌狀岩屑坡]](LDAs)。這類地形是向外突起,並且有從懸崖或陡坡起源的緩坡地形;這代表流動是從陡峭的懸崖開始。此外,舌狀岩屑坡可以看到類似地球上[[岩流]](石冰川)造成的地表[[線理]]<ref name="ISBN 0-8165-1257-4">ISBN 0-8165-1257-4</ref>。最近研究人員分析[[火星偵察軌道器]]的淺地層雷達(SHARAD)觀測資料,發現強力證據顯示,在[[希臘平原]]和北半球中緯度的蛇狀岩屑坡是覆蓋有薄岩石的冰川。火星偵查軌道器的雷達接收到來自舌狀岩屑坡頂部和底部的強烈反射坡,代表純水冰造成LDA形成的阻礙(在兩個反射坡之間)<ref name="planetary.brown.edu"/><ref>Plaut, J. et al. 2008. Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars. Lunar and Planetary Science XXXIX. 2290.pdf</ref>。根據鳳凰號的實驗和火星奧德賽號的觀測資料,我們現在知道水冰可以在火星高緯度區域地表下存在。在舌狀岩屑坡發現水冰代表水甚至可以在低緯度下存在;未來的火星殖民可以直接向下挖冰而不用到高緯度取水冰。而且舌状岩屑坡底下水冰的優勢是很容易使用軌道器發現與測繪其位置。舌狀岩屑坡在北緯38.2°的[[佛勒格拉山]]找到;而鳳凰號降落的地點是北緯68°,所以在舌狀岩屑坡發現水冰大幅增加人類未來在火星居住的可能性<ref>{{Cite web |url=http://www.planetary.org/explore/topics/phoenix |title=存档副本 |accessdate=2010-03-30 |archive-date=2011-08-22 |archive-url=https://web.archive.org/web/20110822221353/http://www.planetary.org/explore/topics/phoenix/ |dead-url=no }}</ref>。探測器在火星赤道附近降落遠比在極區降落容易,所以人類未來在火星赤道附近殖民的可能性增加。 |
|||
以下影像是高分辨率成像科学设备拍攝的舌狀岩屑坡範例: |
|||
<gallery> |
|||
File:Lobate Debris Apron in Phlegra Montes.JPG|[[佛勒格拉山]]的[[舌狀岩屑坡]],位於刻布壬尼亚區。這個岩屑坡極有可能是表面覆蓋一層岩石碎片的水冰,未來火星殖民可做為水的來源。比例尺是500公尺。 |
|||
File:Lobate Debris Apron closeup.jpg|舌狀岩屑坡表面特寫影像。注意這些線條在地球上的岩流相當常見。位於希臘區。 |
|||
File:Wide view of Debris Apron.jpg|沿著山坡看舌狀岩屑坡。位於阿卡迪亞區。 |
|||
File:Face of Lobate Debris Apron.jpg|舌狀岩屑坡起源地。注意影像中的條紋,這些條紋指出運動方向。位於伊斯墨诺斯區。 |
|||
</gallery> |
|||
[[File:Ice exposed by impact.jpg|thumb|亮的區域是被撞擊後暴露出來的水冰。這些冰是由[[火星偵察軌道器]]上的CRISM確定的。位於刻布瑞尼亚區。]] |
|||
2009年9月在科學期刊上的一篇論文報告一些火星表面的新撞擊坑暴露高純度的水冰<ref>Byrne, S. et al. 2009. Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters: 329.1674-1676</ref>;在這之後冰就昇華進大氣層。這些冰存在於只有數英呎深處。這些冰是使用[[火星偵察軌道器]]上的[[火星專用小型偵察影像頻譜儀]](CRISM)確定的。 這些冰其中3處是在刻布瑞尼亚區被找到;分別是:北纬55.57°, 东经150.62°; 北纬43.28°,东经176.9° 和北纬45°,东经164.5°。另外2處則是在狄阿克里亚區:北纬46.7°, 东经176.8° 和北纬46.33°, 东经176.9° E<ref>http:www.space.com/scienceastronomy/090924-mars-crater-ice.html</ref><ref>{{Cite web |url=http://news.aol.com/article/nasa-spacecraft-sees-ice-on-mars-exposed/686020 |title=存档副本 |access-date=2010-03-30 |archive-url=https://web.archive.org/web/20091026172704/http://news.aol.com/article/nasa-spacecraft-sees-ice-on-mars-exposed/686020 |archive-date=2009-10-26 |dead-url=yes }}</ref><ref>http://nasa.gov/mission/MRO/news/mro20090924.html{{dead link|date=2018年1月 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>。這個發現顯示未來[[火星殖民]]可以從許多地方取得水源;這些冰可以挖出後溶化,再電解成氫和氧作為火箭燃料之用。 |
|||
{{clear}} |
|||
通过检查高分辨率成像科学设备拍摄的照片,在[[乌托邦平原]](北纬35-50度、东经80-115度)发现了许多看起来像地球上[[冰核丘]]的地貌,冰核丘是有一颗大冰核的土丘,常见于永久冻土地带<ref>Soare, E., et al. 2019. |
|||
Possible (closed system) pingo and ice-wedge/thermokarst complexes at the mid latitudes of Utopia Planitia, Mars. Icarus. https://doi.org/10.1016/j.icarus.2019.03.010</ref>。 |
|||
{{Clear}} |
|||
===好奇号火星车=== |
===好奇号火星车=== |
||
[[File:PIA16156-Mars Curiosity Rover-Water-AncientStreambed.jpg|thumb|left|[[霍塔岩|霍塔]] [[露头|岩石露头]] – 由[[好奇号|“好奇号”火星车]]团队发现的古代[[河床]](2012年9月14日)([http://photojournal.jpl.nasa.gov/figures/PIA16156_fig1.jpg 特写]) ([https://web.archive.org/web/20130521042719/http://mars.jpl.nasa.gov/msl/images/pia16223-stereoHattah-Mastcam-br2.jpg 立体版])。]] |
[[File:PIA16156-Mars Curiosity Rover-Water-AncientStreambed.jpg|thumb|left|[[霍塔岩|霍塔]] [[露头|岩石露头]] – 由[[好奇号|“好奇号”火星车]]团队发现的古代[[河床]](2012年9月14日)([http://photojournal.jpl.nasa.gov/figures/PIA16156_fig1.jpg 特写]) ([https://web.archive.org/web/20130521042719/http://mars.jpl.nasa.gov/msl/images/pia16223-stereoHattah-Mastcam-br2.jpg 立体版])。]] |
||
第455行: | 第343行: | ||
2015年10月8日,美国宇航局确认,33-38亿年前盖尔撞击坑中湖泊和溪流搬运、堆积的沉积物构成了[[夏普山 (火星)|夏普山]]的下层山体<ref name="NASA-20151008">{{cite web |last=Clavin |first=Whitney |title=NASA's Curiosity Rover Team Confirms Ancient Lakes on Mars |url=http://www.jpl.nasa.gov/news/news.php?feature=4734 |date=October 8, 2015 |work=[[NASA]] |access-date=October 9, 2015 }}</ref><ref name="SCI-20151009">{{cite journal |author=Grotzinger, J.P. |title=Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars |date=October 9, 2015 |journal=[[Science (journal)|Science]] |volume=350 |issue=6257 |pages=aac7575 |doi=10.1126/science.aac7575|pmid=26450214 |bibcode=2015Sci...350.7575G |s2cid=586848 }}</ref>。2018年11月4日,地质学家根据好奇号火星车对盖尔撞击坑的研究提出了证据,证明早期[[火星]]上曾存在过大量的[[水]]<ref name="EA-20181103-gsa">{{cite news |author=Geological Society of America |title=Evidence of outburst flooding indicates plentiful water on early Mars |url=https://www.eurekalert.org/pub_releases/2018-11/gsoa-eoo110318.php |date= November 3, 2018 |work=[[EurekAlert!]] |access-date=November 5, 2018 |author-link=Geological Society of America }}</ref><ref name="GSA-20181104">{{cite journal |author=Heydari, Ezat|display-authors=etal |title=Significance of Flood Depositis in Gale Crater, Mars |url=https://gsa.confex.com/gsa/2018AM/webprogram/Paper319960.html |date=November 4, 2018 |journal=[[Geological Society of America]] |access-date=November 5, 2018 }}</ref>。 |
2015年10月8日,美国宇航局确认,33-38亿年前盖尔撞击坑中湖泊和溪流搬运、堆积的沉积物构成了[[夏普山 (火星)|夏普山]]的下层山体<ref name="NASA-20151008">{{cite web |last=Clavin |first=Whitney |title=NASA's Curiosity Rover Team Confirms Ancient Lakes on Mars |url=http://www.jpl.nasa.gov/news/news.php?feature=4734 |date=October 8, 2015 |work=[[NASA]] |access-date=October 9, 2015 }}</ref><ref name="SCI-20151009">{{cite journal |author=Grotzinger, J.P. |title=Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars |date=October 9, 2015 |journal=[[Science (journal)|Science]] |volume=350 |issue=6257 |pages=aac7575 |doi=10.1126/science.aac7575|pmid=26450214 |bibcode=2015Sci...350.7575G |s2cid=586848 }}</ref>。2018年11月4日,地质学家根据好奇号火星车对盖尔撞击坑的研究提出了证据,证明早期[[火星]]上曾存在过大量的[[水]]<ref name="EA-20181103-gsa">{{cite news |author=Geological Society of America |title=Evidence of outburst flooding indicates plentiful water on early Mars |url=https://www.eurekalert.org/pub_releases/2018-11/gsoa-eoo110318.php |date= November 3, 2018 |work=[[EurekAlert!]] |access-date=November 5, 2018 |author-link=Geological Society of America }}</ref><ref name="GSA-20181104">{{cite journal |author=Heydari, Ezat|display-authors=etal |title=Significance of Flood Depositis in Gale Crater, Mars |url=https://gsa.confex.com/gsa/2018AM/webprogram/Paper319960.html |date=November 4, 2018 |journal=[[Geological Society of America]] |access-date=November 5, 2018 }}</ref>。 |
||
===火星快车号=== |
===火星快车号=== |
||
由[[欧洲空间局|欧空局]]发射的[[火星快车号]]轨道飞行器一直在绘制火星表面地图,并使用雷达设备寻找地下水的证据。2012年至2015年间,轨道器扫描了[[南极高原 (火星)|南极高原]]冰盖下的区域。到2018年,科学家们确定,读数显示有一座约20公里(12英里)宽的地下湖泊,湖顶位于地表面下1.5公里(0.93英里)处,液态水的深度还不清楚<ref>{{cite journal |vauthors=Orosei R, Lauro SE, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, Di Paolo F, Flamini E, Mattei E, Pajola M, Soldovieri F, Cartacci M, Cassenti F, Frigeri A, Giuppi S, Martufi R, Masdea A, Mitri G, Nenna C, Noschese R, Restano M, Seu R|date=July 25, 2018 |title=Radar evidence of subglacial liquid water on Mars |journal= [[Science (journal)|Science]]|volume=361 |issue=3699 |pages= 490–493|doi=10.1126/science.aar7268 |pmid= 30045881|arxiv=2004.04587 |bibcode=2018Sci...361..490O |hdl=11573/1148029 |s2cid=206666385 |hdl-access=free }}</ref><ref>{{cite news | url = https://www.bbc.com/news/science-environment-44952710 | title = Liquid water 'lake' revealed on Mars | first = Mary | last = Halton | date = July 25, 2018 | access-date = July 25, 2018 |work=BBC News}}</ref>。 |
由[[欧洲空间局|欧空局]]发射的[[火星快车号]]轨道飞行器一直在绘制火星表面地图,并使用雷达设备寻找地下水的证据。2012年至2015年间,轨道器扫描了[[南极高原 (火星)|南极高原]]冰盖下的区域。到2018年,科学家们确定,读数显示有一座约20公里(12英里)宽的地下湖泊,湖顶位于地表面下1.5公里(0.93英里)处,液态水的深度还不清楚<ref>{{cite journal |vauthors=Orosei R, Lauro SE, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, Di Paolo F, Flamini E, Mattei E, Pajola M, Soldovieri F, Cartacci M, Cassenti F, Frigeri A, Giuppi S, Martufi R, Masdea A, Mitri G, Nenna C, Noschese R, Restano M, Seu R|date=July 25, 2018 |title=Radar evidence of subglacial liquid water on Mars |journal= [[Science (journal)|Science]]|volume=361 |issue=3699 |pages= 490–493|doi=10.1126/science.aar7268 |pmid= 30045881|arxiv=2004.04587 |bibcode=2018Sci...361..490O |hdl=11573/1148029 |s2cid=206666385 |hdl-access=free }}</ref><ref>{{cite news | url = https://www.bbc.com/news/science-environment-44952710 | title = Liquid water 'lake' revealed on Mars | first = Mary | last = Halton | date = July 25, 2018 | access-date = July 25, 2018 |work=BBC News}}</ref>。 |
||
== 圓柱[[節理]] == |
|||
2009年HiRISE的影像中發現火星岩石的圓柱節理<ref>Milazzo, M. et al. 2009. The discovery of columnar jointing on Mars. Geology: 37. 171-174.</ref>。這種節理必須要有水才能形成。為了形成圓柱節理的平行裂縫,多次的冷卻是必要的,而水是最可能的選項。科學家估算出水必須間歇地存在數月至數年<ref>Milazzo, M. et al. 2003. The formation of columnar joints on Earth and Mars. Lunar Plant. Sci. Conf. 34 (abstract #2120.</ref>。 |
|||
<gallery> |
|||
File:Columnar jointing, Marte Vallis.jpg|火星[[馬爾提谷]]的玄武岩柱狀節理。 |
|||
File:Giants-causeway-in-ireland.jpg|[[愛爾蘭]][[巨人堤道]]的玄武岩柱狀節理。 |
|||
File:Columnar Jointing in Yellowstone.JPG|[[黃石國家公園]]的柱狀節理。 |
|||
</gallery> |
|||
== 淺色調沈積地層 == |
|||
HiRISE的大量影像中可看出表面有大面積的淺色調沉積地層(light-toned layered deposits)。這些30-80公尺深的沉積物被認為是因為水的流動而形成。這些地區有古代河道系統的證據<ref>Mangold, C. et al. 2004. Evidence for precipitation on Mars from dendritic valleys in the Valles Marineris area. Science: 305. 78-81. </ref>。更進一步以MRO上的[[火星專用小型偵察影像頻譜儀]]觀測化學組成發現與水相關的礦物:[[蛋白石]](水合氧化矽)和[[硫酸亞鐵]]<ref>Murchie, S. et al. 2009. Compositional evidence for the origin of layered deposits in Valles Marineris, Mars. J. Geophysical Research. submitted fro publication. </ref>。這些礦物會在低溫酸性溶液中和玄武岩產生化學反應形成。以上特徵顯示淺色調沈積地層是火星在赫斯伯利亞紀有長時間的降水和地表水流的證據<ref>Weitz, C. et al. 2010. Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris. Icarus. 205: 73-102.</ref><ref>Edgett, E. 2005. The sedimentary rocks of Sinus Meridiani: Five key observations from data acquired by the Mars Global Surveyor and Mars Odyssey orbiters. Mars: 1. 5-58.</ref>。 |
|||
== 火星水的來源 == |
|||
火山噴發時會分出富含水蒸氣和二氧化碳的氣體。因此早期火星大氣因為火山噴發的關係,厚度超過地球大氣。從火山噴出的水蒸氣可能足以使火星表面被120公尺深的水淹沒。此外,大氣中大量的二氧化碳會吸收紅外線的熱能,產生溫室效應造成火星溫度上升。所以[[塔爾西斯]]的熔岩噴發可能使遠古的火星跟地球很類似。古代火星可能有濃密大氣、海洋、湖泊存在<ref>Hartmann, W. 2003. A Traveler's Guide to Mars. Workman Publishing. NY NY.</ref>。 |
|||
以下影像是來自不同探測器的火山特徵。 |
|||
<gallery> |
|||
File:Wikitharsismap.JPG|塔爾西斯區域指出主要地型特徵的地圖。[[塔爾西斯]]有太陽系最高的火山-[[奧林帕斯山 (火星)|奧林帕斯山]]。[[什洛尼爾斯小火山|刻拉尼俄斯小火山]]雖然在圖中看起來很小,但它的高度相當於[[聖母峰]]。 |
|||
File:Cerauniustholus.jpg|[[火星全球探勘者號]]上的火星軌道攝影機拍攝較低的[[什洛尼爾斯小火山|刻拉尼俄斯小火山]]和較高的[[尤瑞尼爾斯小火山|乌拉纽斯小火山]]。刻拉尼俄斯小火山的高度相當於[[聖母峰]]。 |
|||
File:Albor Tholus with THEMIS.JPG|[[2001火星奧德賽號]]上的[[熱輻射成像系統]](THEMIS)拍攝的[[歐伯山]]。這些長橢圓型特徵是因為倒塌進空的[[熔岩管]]。[[歐伯山]]位於埃律西昂區。 |
|||
File:Elysium Mons.gif|[[水手9號]]拍攝的[[埃律西昂山]]。 |
|||
File:MOLA elysium mons.jpg|根據[[火星全球探勘者號]]上的火星衛星雷射測高儀(Mars Orbiter Laser Altimeter,MOLA)繪製的[[埃律西昂山]]地形圖。點選影像可看到相對的[[赫克提斯山|赫卡忒山]](上)、[[埃律西昂山]](中)和[[歐伯山]](下)。 |
|||
File:Hecates Tholus.gif|[[火星全球探勘者號]]拍攝的[[赫克提斯山|赫卡忒山]]。 |
|||
File:MOLA hecates tholus.jpg|赫卡忒山的地形圖。 |
|||
File:MOLA albor tholus.jpg|歐伯山與周圍地區的地形圖。 |
|||
</gallery> |
|||
== 水冰的證據 == |
|||
=== 表面薄冰 === |
|||
2005年7月28日,[[歐洲太空總署|ESA]]公布火星上一個撞擊坑被水冰部分填滿<ref name="lake">[http://www.esa.int/SPECIALS/Mars_Express/SEMGKA808BE_0.html "Water ice in crater at Martian north pole"] {{WebCite|url=https://www.webcitation.org/6B75zjwiu?url=http://www.esa.int/SPECIALS/Mars_Express/SEMGKA808BE_0.html |date=20121002123808 |dateformat=iso }} - July 27, 2005 [[ESA]] Press release. URL accessed March 17, 2006.</ref>;部分人士甚至推測這個發現是一個「冰湖」<ref name="BBClake">[http://news.bbc.co.uk/2/hi/science/nature/4727847.stm "Ice lake found on the Red Planet"] {{Wayback|url=http://news.bbc.co.uk/2/hi/science/nature/4727847.stm |date=20100113160825 }} - July 29, 2005 [[BBC]] story. URL accessed March 17, 2006.</ref>。該撞擊坑的照片是由[[火星快車號]]上的[[高解析度立體相機]]拍攝;影像中顯示明顯的一層冰在[[北方大平原]]某個當時未命名,位於北緯70.5°,東經103°的撞擊坑。這個撞擊坑直徑約35公里,深度約2公里。 |
|||
撞擊坑底部和冰層表面高度差約200公尺。欧空局的研究人員認為主要原因是因為冰層下部分可見的沙丘。雖然科學家沒有提出進一部理論指出這是冰湖,但目前證據可以證明這是水冰,而且這一區水冰在火星上是全年存在。水冰和永久凍土的沉積物可在火星表面多個地方被發現。 |
|||
=== 赤道區的凍結海洋 === |
|||
火星南半球的[[埃律西昂平原]]已經發現一些與[[流冰]]有關的地表特徵。這些被觀測到的片狀區域約有30公里長和30公里寬,位於一些河道之中;而這些河道位於深度和寬度相當於[[北海 (大西洋)|北海]]的平原上。這些片狀區域有破碎與旋轉的特徵,和其他熔岩形成的片狀區域有明顯差異。水流的來源被認為是來自附近[[科柏洛斯槽溝]]的斷層,估計該斷層噴出水的時間維持200至1000萬年<ref name="Murray2007">{{cite journal |last=Murray |first=John B. |authorlink= |coauthors=''et al.'' |year=2005 |month= |title=Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars' equator |journal=Nature |volume=434 |issue= |pages=352–356 |doi=10.1038/nature03379 |url= |accessdate= |quote= }}</ref>,但並不是所有研究人員都同意這說法<ref>{{Cite web |url=http://www.lpi.usra.edu/meetings/lpsc2008/pdf/1866.pdf |title=1866.PDF<!-- Bot generated title --> |accessdate=2010-03-30 |archive-date=2009-03-27 |archive-url=https://web.archive.org/web/20090327135334/http://www.lpi.usra.edu/meetings/lpsc2008/pdf/1866.pdf |dead-url=no }}</ref>。 |
|||
=== 冰川 === |
|||
冰川在火星表面廣大地區形成許多可以可以被觀測到的地形特徵。這些地區大多在高緯度,尤其[[伊斯墨诺斯湖区]]被認為仍然有大量的水冰<ref name="ISBN 0-8165-1257-4"/><ref>{{Cite web |url=http://www.esa.int/SPECIALS/Mars_Express/SEMBS5V681F_0.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2012-10-18 |archive-url=https://web.archive.org/web/20121018200501/http://www.esa.int/SPECIALS/Mars_Express/SEMBS5V681F_0.html |dead-url=no }}</ref>。最近的證據讓許多行星科學家相信水冰仍然在火星表面以冰川形式存在,且表面覆蓋一層可以隔熱的薄岩石<ref name="Head, J. 2005"/><ref name="marstoday.com"/><ref name="news.brown.edu"/><ref name="Plaut, J. 2008"/><ref name="Holt, J. 2008"/>。2010年三月科學家釋出在[[都特羅尼勒斯桌山群]]的雷達探測影像,在該區找到冰存在於數公尺岩石下的證據<ref>http://news.discovery.com/space/mars-ice-sheet-climate.html</ref>。一般相信冰川是和[[銳蝕地形]]、許多的火山、甚至是一些撞擊坑一起出現。冰川表面上殘餘物的頂端顯示冰移動的方向。一些冰川的表面因為底下的冰昇華的關係而相當粗糙。冰直接昇華成水蒸氣且留下空洞使冰川上的物質坍塌進空洞<ref>{{Cite web |url=http://hirise.lpl.arizona.edu/PSP_009719_2230 |title=存档副本 |accessdate=2010-03-30 |archive-date=2017-10-13 |archive-url=https://web.archive.org/web/20171013002242/https://hirise.lpl.arizona.edu/PSP_009719_2230 |dead-url=no }}</ref>。冰川並非只有冰,而是帶有許多岩石和表土,冰川也會丟下其攜帶的物質形成類似山脊的地形,被稱為[[冰磧]]。火星有些地方有許多扭曲的冰磧群;可能是因為冰磧形成後又因為其他的運動而造成。有些大塊的冰從冰川掉落並且埋在地表以下,當這些冰溶化時或多或少留下一些空洞<ref>{{Cite web |url=http://hirise.lpl.arizona.edu/PSP_006278_2225 |title=存档副本 |accessdate=2010-03-30 |archive-date=2016-08-23 |archive-url=https://web.archive.org/web/20160823204921/http://hirise.lpl.arizona.edu/PSP_006278_2225 |dead-url=no }}</ref>,在地球上這類地形被稱為[[壺穴]]。在紐約州的[[蔓苳双湖公園]](Mendon Ponds Park)可見到一些相同地質作用造成的壺穴。以下HiRISE拍攝[[莫羅撞擊坑]]的影像就顯示可能的壺穴地形。 |
|||
其他影像顯示許多種與冰川存在有關的地形特徵。 |
|||
<gallery> |
|||
<!-- 檔案不存在 File:Moreux Crater moraines.JPG|[[莫羅撞擊坑]]的冰磧石和壺穴,HIRISE拍攝。位於Ismenius Lacus區。 ,可從英文維基百科取得 --> |
|||
File:Evidence of [[Glaciers]] in Fretted terrain.JPG|左邊影像中的箭頭指出一個可能由冰川侵蝕出的峽谷。右側影像是火星全球探勘者號拍攝的放大影像。 |
|||
<!-- 檔案不存在 File:Hypsas Valles.JPG|HiRISE拍攝的Clanis和Hypsas峽谷。圖中山脊可能是因為冰川流動造成,冰被薄層岩石覆蓋。位於Ismenius Lacus區。 ,可從英文維基百科取得 --> |
|||
File:Gullies and tongue-shaped glacier.jpg|火星全球探勘者號拍攝厄立特里亚區內[[克卜勒撞擊坑 (火星)|克卜勒撞擊坑]]北方一個撞擊坑內的河道和可能的古代冰川殘餘。一個影像右側可能的冰川類似舌頭狀。 |
|||
<!-- 檔案不存在 File:Tributary Glacier.JPG|HiRISE拍攝的冰川支流。位於Ismenius Lacus區。 ,可從英文維基百科取得 --> |
|||
File:Coloe Fossae Lineated Valley Fill.JPG|HiRISE拍攝的[[科勒槽溝]]內的线状谷底沉积。比例尺500公尺。位於伊斯墨诺斯湖區。 |
|||
File:Tongue Glacier.JPG|火星全球探勘者號拍攝的舌頭狀冰川。位於希臘區。 |
|||
</gallery> |
|||
=== 極地冰冠 === |
|||
[[File:Martian north polar cap.jpg|thumb|[[火星全球探勘者號]]拍攝的火星北半球早夏北極冰冠影像。]] |
|||
一般相信火星的北極冰帽([[北極高原]])和南方冰帽([[南極高原 (火星)|南極高原]])會在冬季形成厚冰層和在夏季部分冰冠[[昇華]]。火星快車號的資料顯示,2004年時火星南極冰帽平均厚度約3公里,由水冰和乾冰組成<ref name=NASAwater >{{cite news | first= | last= | coauthors= | authorlink= | title=Mars' South Pole Ice Deep and Wide | date=March 15, 2007 | publisher=NASA | url=http://jpl.nasa.gov/news/news.cfm?release=2007-030 | work=Jet Propulsion Laboratory | pages= | accessdate=2009-09-11 | language= | archive-date=2012-07-16 | archive-url=https://web.archive.org/web/20120716205616/http://www.jpl.nasa.gov/news/news.cfm?release=2007-030 | dead-url=yes }}</ref>,乾冰的組成比例與緯度有關。冰帽是85%乾冰和15%水冰組成<ref name=ESAwater >{{cite news | first= | last= | coauthors= | authorlink= | title=Water at Martian south pole | date=17 March 2004 | publisher=European Space Agency (ESA) | url=http://www.esa.int/SPECIALS/Mars_Express/SEMYKEX5WRD_0.html | work= | pages= | accessdate=2009-09-11 | language= | archive-date=2004-04-01 | archive-url=https://web.archive.org/web/20040401181115/http://www.esa.int/SPECIALS/Mars_Express/SEMYKEX5WRD_0.html | dead-url=no }}</ref>。火星冰帽的第二個組成部分則是從火星冰帽下降到附近平原的陡坡,幾乎都是由水冰形成<ref name=ESAwater />。第三個組成部分則是圍繞在外側的廣大永久凍土層,從斜坡底往外延伸數十公里<ref name=ESAwater /><ref>{{Citation |
|||
| journal=Geophysical Research Letters |
|||
| volume=33 |
|||
| pages=L11201 |
|||
| date=June 3, 2006 |
|||
| last=Kostama |
|||
| first=V.-P. |
|||
| last2=Kreslavsky |
|||
| first2=M. A. |
|||
| last3=Head |
|||
| first3=J. W. |
|||
| title=Recent high-latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement |
|||
| url=http://www.agu.org/pubs/crossref/2006/2006GL025946.shtml |
|||
| doi=10.1029/2006GL025946 |
|||
| accessdate=2008-08-01 |
|||
| archive-date=2009-03-18 |
|||
| archive-url=https://web.archive.org/web/20090318010946/http://www.agu.org/pubs/crossref/2006/2006GL025946.shtml |
|||
| dead-url=no |
|||
}}</ref>。NASA的科學家計算如果火星南極冰帽的水冰全部融化,將可淹沒火星表面,水深11公尺<ref>{{cite web |
|||
| publisher = NASA |
|||
| date = March 15, 2007 |
|||
| title = Mars' South Pole Ice Deep and Wide |
|||
| url = http://jpl.nasa.gov/news/news.cfm?release=2007-030 |
|||
| accessdate = 2009-09-13 |
|||
| archive-date = 2012-07-16 |
|||
| archive-url = https://web.archive.org/web/20120716205616/http://www.jpl.nasa.gov/news/news.cfm?release=2007-030 |
|||
| dead-url = yes |
|||
}}</ref>。 |
|||
2009年根據MRO上的雷達測量資料計算出火星北極冰帽的水冰體積約為82.1萬平方公里。這相當於格陵蘭30%的大陸冰川或者覆蓋火星表面5.6公尺(用北極冰帽體積除以火星表面積)<ref>{{cite web |url=http://onorbit.com/node/1524 |title=存档副本 |accessdate=2010-12-19 |deadurl=yes |archiveurl=https://web.archive.org/web/20101221190147/http://onorbit.com/node/1524 |archivedate=2010-12-21 }}</ref>。 |
|||
=== 地表的冰 === |
|||
許多科學家長年以來認為火星表面部份區域很像地球上的[[冰緣]](Periglacial)區<ref>ISBN 0-8165-1257-7</ref>,或者也可以說這些區域就是[[永久凍土]]。許多觀測顯示有冰層存在於這類地區底下。在高緯度地區常可見到所謂的「[[图案地面]]」(Patterned ground),可以見到許多種不同的形狀,如條紋和多邊形。在地球上這種地形是因為土壤中的水分凍結和融化而引起<ref>http://www.spaceref.com/news/viewnews.html?id=494</ref><ref>http://www.nasa.gov/mission-pages/phoenix/multimedia/5302-20080513.html</ref>。其他還有許多證明火星地表下有大量水冰的證據,例如圍繞在銳利地形特徵的區域軟化<ref>Squyres, S. 1989. Urey Prize Lecture: Water on Mars. Icarus: 79. 229-288</ref>。地表下有冰的證據除了地表上明顯特徵以外,2001火星奧德塞號的伽馬射線光譜儀(Gamma Ray Spectrometer, GRS)的觀測結果和[[鳳凰號火星探測器]]的直接探測也提供許多證據<ref>Lefort, A. et al. 2010. Scaloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE. Icarus: 205. 259-268.</ref>。 |
|||
<gallery perRow="3"> |
|||
File:Permafrost - polygon.jpg|地表的多邊形特徵。 |
|||
File:Permafrost_stone-rings_hg.jpg|[[斯匹次卑爾根島]]的石環。 |
|||
File:Ice-wedge_hg.jpg|從上方看的[[冰楔]](Ice wedge)。 |
|||
File:Phoenix horizon view.jpg|[[鳳凰號火星探測器]]在火星北極的登陸地點附近是有大範圍[[圖案地面]]特徵的平原。 |
|||
File:Permafrost pattern.jpg|這張照片是在直升機上拍攝的加拿大所屬北極地區。 |
|||
File:Patternedground.JPG|有多邊形特徵的圖案地多與地表的冰有關。這張[[火星全球探勘者號]]的圖片位於約北緯45度的區域,可看到圖案地,在如此遠離極冠的區域相當罕見。 |
|||
</gallery> |
|||
火星有些區域有許多類似地球上熔岩流過冰凍地表形成的椎狀地理特徵。熔岩的熱會將冰融化,使水冰變成水蒸氣。水蒸氣的強大力量穿過熔岩形成椎狀特徵。在以下影像,大型的椎狀物是因為水蒸氣穿過厚熔岩層而形成<ref>{{Cite web |url=http://www.nasa.gov/mission_pages/MRO/multimedia/mro-20100111.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2010-03-25 |archive-url=https://web.archive.org/web/20100325002718/http://www.nasa.gov/mission_pages/MRO/multimedia/mro-20100111.html |dead-url=no }}</ref>。 |
|||
<gallery> |
|||
File:Athabasca Cones.jpg|HiRISE拍攝到[[阿薩巴斯卡谷]](Athabasca Vallis)內的椎狀地形。這些地形是因為熔岩和冰的交互作用形成。在影像上方的大型椎狀物則是水或水蒸氣的力量穿過厚熔岩層。紅色代表地勢較高區域,比最低的深藍色區域高約170公尺。 |
|||
File:Rootless Cones.jpg|HiRISE拍攝到根部消失的椎狀物。這一連串的環形成的解釋可能是因為地殼在水蒸汽的源頭上方移動。這些水蒸氣是因為熔岩和水冰的交互作用產生。 |
|||
</gallery> |
|||
=== [[扇形地形]] === |
|||
火星部分地形有貝狀沉降的特徵。這樣的特徵被認為是富含冰沉澱物的殘餘,貝狀是因為冰從凍土中昇華後留下的。這些覆蓋物可能是當火星自轉軸改變造成氣候變化時,從大氣中以冰的形式附著在塵埃上降下<ref>Head, J. et al. 2003. Recent ice ages on Mars. Nature:426. 797-802. </ref>。這些貝狀特徵有數十公尺深和長度延伸約數百至數千公尺,而形狀幾乎都是圓形或長橢圓形。有一部分地形看起來是因為河流造成大規模凹坑地形;造成這種地形的原因可能是水冰從縫隙中昇華。在貝狀地形可以看到許多多邊形裂縫,是冰凍地表的特徵<ref>Lefort, A. et al. 2010. Scalloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE. Icarus: 205. 259-268. </ref><ref>www.sciencedirect.com/science/journal/00191035</ref>。 |
|||
<gallery> |
|||
File:Scalloped Terrain at Peneus Patera.JPG|HiRISE拍攝的[[佩紐斯山]]貝狀地形。貝狀地形在火星相當常見。 |
|||
File:Scalop formation.jpg|HiRISE拍攝的貝狀地形形成階段,位於希臘區。 |
|||
</gallery> |
|||
== 來自火星的樣本 == |
|||
現在已經確定在地球上找到的隕石有超過三十塊是來自火星。這些[[火星隕石]]讓科學家有難得的機會分析火星的岩石。有些火星岩石顯示它們在火星時是曝露在水中。 |
|||
1983年一篇作者是 M. R. Smith 等人<ref name=Smith>Smith, M.R. ''et al.'', [http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1984JGRS...89..612S&data_type=PDF_HIGH&type=PRINTER&filetype=.pdf "Petrogenesis of the SNC (Shergottites, Nakhlites, Chassignites) Meteorites: Implications for Their Origin From a Large Dynamic Planet, Possibly Mars"] - (PDF) Proceedings of the fourteenth Lunar and Planetary Science Conference, Part 2, Journal of Geophysical Research, Vol. 89, Supplement, pp. B612-B630, February 15, 1984.</ref>的論文表示,被稱為 SNC (Shergottites, Nakhlites, Chassignites)群的火星隕石是來自火星;證據是來自儀器分析和放射化學的[[中子活化分析]]。他們發現 SNC 隕石的化學、[[同位素]]與[[岩石學]]特徵都符合火星的岩石,數年後再由 Treiman 等人以類似方法進一步確認<ref>Treiman ''et al.'', [http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V66-488Y2N2-93-4&_cdi=5806&_user=1495569&_orig=search&_coverDate=06%2F30%2F1986&_qd=1&_sk=999499993&view=c&_alid=445381391&_rdoc=1&wchp=dGLbVtz-zSkWb&md5=8c7abcc081d4274cb9e1efc92676c76f&ie=/sdarticle.pdf "Core formation in the Earth and Shergottite Parent Body (SPB):Chemical evidence from basalts"] {{Wayback|url=http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V66-488Y2N2-93-4&_cdi=5806&_user=1495569&_orig=search&_coverDate=06%2F30%2F1986&_qd=1&_sk=999499993&view=c&_alid=445381391&_rdoc=1&wchp=dGLbVtz-zSkWb&md5=8c7abcc081d4274cb9e1efc92676c76f&ie=%2Fsdarticle.pdf |date=20170306184023 }} - (PDF) Geochemica et Cosnochimica Acta Vol. 50, pp. 1071-1091 (1986).</ref>。之後在1983年下半年, Bogard 等人<ref>Bogard, D.D. ''et al.'', [http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V66-4887PMB-KX-6&_cdi=5806&_user=1495569&_orig=search&_coverDate=09%2F30%2F1984&_qd=1&_sk=999519990&view=c&_alid=445397543&_rdoc=1&wchp=dGLbVlz-zSkWA&md5=0226eea677d2514be1b29ec49fcc11c3&ie=/sdarticle.pdf "Noble gas contents of shergottites and implications for the Martian origin of SNC meteorites"] {{Wayback|url=http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V66-4887PMB-KX-6&_cdi=5806&_user=1495569&_orig=search&_coverDate=09%2F30%2F1984&_qd=1&_sk=999519990&view=c&_alid=445397543&_rdoc=1&wchp=dGLbVlz-zSkWA&md5=0226eea677d2514be1b29ec49fcc11c3&ie=%2Fsdarticle.pdf |date=20071223195946 }} - (PDF) Geochimica et Cosnocimica Acta Vol. 48, pp. 1723-1739 (1984).</ref>的研究顯示輝玻無球隕石(Shergottites)中許多種[[稀有氣體]]的同位素比例與海盜號在1970年代中期探測[[火星大氣層]]的資料相符合。 |
|||
2000年一篇 Treiman, Gleason and Bogard 等人的論文<ref>Treiman, A.H. ''et al.'', [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V6T-41WBDHD-8&_coverDate=10%2F31%2F2000&_alid=445411040&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5823&_sort=d&view=c&_acct=C000053194&_version=1&_urlVersion=0&_userid=1495569&md5=1c1b0d04dba7f06365b072655bef68b3 "The SNC meteorites are from Mars"] {{Wayback|url=http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V6T-41WBDHD-8&_coverDate=10%2F31%2F2000&_alid=445411040&_rdoc=1&_fmt=&_orig=search&_qd=1&_cdi=5823&_sort=d&view=c&_acct=C000053194&_version=1&_urlVersion=0&_userid=1495569&md5=1c1b0d04dba7f06365b072655bef68b3 |date=20100124122757 }} - Planetary and Space Science, Vol. 48, Iss. 12-14, October 2000, pp. 1213-1230.</ref>研究當時已經發現的14顆來自火星的 SNC 群隕石;他們在文章中表示:「這些 SNC 群隕石有少許可能性並非來自火星,如果這些隕石來自其他行星的岩石,那應該正如我們所理解的,應該比例與火星大幅度相同」。 |
|||
[[File:ALH84001.jpg|thumb|200px|[[ALH84001]]]] |
|||
有些火星隕石是含[[玄武岩]]的輝玻無球隕石。這些看起來含有水合[[碳酸鹽]]和[[硫酸鹽]]的礦物可能在被彈入太空時暴露在水中。這代表這些隕石還在火星時是在水中的。第一個輝玻無球隕石叫做[[休格地隕石]](Shergotty meteorite)是1865年落在印度[[休格地]](Sherghati)<ref>{{Cite web |url=http://www2.jpl.nasa.gov/snc/shergotty.html |title=Shergotty Meteorite - JPL, NASA |accessdate=2010-03-30 |archive-date=2011-01-18 |archive-url=https://web.archive.org/web/20110118011546/http://www2.jpl.nasa.gov/snc/shergotty.html |dead-url=no }}</ref>。 |
|||
另一種隕石,輝橄無球隕石(Nakhlites)則是在大約6.2億年前暴露在水中,並在約1075萬年前因為小行星撞擊而被彈出火星,約1萬年前落到地球<ref name=Nakhlites />。目前已知7顆輝橄無球隕石。第一顆輝橄無球隕石是1911年落在[[埃及]][[亞歷山卓]]的[[奈克拉隕石]](Nakhla meteorite),重量約10公斤。最新發現的輝橄無球隕石是2003年12月15日在南極洲被發現<ref name=Nakhlites>Treiman, A.H., [http://www.lpi.usra.edu/science/treiman/nakhlite_rev.pdf "The nakhlite meteorites: Augite-rich igneous rocks from Mars"] {{Wayback|url=http://www.lpi.usra.edu/science/treiman/nakhlite_rev.pdf |date=20090327135357 }} - (PDF) Chemie der Erde 65, p. 203-270, (2005). URL accessed September 8, 2006.</ref>。 |
|||
1996年時確認許多火星生命曾經存在於火星上的證據。1996年時一群科學家報告在火星隕石[[艾倫丘陵隕石84001|ALH 84001]]發現[[化學化石]](chemical fossils)<ref>McKay, D. et al. 1996. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite AL84001. Science: 273. 924-930.</ref>。但有許多研究對於該隕石中是否有化石有許多爭議<ref>Gibbs, W. and C. Powell. In Focus Bugs in the Data? 1996. Scientific American. October. 20-22</ref><ref>{{Cite web |url=http://www.space.com/scienceastronomy/solarsystem/mars_meteorite_020320.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2002-04-04 |archive-url=https://web.archive.org/web/20020404034759/http://www.space.com/scienceastronomy/solarsystem/mars_meteorite_020320.html |dead-url=no }}</ref>。例如已經發現許多在ALH 84001內的有機化合物其實是在地球上的<ref>Bada, J. et al. 1998. A Search for Endogenous Amino Acids in Martian Meteorite AL84001. Science: 279. 362-365</ref>。一篇發表在《Geochemical and Meteoritic Society》的論文表示,使用更高解析度的電子顯微鏡可能會比13年前的研究更好<ref>http://www.scientificamerican.com/article.cfm?id=ancient-martian-were-carried-to-ea-2009-11</ref><ref>Thomas-Keprta, K., S. Clemett, D. McKay, E. Gibson and S. Wentworth 2009. Origin of Magnetite Nanocrystals in Martian Meteorite ALH84001 journal Geochimica et Cosmochimica Acta: 73. 6631-6677.</ref>。 |
|||
== 湖 == |
|||
有許多湖底盆地在火星上被發現。許多湖的大小與地球上最大的几個湖,如[[貝加爾湖]]、[[黑海]]、[[裡海]]相當。這些湖泊的水則來自於發源自南方高原的峽谷系統。一些湖泊被認為是因為[[降水]]而形成,其他的則被認為是因為地下水而形成<ref>Fassett, C. and J. Head III. 2008. Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surace and subsurface hydrology. Icarus: 198. 37-56.</ref><ref>Irwin III, R. et al. 2005. An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. Journal of Geophysical Research: 110. E12S15</ref>。 |
|||
2010年1月發表的研究認為火星在赤道的部分區域有直徑約20公里的數個湖泊。雖然早期的研究顯是早期火星有一段溫暖潮濕的時期,這些湖泊是在赫斯伯利亞紀形成。應用[[火星偵察軌道器]]的高解析度影像,研究人員認為早期火山活動的增加、撞擊事件或火星軌道的變化讓溫暖時期火星的大氣層足以溶化大量地表的冰。火山也許放出氣體暫時使火星大氣層氣體含量增加,吸收較多來自太陽光的能量使溫度升高到足以讓液態水存在。在這個新的研究中,河道在連接湖底盆地的[[阿瑞斯谷]]附近被發現。當湖泊被水充滿,湖水將溢流形成河道進入較低區域,使另一個湖泊形成<ref>{{Cite web |url=http://www.sciencedaily.com/releases/2012/01/100104092452.htm |title=存档副本 |accessdate=2010-03-30 |archive-date=2011-06-05 |archive-url=https://web.archive.org/web/20110605085434/http://www.sciencedaily.com/releases/2012/01/100104092452.htm |dead-url=no }}</ref><ref>Sanjeev Gupta, Nicholas Warner, Jung-Rack Kim, Shih-Yuan Lin, Jan Muller. 2010. Hesperian equatorial thermokarst lakes in Ares Vallis as evidence for transient warm conditions on Mars. Geology: 38. 71-74. |
|||
</ref>。這些湖泊將會是尋找現在或過去火星曾有生命證據的地方。 |
|||
== 湖造成的三角洲 == |
|||
研究人員發現一些由火星湖泊形成的數個[[三角洲]];這是火星曾經有大量水的主要證據。三角洲必須在長時間下有足夠深的水才能形成,所以古代火星應該有大量穩定的水以避免沉積物被沖刷殆盡。湖泊造成的三角洲在火星上是很常見的地理特徵。以下圖片是三角洲的例子:<ref name="Irwin III 2005"/> |
|||
<gallery> |
|||
File:Delta in Ismenius Lacus.jpg|伊斯墨诺斯湖區的[[三角洲]],由THEMIS拍攝。 |
|||
File:Delta in Lunae Palus.jpg|[[月沼區]]的三角洲,由THEMIS拍攝。 |
|||
File:Delta in Margaritifer Sinus.jpg|[[珍珠湾区]]的三角洲 ,由THEMIS拍攝。 |
|||
File:Distributary fan-delta.jpg|[[霍頓撞擊坑]]內往東北向可能的三角洲,位於珍珠湾區。火星全球探勘者號拍攝。 |
|||
</gallery> |
|||
== 海洋存在與否的爭論 == |
|||
[[火星海洋假說]]推斷火星表面曾有三分之一被海洋覆蓋<ref name=Clifford>Clifford, S. M. and T. J. Parker, 2001: [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WGF-457CXN8-4&_user=126524&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000010360&_version=1&_urlVersion=0&_userid=126524&md5=f78bbc3ae211391e23070bd03d8e1dc6 The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains] {{Wayback|url=http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WGF-457CXN8-4&_user=126524&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000010360&_version=1&_urlVersion=0&_userid=126524&md5=f78bbc3ae211391e23070bd03d8e1dc6 |date=20200511203001 }}, Icarus 154, 40-79.</ref>。這假設的古代海洋,稱為北方洋(Oceanis Borealis)<ref name=Baker>,Baker, V. R., R. G. Strom, V. C. Gulick, J. S. Kargel, G. Komatsu and V. S. Kale, 1991: Ancient oceans, ice sheets and the hydrological cycle on Mars, Nature, 352, 589-594.</ref>可能在約38億年前存在於現在的[[北方大平原]]。早期的火星可能有較現在溫暖的氣候和較厚的大氣層,提供液態水可在火星表面存在的環境<ref name=ReadandLewis>Read, Peter L. and S. R. Lewis,“The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet”, Praxis, Chichester, UK, 2004.</ref>。 |
|||
=== 觀測證據 === |
|||
現代火星許多地理特徵是火星曾經存在海洋的證據。火星的溝渠網會合併入一個較大的河道,這暗示有液態水進行侵蝕作用,類似地球的舊河道。有些約25公里寬和數百公尺深的巨大河道顯示水流似乎是從南方高原的地下水層流入河道最後進入北方平原<ref name=ReadandLewis />。 |
|||
在地球物理研究期刊發表的一篇論文揭露古代的火星被認為有更密集的河道。火星上峽谷最密集的地區可以和地球類似區域相類比。該研究團隊開發一個電腦程式,以尋找U形地形結構的方式來確定峽谷位置<ref>{{Cite web |url=http://www.astrobio.net/pressrelease/3322/martian-north-once-covered-by-ocean |title=存档副本 |accessdate=2010-03-30 |archive-date=2010-01-10 |archive-url=https://web.archive.org/web/20100110121356/http://www.astrobio.net/pressrelease/3322/martian-north-once-covered-by-ocean |dead-url=no }}</ref>。大量的峽谷系統是火星古代有降雨的證據。火星全球的峽谷分部模式則可用火星曾在北半球有個廣大海洋解釋。北半球曾有海洋的假說也可以解釋為什麼火星峽谷系統有個南方分布邊界。火星的最南方區域位於存水區最遠處,可能只有極少降雨量,無法形成峽谷;火星南方缺少降雨也可以解釋為什麼火星的峽谷越往南方就越淺<ref>{{Cite web |url=http://www.space.com/scienceastronomy/091123-mars-ocean.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2010-03-15 |archive-url=https://web.archive.org/web/20100315193249/http://www.space.com/scienceastronomy/091123-mars-ocean.html |dead-url=no }}</ref>。 |
|||
火星北半球大部分地區地勢比火星其他區域明顯低很多(參見[[火星分界]]),而且極為平坦。在這些區域邊緣的地質和地理特徵指出這些區域是古代的海岸線<ref name=Baker />。海平面一定是萬有引力的等勢面。經過因為火山活動造成[[極點飄移]]的校正後,火星的古代海岸線也符合重力等勢面<ref name=Zuber>Zuber, Maria T., 2007: Planetary Science: Mars at the tipping point, ''Nature'', 447, 785-786.</ref>。火星衛星雷射測高儀(Mars Orbiter Laser Altimeter, MOLA)精確測定火星表面的高程後,發現火星古代的分水嶺覆蓋火星表面三分之一<ref>Smith, D. et al. 1999. Science: 284.1495</ref>。 |
|||
=== 理論 === |
|||
液態水要能在火星表面存在必須要有較溫暖氣候和較厚的[[火星大氣層|大氣層]]。現在的火星氣壓只在地勢較低處剛好超過[[三相點]]的壓力(6.11[[帕斯卡|百帕]]);在地勢較高處只有水冰和水蒸氣能存在。火星表面的年平均地表溫度少於210° K,遠低於能使液態水存在的溫度;但是,火星早期也許有適合液態水在火星表面存在的條件。 |
|||
最近的模擬計算顯示,火星古代可能的海洋水量與地球海洋的水量相當。 |
|||
火星古代海洋的水可能逃逸到大氣或凝固在南北極冰帽,也可能在土壤之中<ref>Carr, M. and J. Head III. 2003. Oceans on Mars: An assessment of the observational evidence and possible fate. Journal of Geophysical Research: 108. 5042.</ref>。 |
|||
=== 相反意見 === |
|||
火星古代是否存在海洋在許多科學家之間引起爭議<ref>{{cite web |url=http://astrobiology.nasa.gov/articles/mars-ocean-hypothesis-hits-the-shore/ |title=存档副本 |accessdate=2012-01-17 |deadurl=yes |archiveurl=https://web.archive.org/web/20120220081803/http://astrobiology.nasa.gov/articles/mars-ocean-hypothesis-hits-the-shore/ |archivedate=2012-02-20 }}</ref>。火星偵察軌道器的高解析度成像科學設備在火星古代海洋發現大型的圓石塊,但這些圓石塊應該是只在細顆粒泥沙中被發現<ref name=Kerr>Kerr, Richard A., 2007: Is Mars Looking Drier and Drier for Longer and Longer?, ''Science'', 317, 1673.</ref>。這些地表特徵對於火星古代是否有海岸線造成挑戰;這也可能是因為火山而形成<ref name=CarrandHead>Carr, M. H. and J.W. Head, 2002: Oceans on Mars: An assessment of the observational evidence and possible fate, ''Journal of Geophysical Research'', 108.</ref>。 |
|||
== 火星所含水量維持生命的可能性 == |
|||
就目前人類所知道的生命型態都需要水。一般相信火星曾經有大量的水可以形成湖泊和大規模的峽谷<ref>Cabrol, N. and E. Grin. 2001. The Evolution of Lacustrine Environments on Mars: Is Mars Only Hydrologically Dormant? Icarus: 149. 291-328.</ref><ref>{{Cite web |url=http://www.space.com/scienceastronomy/080306-mars-lake.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2009-07-16 |archive-url=https://web.archive.org/web/20090716170602/http://www.space.com/scienceastronomy/080306-mars-lake.html |dead-url=no }}</ref>。在火星地表下已發現大量凍結的水冰。儘管如此,仍然有許多尚待解決的課題:火星液態水存在火星表面的時間<ref>Gulick, V. and V. Baker. 1989. Fluvial valleys and martian palaeoclimates. Nature: 341. 514-516.</ref><ref>Head, J. et al. 2001. Water in Middle Mars History: New Insights From MOLO Data. American Geophysical Union, Spring Meeting</ref><ref>Head, J. et al. 2001. Exploration for standing Bodies of Water on Mars: When Were They There, Where did They go, and What are the Implications for Astrobiology?. American Geophysical Union, Fall Meeting</ref>、液態水是否曾經存在火星表面、是否有過適合生命存在的特殊環境、火星生命在火星的環境轉變成對生命不利以後是否還長期存在、火星生命能否存在於高鹽分和強酸環境,以及火星表面的水是否存在足夠長的時間讓生命足以發展和演化。 |
|||
火星許多區域長時期都相當乾燥,否則[[橄欖石]]應該已被水分解<ref>{{Cite web |url=http://wwwspace.com/scienceastronomy/solarsystem/mars_dry_001701.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2019-06-02 |archive-url=https://web.archive.org/web/20190602082109/http://wwwspace.com/scienceastronomy/solarsystem/mars_dry_001701.html |dead-url=yes }}</ref>;另一方面,在火星許多地方發現的黏土和硫酸鹽表示火星表面曾經有液態水<ref name="wwwspaceref.com">http://wwwspaceref.com/news/viewpr.html?pid=26817{{dead link|date=2018年3月 |bot=InternetArchiveBot |fix-attempted=yes }}</ref>。硫酸鹽的存在引出一些問題:硫酸鹽是在酸性環境中形成的<ref>{{Cite web |url=http://wwwspace.com/scienceastronomy/081218-agu-mro-carbonate.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2019-06-08 |archive-url=https://web.archive.org/web/20190608181924/http://wwwspace.com/scienceastronomy/081218-agu-mro-carbonate.html |dead-url=yes }}</ref>,因此這引發生命是否能在酸性環境中生長的問題<ref>http://reports/Nicaraguan_Volcano_Provides_Insight_IntorEarly_Mars_999.html{{dead link|date=2018年3月 |bot=InternetArchiveBot |fix-attempted=yes }}</ref><ref>{{Cite web |url=http://www.space.com/scienceastronomy/080501-am-mars-life-iron.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2008-11-06 |archive-url=https://web.archive.org/web/20081106172824/http://www.space.com/scienceastronomy/080501-am-mars-life-iron.html |dead-url=no }}</ref>。但是,生命能否在酸性環境中出現也是未解決的問題<ref>http://blogs.discover{{dead link|date=2018年3月 |bot=InternetArchiveBot |fix-attempted=yes }} magazine.com/80beats/2008/05/30/mars-water-suited-for-pickles-not-for-life-2/</ref>。含有大量鹽的土壤可能是生命存在的阻礙<ref>{{Cite web |url=http://wwwspace.com/scienceastronomy/080529-salty-mars-v2.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2019-06-11 |archive-url=https://web.archive.org/web/20190611040714/http://wwwspace.com/scienceastronomy/080529-salty-mars-v2.html |dead-url=yes }}</ref>。鹽長期以來被人類用來作為防腐劑,因為許多生物不能存在高濃度鹽水中([[嗜鹽生物]]是例外)<ref>Boston, P. et al. 1992. On the Possibility of Chemosynthetic Ecosystems in Subsurface Habitats on Mars. Icarus: 95. 300-308.</ref>。鳳凰號在火星土壤中發現[[高氯酸鹽]],一種高氧化性的化學物質。雖然一些生物會利用高氯酸鹽,但對於大多數生物而言這是有毒物質;其他研究人員表示火星某些區域可能對於生物的毒性較低<ref>{{Cite web |url=http://www.space.com/scienceastronomy/090414-st-perchlorate-sludge.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2009-06-05 |archive-url=https://web.archive.org/web/20090605023436/http://www.space.com/scienceastronomy/090414-st-perchlorate-sludge.html |dead-url=no }}</ref><ref>http://www.jpl.nasa.gov/news.cfm?release=2009-106</ref>。碳酸鹽並不會在酸性溶液中形成,但是在落到地球的火星隕石中可以找到。另外鳳凰號火星探測器和火星偵察軌道器的CRISM光譜資料中也發現碳酸鹽的存在<ref>{{Cite web |url=http://www.sciencedaily.com/releases/2008/12/081218141718.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2016-03-04 |archive-url=https://web.archive.org/web/20160304072712/http://www.sciencedaily.com/releases/2008/12/081218141718.html |dead-url=no }}</ref><ref>Mittlefehldt, D. 1994. ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan. Meteortics: 29. 214-221</ref>。 |
|||
[[火星探測漫遊者]]團隊中的[[班頓·克拉克]](Benton Clark III)認為火星如果曾經存在微生物,也許可以用幾百萬年時間適應環境<ref>{{Cite web |url=http://www.astrobio.net/wxclusive/1163/life-on-mars-a-definite-possibility |title=存档副本 |accessdate=2010-03-30 |archive-date=2011-06-04 |archive-url=https://web.archive.org/web/20110604120935/http://www.astrobio.net/wxclusive/1163/life-on-mars-a-definite-possibility |dead-url=no }}</ref>。確實,一些生物確實可以用一段短時間適應極端環境。在地球上永凍層50公尺深處的研究發現,一半在一千萬年前死亡的微生物可以從放射性同位素的衰變累積足夠的輻射;但如果生物每隔數百萬年重新出現,生命體本身將可以自我修復,尤其是DNA<ref>Cowen, R. 2003. Martian Invasion. Science News: 164. 298-300.</ref><ref>McKay, C. 1997. Looking for Life on Mars. Astronomy: August. 38-43.</ref>;其他科學家也同意這一點。在地球上一些極端環境中發現生物的存在讓人類對於在火星上找到生命更加抱持希望<ref>Gilichinsky, D. et al. 2007. Microbal Populations in Antarctic Permafrost: Biodiversity, State, Age, and Implication for Astrobiology. Astrobiology: 7. 275-311.</ref><ref>Raeburn, P. 1998. Mars. National Geographic Society. Washington, D.C.</ref><ref>Allen, C. et al. 2000. Microscopic Physical Biomarkers in Carbonate Hot Springs: Implications in the Search fo Life on Mars. Icarus: 147. 49-67.</ref>。地球上的微生物可以在加拿大的北極區或南極冰川下三公里處生存<ref>Fredrickson, J. and T. Onstott. 1996. Microbes Deep inside the Earth. Scientific American:275(4) 68-73</ref>,因此也可能有微生物在火星的冰冠底下生存。在1980年代有人主張微生物可能可以在地表下數公尺處生存<ref>Pedersen, K. 1993. The deep subterranean biosphere. Earth-Science Reviews: 34. 243-260</ref>;今日我們知道有多種微生物可以在地下超過一公里深處存活。有些生物可以利用火山活動是放出的甲烷、氫、硫化氫等氣體維生。火星可能曾經有廣泛的火山活動<ref>Stevens, T and J. McKinley. 1995. Lithoautotrophic Microbial Ecosystems in Deep Basalt Aquifers. Science: 270. 450-454</ref>;因此火星古代如果有生命,可能會在靠近火山的區域或者是可以保留高熱岩漿的地下區域<ref>Payne, M and J. Farmer. 2001. Volcanic-Ice Interactions and the Exploration for Extant Martian Life. American Geophysical Union, Fall Meeting, 2001</ref>。有些生物可以生存在玄武岩(火星上最常見的岩石)內,並產生甲烷。目前已有對火星上的甲烷進行研究<ref>{{cite web |url=http://dsc.discovery.com/news/2009/08/12/mars-life.html |title=存档副本 |accessdate=2010-12-19 |deadurl=yes |archiveurl=https://web.archive.org/web/20110416092053/http://dsc.discovery.com/news/2009/08/12/mars-life.html |archivedate=2011-04-16 }}</ref>。最近有人主張火星上的甲烷有部份是因為火星上的生物產生的,因為甲烷無法在火星大氣層中長期存在<ref>{{Cite web |url=http://www.space.com/scienceastronomy/mars_methane_040329.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2010-01-05 |archive-url=https://web.archive.org/web/20100105161242/http://www.space.com/scienceastronomy/mars_methane_040329.html |dead-url=no }}</ref>。有些生物會以硫化物為食物;在火星上大片區域也能找到相同的硫化物。部分科學家主張有許多群生物可以在靠近火山的高地熱區存活。研究顯示有些種類生物可以在極高溫(80° to 110°C)下存活<ref>Huber, R. et al. 1990. Hyperthermophilic archaebacteria within the crater and open-sea plume of erupting Macdonald Seamount. Nature: 345. 179-182.</ref>。因為火星上曾有許多火山活動,有人認為火星上可能還有尚未完全冷卻的區域<ref>Walter, M. and D. DesMarais. 1993. Preservation of Biological Information in Thermal Spring Deposits: Developing a Strategy for the Search for Fossil Life on Mars. Icarus: 101. 129-143</ref>。地下的熔岩管道也許可以將地下的冰溶化,之後水流往地表。類似黃石國家公園內溫泉遺跡的地理特徵已經被火星偵察軌道器發現<ref>Allen, C. and D. Oehler. 2008. A Case for Ancient Springs in Arabia Terra, Mars. Astrobiology: 8.1093-1112</ref><ref>http://www.spaceref.com/news/viewpr.html?pid=27553</ref>。和溫泉相關的礦物,如蛋白石和矽石已經被精神號火星探測車發現,火星偵察軌道器的影像中也發現相關礦物<ref name="wwwspaceref.com"/>。奧林帕斯山等火山被認為在火星上是相對年輕的地質構造,但目前在這些火山表面並未發現高溫區域。火星全球探勘者號使用TES對火星地表進行大量的紅外線影像攝影。火星奧德賽號的THEMIS也使用紅外線對火星表面進行攝影以測定地表溫度。 |
|||
火星的大氣層極為稀薄;但仍然有水蒸氣。地球上有些種類生物可以在類似的環境下生存。國際太空站內一個叫做Expose-E的實驗中發現,[[麗石黃衣]](Xanthoria elegans)這種[[地衣]]可以在接近真空的狀態下存活18個月<ref>http://www.spaceref.com/news/viewpr.html?pid=30168</ref>。 |
|||
液態水在火星表面存在的可能性已經有相關實驗進行過。雖然液態水在火星表面可能會立刻沸騰或蒸發,湖泊大小的水體可能會快速被一層冰覆蓋,而這層冰可以減少蒸發。如果水冰上被塵土或其他沉積物覆蓋,冰下的水就可以保存一段時間,甚至可以成為在冰下流動的冰下河<ref>Wallace, D. and C. Sagan. 1979. Evaporation of Ice in Planetary Atmospheres: Ice-Covered Rivers on Mars. Icarus: 39. 385-400.</ref>。大量的水可能會因為小行星的撞擊而流出;因此有的研究認為有些火星生命已經在火星存活幾百萬年,牠們可以靠著彗星或小行星的週期性撞擊使冰溶化的過程中從休眠恢復並存活數千年<ref>Segura, T. et al. 2001. Effects of Large Impacts on Mars: Implication for River Formation. American Astronomical society, DPS meeting</ref><ref>Segura, T. et al. 2002. Environmental Effects of Large Impacts on Mars. Science: 298. 1977-1980.</ref>;但如果撞擊帶走水,液態水就可能長期在火星表面消失。一般認為當撞擊事件可以造成巨大洪水,使火星上的巨大河谷在短時間(可以只有數天)內形成<ref>Baker, V. and D. Milton. 1974. Erosion by Catastrophic Floods on Mars and Earth. Icarus: 23. 27-41</ref>。現在一般認為火星曾有大量的水是因為有許多巨大的河谷的存在<ref name="Harrison 2005"/><ref name="Howard, A. 2005"/>;也許火星的河谷並不像地球的河谷需要數億年的時間形成<ref>Christensen, P. 2005. The Many Faces of Mars. Scientific American: 293. 32-39.</ref>。在美國[[華盛頓州]]東部的巨大河谷系統相當類似許多火星河谷;而該河谷可能是因為古代一個因為巨大冰牆形成的堰塞湖潰堤形成的巨大洪水沖蝕,在短時間內形成;因此現在的火星可能無法包含大量的水,也無法提供足夠的水讓生命有夠長的時間存在。 |
|||
我們知道生物可以適應環境的變化。有一種土壤中的[[變形蟲]],Naegleria gruberi可以快速長出兩條[[鞭毛]]來游泳。但周圍環境變得乾燥時,它可以變成一個硬[[囊腫]]以保持適度和溫度以再次變成變形蟲<ref>{{Cite web |url=http://www.sciencedaily.com/releases/2010/03/100304121542.html |title=存档副本 |accessdate=2010-03-30 |archive-date=2016-03-04 |archive-url=https://web.archive.org/web/20160304105557/http://www.sciencedaily.com/releases/2010/03/100304121542.html |dead-url=no }}</ref>。 |
|||
研究顯示在火星土壤中發現多種可以抗凍的鹽類,可以讓水在冰點下數度仍保持液態<ref>http://www.spaceref.com/news/viewpr.html?pid=28377</ref><ref>Fairen, A. et al. 2009. Stability against freezing of aqueous solutions on early Mars. Nature: 459. 401-404.</ref>。有的計算顯示少量的液態水也許可以在火星表面數個地方存在數小時<ref>Kreslavsky, M. et al. 2006. Periods of Active Permafrost Layer Formation During the Geological History of Mars: Implication for Circum-Polar and Mid-Latitude surface Processes. Planetary and space Science Special Issue on Polar Processes: 56. 266-288.</ref>。有些科學家考慮隔熱和壓力的狀況進行計算,結果顯示液態水可以在一些地區存在十分之一個火星年之久<ref>Lobitz, B. et al. 2001. Special feature: Use of spacecraft data to derive regions on Mars where liquid water would be stable. Proc. natl. Acad. Sci. 98. 2132-2137</ref>;其他研究人員則是預測液態水只能存在2%火星年的時間<ref>Haberie, et al. 2001. On the possibility of liquid water on present-day Mars. J. Geophysical Research: 106. 23317-23326.</ref>。無論哪個結果,這樣的水量已經足夠讓一些耐乾燥的生物生存。這些耐乾燥的生物也許不需要大量的水;在地球上已經發現一些生物可以生存在極薄的液態水中,而這些水是位在冰凍區<ref>{{Cite web |url=http://www.universetoday.com/2008/09/04/phoenix-probe-says-both-yes-and-no-to-water-on-mars/ |title=存档副本 |accessdate=2010-03-30 |archive-date=2010-01-11 |archive-url=https://web.archive.org/web/20100111073746/http://www.universetoday.com/2008/09/04/phoenix-probe-says-both-yes-and-no-to-water-on-mars/ |dead-url=no }}</ref>。2009年12月,有研究顯示液態水可以在水星的白天形成雪。當太陽的熱能加熱冰,冰可能會加熱和冰一起存在的土壤;這些被加熱的土壤將可以儲存熱能,融化冰形成水。這樣的過程已經在地球的[[南極洲]]被發現。足夠維持生命的水可以在物理、化學和生物的過程中形成<ref>{{Cite web |url=http://www.newscientist.com/article/mg20427373.700 |title=存档副本 |accessdate=2010-03-30 |archive-date=2013-10-07 |archive-url=https://web.archive.org/web/20131007014344/http://www.newscientist.com/article/mg20427373.700 |dead-url=no }}</ref><ref>news.softpedia.com/news/Greenhouse-Effect-on Mars-May-Be-Allowing-for-Life-129065.shtml</ref>。 |
|||
== [[愚人節]]玩笑 == |
|||
2005年4月1日,NASA官方網站有張圖是「火星上的水」,但實際上是一杯水放在兩條「Mars Bar」牌[[巧克力棒]]上<ref>{{cite web|url=http://antwrp.gsfc.nasa.gov/apod/ap050401.html|title=APOD: 2005 April 1 - Water on Mars|publisher=NASA|accessdate=2007-03-29|archive-date=2011-01-13|archive-url=https://web.archive.org/web/20110113072423/http://antwrp.gsfc.nasa.gov/apod/ap050401.html|dead-url=no}}</ref>。 |
|||
==交互地图== |
==交互地图== |
||
{{火星交互式地图}} |
{{火星交互式地图}} |
||
== 另请查看 == |
|||
{{div col|colwidth=30em}} |
|||
* {{annotated link|火星大气层#水汽|火星大气层中的水}}–环火星的气体层。 |
|||
* {{annotated link|火星气候}}–类地行星的气候模式。 |
|||
* {{annotated link|火星殖民}}–人类在火星定居的拟议概念。 |
|||
* {{annotated link|火星和地球上水的演化}} |
|||
* {{annotated link|地外液态水}}–地球外自然存在的液态水。 |
|||
* {{annotated link|火星湖泊}}–火星上湖泊的存在概述。 |
|||
* {{annotated link|火星生命}}–火星上微生物宜居性的科学评估。 |
|||
* [[火星快车号#科学发现和重要事件|火星快车号§科学发现和重要事件]] |
|||
* [[火星全球探勘者号#发现火星表面水的存在|火星全球探勘者号§火星上水冰的发现]] |
|||
* {{annotated link|火星运河}} –19世纪末20世纪初火星上存在运河的想法。 |
|||
* {{annotated link|火星泥裂缝}} |
|||
{{div col end}} |
|||
== 参考文献 == |
|||
{{reflist|colwidth=30em}} |
|||
== 外部链接 == |
|||
{{Commons|火星水文}} |
|||
* [https://science.nasa.gov/science-news/science-at-nasa/2012/27sep_streambed/ 美国宇航局—“好奇号”探测车发现了古河床的证据—2012年9月] |
|||
== 參見 == |
|||
* [http://marsoweb.nas.nasa.gov/HiRISE/hirise_images/ 图像—火星上水的迹象]([[高分辨率成像科学设备]] |
|||
{{Portal box|火星|航天}} |
|||
* [https://www.youtube.com/watch?v=HQKnDdB36zY 视频(02:01)—火星上发现的液态流水—2011年8月] |
|||
{{colbegin}} |
|||
* [https://www.youtube.com/watch?v=Jr1Xu2i-Uc0 视频(04:32)—证据:水“强劲”地在火星上流动—2012年9月] |
|||
* [[火星地質]] |
|||
* [https://www.youtube.com/watch?v=WH8kHncLZwM 视频(03:56)—测量火星远古海洋—2015年3月] |
|||
* [[外星生命]] |
|||
* [https://www.youtube.com/watch?v=m2ERsEXAq_s - 杰弗里·普劳特-地下冰-2018年第21届国际火星协会年会] |
|||
* [[火星大氣層]] |
|||
*[https://www.youtube.com/watch?v=1plIgTG9x-A 克里斯·麦凯:凤凰号火星任务和地球模拟地点的结果] |
|||
* [[火星氣候]] |
|||
*火星地球化不可能使用现在的技术<ref>{{Cite news|url=https://www.nasa.gov/press-release/goddard/2018/mars-terraforming|title=Mars Terraforming Not Possible Using Present-Day Technology|last=Steigerwald|first=Bill|date=2018-07-25|work=NASA|access-date=2018-11-26|language=en}}</ref> |
|||
* [[火星的火山活動]] |
|||
* [[火星快車號]] |
|||
* [[火星全球探勘者號]] |
|||
* [[2001火星奧德賽號]] |
|||
* [[鳳凰號火星探測器]] |
|||
* [[地外液态水]] |
|||
* [[火星殖民]] |
|||
* [[溢出河道]] |
|||
* [[舌狀岩屑坡]] |
|||
* [[撞击翻搅]] |
|||
* [[地形软化]] |
|||
* [[莫哈韦陨击坑]] |
|||
* [[矿物水合作用]] |
|||
{{colend}} |
|||
== 參考資料 == |
|||
{{Reflist|2}} |
|||
== 外部链接 == |
|||
* [http://marsoweb.nas.nasa.gov/HiRISE/hirise_images/ High resolution images of Mars—detailed observation of water signs] {{Wayback|url=http://marsoweb.nas.nasa.gov/HiRISE/hirise_images/ |date=20100327111054 }} |
|||
* [http://science.nasa.gov/headlines/y2001/ast05jan_1.htm The Case of the Missing Mars Water] {{Wayback|url=http://science.nasa.gov/headlines/y2001/ast05jan_1.htm |date=20100326142821 }} |
|||
* [http://en.wikinews.org/wiki/Special:Search?search=water+mars&fulltext=Search Wikinews articles about water on Mars] {{Wayback|url=http://en.wikinews.org/wiki/Special:Search?search=water+mars&fulltext=Search |date=20170304035605 }} |
|||
* [http://www.space.com/scienceastronomy/solarsystem/mars_tharsis_011009-1.html] {{Wayback|url=http://www.space.com/scienceastronomy/solarsystem/mars_tharsis_011009-1.html |date=20100426050958 }} - for Mars animation of how Tharsis evolved and affected the amount of water on the planet. |
|||
{{-}} |
|||
{{火星}} |
{{火星}} |
||
{{Portal bar|天文学|生物学|太阳系}} |
|||
[[Category:火星]] |
[[Category:火星]] |
||
[[Category:行星地 |
[[Category:行星地质学]] |
2021年10月9日 (六) 11:42的版本
今天火星上几乎所有的水都是以冰的形式存在,此外,大气层中也分布有极少量的水蒸气[5],被认为是浅层火星土壤中低流量的液态卤水,也称为重现性斜坡线[6][7],可能是山坡上滑落流沙形成的黑色条纹[8]。在地表,可看到水冰的唯一地方是北极冰盖[9],而火星南极永久二氧化碳冰盖下和环境更温和的浅层地表下也可能存有丰富的水冰[9] Abundant water ice is also present beneath the permanent carbon dioxide ice cap at the Martian south pole and in the shallow subsurface at more temperate conditions.[10][11][12]。现已在火星表面或近地表下探测到超过 500 万公里3的冰,足以覆盖整个行星 35 米(115 英尺)深[13],更多的水冰很可能被锁在地下深处[14]。 今天的火星表面可能会短暂地出现一些液态水,但仅限于来自大气层和薄膜的微量溶解水分,这对已知生命来说是具有挑战性的环境[7][15][16]。行星表面不存在大型液态水体,因为那里的平均气压只有 610 帕斯卡(0.088磅每平方英寸),这一数字略低于水在三相点的蒸气压。在火星平均条件下,表面变暖的水会升华,这意味着直接从固体转变为蒸汽;相反,冷却的水会沉积,意味着直接从气体转变为固体。大约在 38 亿年前,火星可能拥有更稠密的大气层和更高的表面温度,允许地表存在大量的液态水[17][18][19][20],可能还包括一片覆盖了火星三分之一表面[21][22][23]的海洋[24][25][26][27]。在火星历史的最近一段时间里,水显然也以不同的间隙在短时间内流过地表[28][29][30]。好奇号火星车探索的盖尔撞击坑中的埃俄利斯沼就是一座古老的淡水湖地质遗迹,可能是微生物生命宜居的环境[31][32][33][34]。目前火星上的水资源贮量可通过航天器成像、遥感技术(光谱测量)[35][36]、雷达[37]等)以及着陆器和漫游车的表面勘查来估计[38][39]。过去水的地质证据包括洪水蚀刻出的巨大溢出河道[40]、古河谷网[41][42]、三角洲[43]和湖床[44][45][46][47]以及探测到只在液态水中形成的地表岩石和矿物质[48]。许多地貌特征表明,在最近[49][50][51][52]和现在[53]的一段时期中,存在地面冰(永久冻土)[54]和冰川中冰的移动;悬崖和陨石坑壁上的冲沟和暖坡线表明,水流仍在继续塑造着火星表面,尽管程度远低于古代。
虽然火星表面周期性地潮湿,并在数十亿年前可能适合微生物生活[55],但现今的地表环境极度干燥且温度低于冰点,可能对生物体构成了无法逾越的障碍。此外,火星缺乏厚厚的大气层、臭氧层和地磁场,因此太阳和宇宙辐射可以畅通无阻地撞击地表,电离辐射对细胞结构的破坏作用是影响地表生命生存的另一项主要限制因素[56][57]。因而,发现火星生命的最佳潜在地点可能是地下环境[58][59][60]。在火星上发现了大量的地下冰,检测到的水量相当于一座苏必利尔湖[2][3][4]。2018 年,科学家們报告說,在火星南极冰盖 下1.5 公里(0.93 英里)处发现了一座冰下湖,水平范围约 20 公里(12 英里),这是火星上第一个已知的稳定液态水体[61][62]。
了解火星上水的分布和状况对评估火星孕育生命和为未来人类探索提供可用资源的潜力至关重要。正因如此,“跟随着水”成为美国宇航局火星探索计划(MEP)在 21 世纪头十年中的科学主题。美国宇航局和欧空局的探测任务,包括 2001 火星奥德赛号、火星快车号、火星探索漫游者(MERs)、火星勘测轨道飞行器 (MRO) 和火星凤凰号着陆器,提供了有关火星上水的丰度和分布信息[63]。火星奥德赛号、火星快车号、火星勘测轨道飞行器和火星科学实验室登陆器好奇号漫游车仍在运行,并且不断有所发现。
2020 年 9 月,科学家证实在火星南极地区冰层下存在数座大型咸水湖。根据其中一位研究人员的说法,“我们确认了相同的水体 [正如早期初步探测中所建议的那样],但我们还在主要水体周围发现了另外三处水体......这是一个复杂的系统”[64][65]。2021 年 3 月,研究人员报告说,古代火星上的大量水仍留在火星上,但多年来,大部分水可能已被隔绝在行星岩石和地壳中[66][67][68][69]。
历史背景
火星上有水的概念比太空时代早了数百年,早期的望远镜观察者正确推断了白色极冠和云是水存在的迹象。这些观察结果,加上火星一天有24 小时的事实,导致天文学家威廉·赫歇尔在 1784 年宣布火星可能为其居民提供了“在许多方面与我们相似的环境”[70]。
到 20 世纪初,大多数天文学家都认识到火星比地球更冷、更干燥。存在海洋的说法不再被接受,因此,观念转变为将火星描绘成一颗只拥有少量水的“垂死”星球,所看到的季节性变化幽暗区被认为是大片的植被[71]。对传播这种火星观负有最大责任的是帕西瓦尔·洛厄尔(1855年-1916年),他想象了一个建造运河网,将水从两极输送给赤道居民的火星种族,虽引起了巨大的公众效应,但洛厄尔的这种想法却并不被大多数天文学家接受。英国天文学家爱德华·沃尔特·蒙德(1851-1928 年)对当时科学界的主流观点做了最好的总结,他将火星气候与北极岛屿上两万英尺高山峰上的条件作了比较[72],在那里只有地衣才可能存活下来。
与此同时,许多天文学家正在改进有望能检测火星大气层成分的行星光谱仪。1925 年至 1943 年间,威尔逊山天文台的沃尔特·亚当斯和西奥多·邓纳姆尝试在火星大气层中找到氧气和水蒸气,但结果通常都是负面的。火星大气层中唯一所知的成分是二氧化碳 (CO2),由杰拉德·柯伊伯在1947 年通过光谱确定[73]。直到1963年,才在火星上明确检测到了水蒸气[74]。
自卡西尼(1666年)时代以来,极地冰盖的成分一直被认为是水冰,但在19世纪末,由于该行星总体温度较低,且明显缺乏可感知的水,一些倾向于二氧化碳冰的科学家对此提出了质疑。罗伯特·莱顿和布鲁斯· 穆雷在1966年从理论上证实了这一假说[75]。今天,我们知道火星两极的冬季冰盖主要由二氧化碳冰组成,但北极夏季仍保留有永久(或常年)的水冰盖,在南极,夏季仍有一小部分二氧化碳冰存在,但这层冰盖下也有水冰。
火星气候的最后一块拼图由水手4号在1965年补齐,来自航天器雪花点般的电视图像显示,撞击陨石坑占据了整个表面,这意味着该地表非常古老,没有经历过地球上所见的侵蚀和构造活动。极少的侵蚀意味着液态水可能在几十亿年的时间里都没有在行星地貌中扮演重要角色[76]。此外,当宇宙飞船从火星背面经过时,无线电信号的变化使科学家能够计算出大气层的密度,结果表明火星大气压不到地球海平面的1%,彻底排除了液态水的存在,在如此低的压力下,液态水会迅速沸腾或冻结[77]。由此,诞生出了一种与月球世界极为相似,仅拥有一缕大气吹拂周围尘埃的火星印象,这一印象将持续近十年,直到水手9号揭示出一颗更具活力、过去环境比现在更温和的火星。
2014年1月24日,美国宇航局报告说,“好奇号”和“机遇号”火星车目前对火星的研究将是寻找古代生命的证据,包括基于自养、化能和/或化能无机自养微生物生物圈,以及包括可能宜居的河湖环境(与古代河流或湖泊有关的平原)的古代水[78][79][80]。
多年来,人们一直认为观测到的洪水遗迹是由全球地下水释放所造成,但2015年发表的研究揭示,4.5亿年前形成的局部沉积物和冰才是洪水的源头[81]。“在火星北部低地的原始海洋下,河流和冰川融化的淤积物沉积在巨大的峡谷中,正是这些峡谷沉积物中保存的水,后来释放为大洪泛,其影响在今天仍可看到”[40][81]。
岩石和矿物的证据
人们普遍认为,火星历史早期曾拥有丰富的水[82][83],但此后,所有大面积的液态水都消失了。现代火星上只有一小部分水以冰和富含水冰的物质如:粘土矿物(页硅酸盐)、硫酸盐等被保留了下来[84][85]。氢同位素比值的研究表明,超过2.5个天文单位距离的小行星和彗星提供了火星的水源[86],目前地球上这种水源占现有海洋总量的6%至27%[86]。
风化物中的水(含水矿物)
火星表面的主要岩石类型为玄武岩,一种主要由橄榄石、辉石和斜长石等铁镁质硅酸盐矿物组成的细粒火成岩[87]。当暴露于水和大气中时,这些矿物会通过化学作用风化成新的(次生)矿物,其中一些可能以H2O或羟基(OH)的形式将水结合到晶体结构中。水合(或羟基化)矿物的示例包括氢氧化铁针铁矿(地球土壤中的常见成分)、蒸发岩矿物石膏和硫镁矾、蛋白石硅石和页硅酸盐(也称为粘土矿物),如高岭石、蒙脱石等,所有这些矿物在火星都已被检测到[88]。
化学风化的一个直接影响是消耗水和其他活性化学物质,将它们从大气层、水圈等流动储层中带走,并隔绝在岩石和矿物中[89]。目前火星地壳中以水合矿物形式储存的水量尚不清楚,但可能相当大[90]。例如,机遇号探测车在子午线高原检测的岩石露头矿物模型表明,那里的硫酸盐沉积物按重量计可能含有高达22%的水[91]。
在地球上,所有的化学风化反应都或多或少与水有关[92],因此,许多次生矿物实际上虽不含水,但仍需要水才能形成。一些无水次生矿物包括很多种碳酸盐、部分硫酸盐(如硬石膏)和金属氧化物,如氧化铁矿物赤铁矿。在火星,理论上这些风化产物中的一些可以在无水,或少量以冰或分子级水膜(单层)形式存在的水中形成[93][94],这种奇特的风化过程在火星上所起的作用程度仍不确定。含有水或在水中形成的矿物通常被称为“含水矿物”。
含水矿物是矿物形成时所处环境类型的敏感指标。水反应发生的难易程度(参见吉布斯自由能)取决于压力、温度以及所涉及气体和可溶性物质的浓度[95]。两个重要的特性指标是酸碱值(pH)和氧化还原电位(Eh),如硫酸盐矿物黄钾铁矾仅在低pH值(高酸性)水中形成;而页硅酸盐通常则生成于中性至高pH值(碱性)水中。氧化还原电位(Eh)是一种测量水系统氧化状态的量度,Eh和pH值共同表明热力学上最稳定的矿物类型,因此最有可能给出一系列含水成分的类型。因此,过去火星上的环境条件,包括那些有利于生命的环境条件,可从岩石的矿物类型上推断出来。
热液蚀变
含水矿物也可以通过热液经孔隙和裂缝的迁移在地下形成,驱动热液系统的热源可能来自附近的岩浆体或大型撞击产生的余热[96]。地球海洋地壳中一种重要的热液蚀变类型为蛇纹岩化,当海水流经超基性岩和玄武岩时就会发生。水-岩反应导致橄榄石和辉石中的二价铁氧化为三价铁(如磁铁矿),并产生出副产品-分子氢 (H2) 。该过程创造出了一种高碱性和低氧化还原电位的环境,有利于形成某些页硅酸盐(蛇纹石矿物)和各类碳酸盐矿物,它们共同形成了一种称作蛇纹岩的岩石[97],所产生的氢气则可能成为化能合成生物的重要能源,也可与二氧化碳反应生成甲烷气体,这一过程被认为是所报道火星大气层中痕量甲烷的非生物来源[98]。蛇纹石矿物也能在晶体结构中储存大量的水(如羟基)。最近的一项研究表明,火星古高地地壳中推断的蛇纹岩可容纳500米(1600英尺)厚的全球等效水层[99]。尽管在火星上已发现了一些蛇纹岩矿物,但从遥感数据来看,尚没有明显的大面积露头[100],而这一事实并不排除隐藏在火星地壳深处大量蛇纹岩的存在。
风化速率
原生矿物转化为次生含水矿物的速率各不相同,来自岩浆中的原生硅酸盐矿物是在远高于行星表面温度和压力条件下结晶的,一旦暴露在地表环境中,这些矿物将会失去平衡,倾向于与所接触到的化学成分相互作用,形成更稳定的矿物相。一般来说,在最高温度下结晶(先在冷却岩浆中凝固)的硅酸盐矿物风化速度最快[101]。在地球和火星上,符合这一标准的最常见矿物是橄榄石,它在有水的情况下很容易风化成粘土矿物。
橄榄石在火星上分布广泛[102],表明火星表面并没有被水彻底改变,而大量的地质证据又显示情况并非如此[103][104][105]。
火星陨石
现已发现了60多颗来自火星的陨石[106],其中一些有证据表明在火星上时就曾接触过水。部分被称为玄武质辉玻无球陨石(休格地陨石)的火星陨石,似乎(由于存在水合碳酸盐和[]硫酸盐]])在被弹射到太空前就已暴露在液态水中了[107][108];而另一类辉橄无球陨石(奈克拉陨石),已被证明形成于火星上到处都布满液态水的6.2亿年前,并约在1075万年前,因小行星撞击而从火星上溅射出来,在过去一万年中坠入到地球[109];火星陨石西北非7034比大多数其他火星陨石含水量多一个数量级,与火星车研究过的玄武岩相似,约形成于早亚马逊世[110][111]。
1996年,一组科学家报告说,来自火星的艾伦丘陵陨石84001可能含有微化石[112],但许多研究主要基于这些假定化石的形状,因此,对其解释的有效性受到质疑[113][114],人们发现陨石中所含大部分有机物质其实均源自地球[115]。此外,科学界的共识是“形态学本身不能明确用作探测原始生命的工具”[116][117][118],形态学的解释是出了名的主观,它的单独使用曾导致过无数错误的解释[116]。
地貌证据
湖泊和河
1971年的水手9号宇宙飞船引发了一场对火星之水认知的革命,在许多地区发现了巨大的河谷。图像显示,洪水冲溃了堤坝,蚀刻出深谷,在岩床上冲刷出道道沟壑,一路肆虐数千公里[40];南半球的分支溪流区域表明,那里曾经有过降雨[119][120]。随着时间的推移,被认出的河谷数量在不断增加。2010年6月发表的一项研究绘制了火星上40000条河谷,大约是之前所确认的四倍[23]。火星上水流侵蚀的特征可分为两大不同类别:1)诺亚纪年代的河谷网道,树枝状(分岔),类地规模,分布广泛;2) 赫斯珀里亚纪年代的溢出河道,硕大绵长、孤立单线型。最近的研究表明,在中纬度地区可能还存在一类目前费解的更小更年轻(从赫斯佩里亚纪到亚马逊纪)河道,可能与偶发的局部冰沉积物融化有关[121][122]。
火星某些地区常呈现出倒转地形,当沉积在河床上的沉积物胶结在一起使抗侵蚀力增强后就会发生这种情况。之后,该区域可能被掩埋,外层覆盖层随侵蚀而剥离消失,但原来的河床因耐侵蚀而变得清晰可见。火星全球探勘者号发现了数处这种示例[123][124]。在火星不同地区都发现了许多倒转河流,尤其在梅杜莎槽沟层[125]、宫本撞击坑[126]、佐伯陨击坑[127]和朱芬塔高原[128][129]。
在火星上发现了各种各样的湖泊流域[130],部分湖泊与地球上最大的里海、黑海和贝加尔湖等大小相当。在南部高原上发现了由河谷水道供流的湖泊,一些封闭的洼地伴有流入的河谷,这些地区被认为曾经坐落过湖泊。位于塞壬高地的一座湖泊,它的溢流穿过马丁谷流入进曾被“勇气号”火星探测车勘查过的古瑟夫撞击坑;另一座则靠近巴拉那谷和卢瓦尔谷(Loire)[131]。一些湖泊被认为是由降水形成,而另一些则产生于地下水[44][45]。据估计,阿耳古瑞盆地[132][34]、希腊盆地[46]和水手谷[47][133][134]都可能存在过湖泊,很可能在诺亚纪时期,很多撞击坑内都有湖泊。这些湖泊符合寒冷、干燥(按地球标准)的水文环境,有点像末次盛冰期美国西部大盆地的水文环境[135]。 2010年的研究表明,火星赤道部分地区也有湖泊。虽然早期的研究表明,火星曾有一段温暖湿润的早期历史,但在很久前就已干涸了,而这些湖泊却存在于赫斯佩里亚纪年代,一个更晚的时期。利用美国宇航局火星勘测轨道飞行器的详细图像,研究人员推测,在这段时期中,火山活动、陨石撞击或火星轨道移动可能增强,从而使火星大气层变暖,足以融化地面上丰富的水冰。火山释放出的气体,也使大气层在一段时间内变厚,吸收了更多的太阳光,使气温让液态水得以存在。在这项研究中,发现了连接阿瑞斯谷附近湖盆的河道。当一座湖泊被注满时,湖水会漫过堤岸,切刻出一条流向更低地区的河道,在那里形成另一座湖泊[136][137]这些干涸的湖床将成为寻找以往生命证据(生命印迹)的目标。
2012年9月27日,美国宇航局科学家宣布,好奇号火星车在盖尔撞击坑发现了一条古河床的直接证据,表明火星上曾有一股古老的“奔腾水流”[138][139][140][141]。特别是对现在干涸河床的分析表明,水流流速为3.3公里/时(0.92米/秒)[138],可能深及髋部。流水的证据来自只能被强劲液流磨损的圆润鹅卵石和砾石碎块,它们的形状和方位表明,从撞击坑边缘上方流入冲积扇的皮斯谷河道,将它们长距离搬运至此。
埃里达尼亚湖是一座理论上的古湖,面积约110万平方公里[142][143][144],其最大深度为2400米,容积562000公里3。它比地球上最大的内陆海里海还要大,贮水量比所有其他火星湖泊加在一起还要多,埃里达尼亚湖的水量是北美五大湖的9倍多[145][146][147]。该湖湖面被推测位于环湖河谷水道的高海拨处,因为它们都终止于同一海拔高度,表明流入进同一座湖泊[148][149][150]。
通过火星专用小型侦察影像频谱仪的研究发现了厚度大于400米的沉积物,其中含有皂石、滑石皂石、富铁云母(例如海绿石-绿脱石)、铁/镁蛇纹石、镁/铁/钙碳酸盐和可能的硫化铁,硫化铁可能形成于被火山加热的深水中,这种被归类为热液的过程可能是地球上生命起源的地方[147]。
-
显示了埃里达尼亚湖不同地区估测水深的地图,地图宽约530英里。
-
来自埃里达尼亚湖底深水盆地的沉积物。地表上存在的桌山因受到深水/冰盖的保护而免受强烈侵蚀。火星专用小型侦察影像频谱仪的测量表明,矿物可能来自湖底热液矿床,生命有可能起源于这片湖泊。
-
图中显示了火山活动如何导致埃里达尼亚湖底矿物的堆积,氯化物通过蒸发沿湖岸线沉积。
湖泊三角洲
研究人员发现了许多形成于火星湖泊中的三角洲[22],三角洲的发现是火星上曾拥有大量液态水的重要标志。三角洲通常需要在很长时间的深水中才能形成,此外,还需要水位稳定,以避免沉积物被冲走。三角洲在广泛的地理范围内被发现[44],尽管有一些迹象表明三角洲可能集中于假想的火星前北方洋边缘[151]。
地下水
到1979年,人们认为火星上的溢出河道可能形成于偶发的地下水冰封层破裂,造成巨量液态水被排放到干涸表面的事件[152][153],在阿萨巴斯卡谷巨流涟漪中发现了显示严重甚至灾难性洪水的证据[154][155]。许多发源于混沌地形或峡谷特征的溢出河道,为地下水冰封层破裂提供了佐证[133]。
火星上分支河谷网的形成与地下水大规模突发性释放并不一致,这既表现在河谷网道并非来源于单一流出点的树杈形状上,也表现在沿各支流的流量上[156]。相反,一些作者认为它们是由地下水缓慢渗出形成的,基本上属于泉流[157],这一解释的论点是,此类河网中许多河谷的源头都起始于箱形峡谷或“盆状地形”端,在地球上这通常与地下水渗漏有关,也几乎没有证据表明在河道源头存在水流突然从地下出现,并伴有明显流量,非逐渐积聚的更细水道或河谷[133]。另一些人则以地球事例为由,对河谷盆状地形端和地下水形成之间的联系提出了质疑[158],并认为由于风化或撞击翻搅的清除作用,河谷水网缺乏细小的源头[133]。但大部分作者承认,多数河谷网道至少部分受到地下水渗漏过程的影响和塑造。
地下水在控制火星上大范围沉积模式和过程中也起到至关重要的作用[160],根据这一假设,含有溶解矿物的地下水进入地表、陨坑及陨坑周边,通过添加矿物质,尤其是硫酸盐并胶结沉积物促进了地层的形成[159][161][162][163][164][165]。换言之,某些地层可能是由地下水上升沉积的矿物质和胶结现有松散风成沉积物而形成,因此,硬化层更能抵抗侵蚀作用。2011年一项利用火星勘测轨道飞行器数据进行的研究表明,包括阿拉伯高地在内的大片区域都存在着相同种类的沉积物[166]。有人认为,沉积岩丰富的地区也最有可能是经历过局部范围地下水上涌的地区 [167]。
2019年2月,欧洲科学家公布了一项古老的全球范围地下水系统地质证据,可以说,该系统与推测的浩瀚海洋有关[168][169][170][171]。2019年9月,研究人员报告说,洞察号着陆器发现了无法解释的磁异常和磁振荡,这与全球范围内地下深处的液态水水层相一致[172]。
火星海洋假说
火星海洋假说提出,北方大平原盆地至少出现过一次液态水海洋[174],提供的证据表明,在火星地质史早期,火星上将近三分之一的表面被液态海洋覆盖[130][175],该片被称为北方洋[174]的海洋可能灌满了北半球位于行星平均海拔4-5公里(2.5-3.1英里)以下的北方大平原盆地区。有人提出了两条主要的假定海岸线:其中较高的一条可追溯到约38亿年前,与高原上形成的河谷网同时出现的年代;另一条较低的海岸线,则可能与较年轻的溢出河道有关。较高的“阿拉伯海岸线”痕迹可在除塔尔西斯火山区以外的地区找到;较低的“都特罗尼勒斯海岸线”分布则跟随着北方大平原构造[133]。
2010年6月的一项研究推断,更古老的海洋可能覆盖了36%的火星表面[22][23]。1999年,测量了火星上所有地形高度的火星轨道器激光高度计数据确认,该类海洋的流域可能遍及约75%的火星表面[176]。早期的火星需要更温暖的气候和更稠密的大气层,才能将液态水保留在地表[177][178]。此外,大量的河谷水道有力地支持了火星过去可能存在着水循环[161][179]。
科学家们对是否存在原始火星海洋仍有争议,“古海岸线”某些特征的解释也受到挑战[180][181]。推测有20亿年历史的海岸线所面临的一个问题是,它的起伏并不平缓,即不遵循恒定重力势线,这也许是由火山喷发或流星撞击造成的火星质量分布变化所致[182]。埃律西昂火山区或被埋在北方平原下的巨大乌托邦盆地被认为是最可能的肇因[161]。
2015年3月,科学家们表示,有证据表明存在一座古老的火星海洋,可能位于行星的北半球,大约相当于地球北冰洋的大小,约占火星表面的19%。这一发现是将现代火星大气层中水和氘的比例与地球上这一比例相比较得出的。在火星上发现的氘是地球上氘含量的八倍,这表明古代火星的含水量明显更高。好奇号探测车先前曾在盖尔撞击坑中发现了更高比例的氘,虽还不足以表明存在海洋。其他科学家警示说,这项新的研究尚未得到证实,并指出火星气候模型尚未表明过去火星的气温足以支持液态水体[183]。
2016年5月发表了有关北方洋的其他证据,描述了伊斯墨诺斯湖区的一些地表如何被两次海啸改变的过程。海啸是由小行星撞击海洋所引发,二次撞击的强度足以形成二座直径30公里的陨石坑。第一次海啸冲走了汽车或小屋般大小的巨石,巨浪的回冲通过改变巨石位置形成了水道。第二次携载着大量被抛落在河谷中的冰块。计算表明,浪潮平均高度为50米,具体从10米到120米不等。数值模拟表明,在海洋的这一特定区域,每隔3000万年就会形成两座直径30公里的撞击坑。这意味着一座巨大的北方洋可能已存在了数百万年,反方意见所提出的海岸线特征,可能已在历次海啸中被冲走。这项研究所涉及的地区为克律塞平原和阿拉伯高地西北部,这些海啸影响了伊斯墨诺斯湖区和阿西达里亚海区的部分地表[184][185][186][187]。
2019年7月,据报道,火星上一座古海洋曾在形成罗蒙诺索夫撞击坑的陨石撞击中产生过一场特大海啸[188][189]。
近期流体的证据
在目前的低温低压下,纯液水无法以稳定的形态存在于火星表面,除非仅短时间内在海拔最低处[190][191],所以,2006年美国宇航局火星勘测轨道飞行器观测到的十年前并不存在的冲沟群,可能是火星最温暖月份由流动的液态卤水所造成,由此揭开了一个地质谜团[192][193]。在塞壬高地和半人马山拍摄到的两座陨石坑照片,似乎显示在1999年至2001年的某些时刻火星上存在(干或湿的)流体[192][194][195]。
对于冲沟是否由液态水造成,科学界存在分歧,切割沟壑的流体也可能是干颗粒[196][197]或可能被二氧化碳润滑的颗粒。一些研究证明,由于条件不适,南部高地上出现的冲沟不可能由水流形成。低气压、非地热及更寒冷的地区,在一年中的任何时候都不会出现液态水,但却适合于固体二氧化碳。在温暖的夏季,固体二氧化碳融化会融化成液态,然后在地表冲刷出沟壑[198][199]。退一步讲,即便冲沟是由地表流动的水流所蚀刻,目前对水的确切来源及其运动背后的机制仍不清楚[200]。
干涸的冲沟是凿刻在斜坡上的深槽,常年存在。火星上还有许多其他的特征,其中一些属于季节性变化。
2011年8月,美国宇航局宣布本科生“琳德拉·奥哈”(LujendraOjha)[201]在南半球陨石坑边缘附近的岩石露头下方陡坡上发现了季节性变化流,这些黑色条纹,现在称为复发性斜坡线(RSL),在火星夏季最温暖时节,会向下生长延伸,然后在一年中的其余时间里逐渐消失,数年之中会定期重复出现[15]。研究人员认为,这些痕迹与盐水(卤水)沿山坡向下流动、蒸发,并可能留下一些残留物相一致[202][203]。此后,火星专用小型侦察影像频谱仪直接观察到了与这些复发性斜坡线同时出现的含水盐类,并于2015年确认这些线纹是由液体卤水流经浅层土壤时所产生。这些线条包含了含液态水分子的水合氯酸盐和高氯酸盐(ClO
4−)。在火星夏季,当气温高于摄氏−23度(华氏−9度;250 K)时[204],线条流开始向坡下流动[205],但水源仍然不明[7][206][207]。2017年12月公布的火星奥德赛号轨道器过去十年所获得的中子光谱仪数据显示,没有证据表明在这些活动地点有水存在(氢化表岩屑),因此,作者也支持短期大气层水蒸汽潮解或干燥颗粒流假设[196]。他们得出的结论是,今天火星上的液态水可能仅限于大气层和薄膜中溶解的水分痕迹,这对我们所知的生命来说是一种具有挑战的环境[208]。
现在的水
火星奥德赛号中子光谱仪和伽马射线光谱仪在火星全球范围内观测到了大量的表面氢[209],这种氢被认为是与冰的分子结构结合在一起的,通过[[化学计量数]计算,观测到的通量已被转化为火星表面1米以上地层中水冰的密度。这一数据处理表明,目前火星地表中冰的分布广泛而且丰富。60度以下的纬度区,冰集中在数个地区,特别是埃律西昂火山周围、示巴高地和塞壬高地西北部,地下冰的密度高达18%;在纬度60度以上地区,冰层分布非常丰富;纬度70度的极地,几乎所有地方的冰密度都超过25%,在极地接近100%[210]。火星勘测轨道飞行器的浅地层雷达(SHARAD)和火星快车号地下和电离层探测高新雷达(MARSIS)也证实,个别地表特征富含水冰。由于已知在目前火星表面条件下冰的不稳定性,因此认为几乎所有的冰都被一层薄薄的岩石或尘埃物质所覆盖。
火星奥德赛中子光谱仪的观测表明,如果火星表面离顶部一米深处的所有冰都均匀分布,那么将会形成至少全球约14厘米(5.5英寸)深的水层。-换言之,火星全球平均14%的表面是水[211]。当前锁定在火星两极的水冰相当于30米(98英尺)深的全球平均水层。地貌证据表明,过去地质时期,地表水的数量明显更大,全球平均水层深达500米(1600英尺)[13][211]。人们认为,火星上过去的水一部分流入到了更深的地下,另一部分则散失在太空中,尽管对这些作用过程的详细质量平衡仍然知之甚少[133]。目前大气蓄水层是一条非常重要的管道,它可让冰季节性和在更长时间跨度上从一地迁移至另一地,但其体积微不足道,折算全球平均水深不超过10微米(0.00039英寸)[211]。
极地冰冠
火星北极(北极高原)和南极(南极高原)极冠自水手9号轨道飞行器以来就为人所知[212],但是,这种冰的数量和纯度直到21世纪初才被了解清楚。2004年,欧洲火星快车号上的玛西斯(MARSIS)雷达探测仪证实了南极冰盖下至地下3.7公里(2.3英里)处存在相对洁净的水冰[213][214]。同样,火星勘测轨道飞行器上搭载的萨拉德浅地层雷达测深仪也观测到了地表下1.5–2公里处的北极冰盖底部,总之,火星南北极冰盖中的冰容量与格陵兰冰原相类似[215]。
南极区冰盖上一片更大的冰原被怀疑在远古时期(赫斯珀里亚纪)就已消退,其中可能含有2000万公里3的水冰,相当于整个行星上一层137米深的水层[216][217]。
当通过剖析其体积的螺旋槽图像进行检查时发现,两处极地冰盖都有丰富的内部冰层和尘埃层,地下雷达的测量显示这些分层在冰原上不断延伸。就像地球上记录了地球气候的冰盖一样,这种分层也包含了火星过去的气候记录。然而,阅读这些记录并不简单[218],因此,许多研究人员研究这种分层现象,不仅是为了了解冰盖的结构、历史和流动特性[133],也是为了了解火星气候的演变[219][220]。
围绕极冠还有很多位于陨石坑内较小的冰盖,其中一些覆盖在厚厚的沙粒或火星尘埃沉积物之下[221][222]。特别是直径81.4公里(50.6英里)的科罗廖夫撞击坑,据估计,含有约2200公里3(530英里3)暴露在地表上的水冰[223]。科罗廖夫撞击坑的坑底位于坑口下方约2公里(1.2英里)处,上面覆盖着1.8公里(1.1英里)深的永久性中央水冰丘,直径可达60公里(37英里)[223][224]。
冰川下的液态水
曾推测火星上存在冰下湖,当在对南极洲沃斯托克湖进行建模时显示,该湖泊可能在南极冰期之前就已存在,类似的情况也可能发生在火星上[225]。2018年7月,意大利航天局的科学家报告,在火星上发现了一座这样的冰下湖,位于南极冰盖下1.5公里(1英里)处,水平范围为20公里(10英里),这是该行星上出现的首个稳定液态水体的证据[61][226][227][228]。该火星湖的证据是2012年5月至2015年12月期间,从火星快车号上玛西斯雷达回波信号中的亮点推断出来的[229]。检测到的湖泊中心点位于东经193度、南纬81度处,这是一片平坦区,没有任何特殊的地形特征,除东侧洼地外,其它三面被更高的地面环绕[61]。美国宇航局火星勘测轨道飞行器上的沙拉德雷达没有看到湖泊迹象。沙拉德雷达的工作频率设计用于更高的分辨率,但穿透深度较低,因此,如果覆盖在冰下湖上的冰层含有大量硅酸盐矿物,该雷达就不太可能探测到推断的湖泊。
2020年9月28日,采用新数据和新技术重新分析了所有数据,确认了玛西斯雷达的发现。这些新的雷达研究报告了火星上另外的三座冰下湖,它们都位于南极冰盖下方1.5公里(0.93英里)处。发现的第一座湖,也是最大的一座其大小已经被修正为30公里(19英里)宽,它被三座较小的湖泊包围,每座湖泊都有数公里宽[230]。
因为极冠底部的温度估计为205 K(摄氏−68度;华氏−91度),科学家们假设,通过镁和高氯酸盐的防冻作用,水可以保持在液体状态[61][231]。湖面上覆盖着一层1.5公里(0.93英里)厚,由10%至20%尘埃与水冰混合组成的冰层,季节性地被一层1米(3英尺3英寸)厚的二氧化碳霜覆盖[61]。由于南极冰盖的原始数据覆盖范围有限,发现者表示“没有理由断定火星上的地下水仅限于一处单一的地方”[61]。
2019年,发表了一项探讨存在这样一座湖泊所需物理条件的研究[232]。该研究计算了达到液态水和高氯酸盐混合物在冰下稳定的温度所需地热量。作者得出的结论是“即使南极冰层底部局部聚集了大量的高氯酸盐,但典型的火星条件太冷,无法融化冰……需要地壳内的局部热源来提高温度,而距离冰10公里的岩浆室可以提供这样的热源。这一结果表明,如果观测的液态水解释是正确的,那么火星上的岩浆活动可能是最近才活跃起来的”。
如果确实存在一座液态湖,它的咸水也可能与土壤混合形成污泥[233],湖中的高含盐量会对大多数生命形式带来困难。在地球上,有一种被称为嗜盐生物的细菌,能在极端盐分的环境中旺盛生长,但它们也并非生活在黑暗、寒冷、浓缩的高氯酸盐溶液中[233]。
地面冰
多年来,许多科学家都认为火星表面看起来像地球上的冰缘地区[234],通过与这些陆地特征对比,多年来一直争论它们可能是永久冻土区,表明水冰就存在于地表之下[196][235]。高纬度地区的一个共同特征是具有以多种形状出现的图案地面,包括条纹和多边形。在地球上,这些形状是由土壤的冻结和融化所造成[236]。还有其他类型的证据表明火星表面下存在大量的冷冻水,比如地形软化,这会使锐化的地形特征变得更圆钝[237]。来自火星奥德赛号伽马射线光谱仪的证据和凤凰号着陆器的直接测量证实,这些特征中许多与地面冰存在密切相关[238]。
2017年,研究人员使用火星勘测轨道飞行器上的高分辨率成像科学设备相机发现了至少八处被侵蚀的斜坡,显示出100米厚的裸露水冰层,上面覆盖着一层约1或2米厚的土壤[239][241]。这些地点位于南北纬55到58度之间,表明火星表面大约三分之一的地方都分布有浅层地面冰[239]。这幅图像证实了2001火星奥德赛号上的光谱仪、火星勘测轨道飞行器和火星快车号上的探地雷达以及凤凰号着陆器在“原位”挖掘中探测到的情况[239]。这些冰层包含了易于获取的火星气候史线索,并使未来的机器人或人类探索者可得到冰冻水[239]。部分研究人员认为,这些沉积物可能是数百万年前行星自转轴和轨道不同时遗留的冰川残迹(见下文火星冰期一节)。2019年发表的一项更详细的研究发现,北纬35度和南纬45度存在着水冰,一些冰块被尘埃覆盖着,距地表仅数厘米,在这些环境中提取水冰不需要复杂的设备[242][243]。
-
HiWish计划下高分辨率成像科学设备显示的可能形成于富冰地面的撞击陨坑近景,注意,喷出物似乎低于周围地表,炽热的喷射物可能导致周边一些冰的消失,从而降低了喷出物的水平高度。
-
近地表冰分布图
扇形地形
火星的某些区域显示出扇贝边状的洼地,这些洼地被怀疑是退化的富冰沉积覆盖物残迹。扇贝形状是由冻土中的冰升华所致,在目前火星气候条件下,水冰升华造成的地下损失可形成了扇贝状地貌。模型预测,当地表有大量深达数十米的纯冰时,就会出现类似形状[245]。地表覆盖物可能是火星极地倾斜变化导致气候改变时,从大气层中降落堆积的尘埃冰(见下文“冰河时代”)[246][247]。扇贝状地形通常有几十米深,直径从数百米到数千米不等,外观接近圆形或细长,有些似乎已合并到一起,形成了一片宽阔而坑洼崎岖的地形。这种地形的形成过程可能起始于裂缝中的冻升华,形成扇贝地形的地方通常伴有多边形裂缝,扇形地形的存在似乎是一种冻土迹象[129][248]。
2016年11月22日,美国宇航局报告称,在火星乌托邦平原区发现了大量地下冰[249]。据估计,探测到的贮量相当于一座苏必利尔湖[2][3][4]。
该地区的水冰容量是根据火星勘测轨道飞行器上的探地雷达(简称“萨拉德”)测得的 “电容率”或介电常数数据所确定,介电常数值与大密度的水冰相一致[250][251][252]。
这些扇贝状特征从表面上看类似于在南极冰盖附近发现的瑞士干酪特征。瑞士干酪特征特征被认为是固体二氧化碳表层形成的空洞,而不是水冰,尽管这些空洞底部可能也富含了水[253]。
冰块
2005年7月28日,欧洲空间局宣布发现了一座部分充满冷冻水的陨石坑[254],随后一些人将这一发现解释为“冰湖”[255]。由欧洲空间局火星快车号上高分辨率立体相机拍摄的陨石坑图像清楚地显示,在辽阔的北方大平原北纬70.5度、东经103度处,一座无名陨石坑的坑底覆盖着一大片的冰。该陨坑宽35公里(22英里),深约2公里(1.2 英里),坑底与冰面之间的高度差约为200米(660英尺)。欧空局的科学家将这种高度差主要归因于部分可见的冰下沙丘。虽然科学家们并不把这块冰称为“湖泊”,但该水冰块的大小和全年存在的特点非常引人注目。在火星许多不同的地方都发现了水冰沉积和霜冻层。
随着越来越多的火星表面被新一代探测器的拍摄到,越来越明显的事实是,火星表面可能散布着更多的冰块。这些推测中的冰块很多都集中在火星中纬度地区(南北纬30–60°之间), 例如,许多科学家认为,在这些纬度带中被不同地描述为“纬度相关覆盖层”或“粘贴地形”的普遍特征,是被尘埃或碎片覆盖、正在缓慢退化的冰块[133]。碎片的覆盖既解释了图像中不像冰一样反射的暗淡表面,也说明了这些冰块为何能长时间存在而不完全升华。这些冰块还被认为是一些神秘的流道特征(如在这些纬度区所看到的冲沟)的可能水源。
在埃律西昂平原发现了与现有流冰(pack ice)一致的表面特征[130],在通往大面积洪泛区的河道中发现了似乎呈片状,大小从30米(98英尺)到30公里不等的特征。这些片状特征显示出破裂和旋转的迹象,清楚地将它们与火星表面其他地区的熔岩区区分开来。洪泛的源头被认为是附近的地质断层刻耳柏洛斯堑沟,该断层喷出了约200万至1000万年的水和熔岩。并被认为,水从刻耳柏洛斯堑沟流出,然后在低海拔平原汇聚、冻结,这种冻结的湖泊现今可能仍然存在[256][257][258]。
冰川
火星上许多大片区域要么似乎有冰川,要么有证据显示曾经存在过冰川。许多高纬度地区,尤其是伊斯墨诺斯湖区被怀疑仍然含有大量的水冰[259][260]。最近的证据让许多行星科学家相信,水冰仍以冰川的形式存在于火星中高纬大部分地区,表面覆盖着一层可阻止升华的岩石/尘埃隔热层[37][53]。这方面的一则示例是都特罗尼勒斯桌山群区被称作舌状岩屑坡的冰川状特征,它显示的大量证据表明,在数米厚的岩石碎屑下就藏有水冰[53]。冰川与锐蚀地形及众多的火山有关。研究人员曾描述过赫卡特斯山[261]、阿尔西亚山[262]、帕弗尼斯山 [263]和奥林帕斯山上的冰川沉积[264]。据报道,在中纬度及以上地区的一些较大陨石坑中也有冰川。
火星上类似冰川的地貌分别被称作粘滞流地貌[265]、火星流地貌、舌状岩屑坡[53]或线状谷底沉积[49]等,这取决于特征的形式、位置、相关地形以及作者对它的描述。很多(但不是全部)小型冰川似乎与陨石坑壁上的冲沟及覆盖层材料有关[266];被称为线状谷底沉积的线性沉积物可能是被岩石覆盖的冰川。发现于北半球阿拉伯高地周围锐蚀地形中的大多数河道,底部都有这种沉积物,河床表面上的这种脊状和沟槽状材料,可在障碍物周围转偏。线状谷底沉积可能也与舌状岩屑坡有关,轨道雷达已经证实其中含有大量的水冰[37][53]。多年来,研究人员一直认为被称为“舌状岩屑坡”的特征也是冰川流,并认为冰就存在一层隔热的岩石之下[52][267][268]。根据新的仪器读数,已证实舌状岩屑坡中几乎含有纯冰,上面覆盖着一层岩屑[37][53]。
流动的冰川携带着岩石一起移动,之后随着冰川的消失岩石会被丢落,这通常发生在冰川前锋或冰川边缘。在地球上,这些地貌被称为冰碛,但在火星上,它们通常被称为类“冰碛脊”、“同心脊”或“弧形脊”[269]。由于火星上的冰趋向于升华而非融化,而且火星的低温往往会使冰川“冻底”(冻结在岩床上,无法滑动),这些冰川遗迹及其留下的山脊与地球上的正常冰川并不完全相同。特别是火星冰碛易于沉积,而不会随下方的地形偏转,这反映了火星冰川中的冰通常被冻结而无法滑动的事实[133]。冰川表面的碎屑脊表明了冰的移动方向,一些冰川表面因下方冰的升华而显得相当粗糙。冰蒸发而不融化会留下空隙,使上覆的材料随后塌陷到空隙中[270]。有时大块的冰从冰川上掉落并被埋入到地表中,当它们融化后,或多或少会留下一些圆孔,火星上发现了许多这样的“壶穴”[271]。
尽管有强有力的证据表明火星上有冰川流动,但几乎没有令人信服的冰川侵蚀地貌证据,如U形山谷、鼻山尾、刃脊、鼓丘等。此类特征在地球冰川地区十分丰富,所以,火星上没有这些特征着实令人费解。这些地貌的缺乏被认为与火星上最新冰川中冰的“底冻”性质有关。由于火星上的太阳辐射、大气层温度和密度以及地热通量都比地球低,模型表明冰川与河床间的界面温度一直处于零度以下,冰实际上是被冻在了地表上,由此阻止了冰在河床上的滑动,这被认为抑制了冰侵蚀表面的能力[133]。
火星水资源的演变
火星表面水贮量的变化与其大气层的演变密切相关,可能有几个关键阶段。
早诺亚纪年代 (46-41亿年前)
早诺亚纪年代的特点是大气因严重的陨石撞击和流体逃逸而散失到太空[272],陨石造成的喷发可能清除了约60%的早期大气[272][273]。在此期间,大量硅酸盐可能已经形成,这需要足够稠密的大气层来维持地表水,因为光谱上占主导地位的页硅酸盐类—蒙脱石表明水岩比适中[274]。然而,介于蒙脱石和碳酸盐之间的pH-pCO2显示,蒙脱石的沉淀将二氧化碳分压(pCO2)值约束在不超过1×10−2标准大气压 (1千帕)以内 [275]。另一项复杂因素是,年轻时期的太阳亮度比现在约低25%,这需要有一种更具显著温室效应的古老大气层来提高表面气温以维持液态水[275],但仅靠提高二氧化碳含量无法实现,因为二氧化碳在分压超过1.5个大气压(1500百帕)时会沉淀,温室气体的有效性反会降低[275]。
诺亚纪中晚期年代(41-38亿年前)
在诺亚纪中晚期,塔尔西斯火山群排出了大量的水蒸气、二氧化碳和二氧化硫等气体,构成了火星的次级大气层[272][273];火星河谷网也形成于这一时期,表明与灾难性洪水相反,火星全球范围内广泛存在着地表水并暂时稳定[272],这段时期结束于同时发生的内部磁场终止和陨石轰击高峰的降临[272][273]。内部磁场的停止和随后所有局部磁场的减弱使得太阳风可不受阻碍地剥离大气层。例如,与地球大气层相比,火星大气层中氩38/氩36、氮15/氮14和碳13/碳12的比率与太阳风通过瑞利分馏作用剥离高层大气层中较轻同位素造成的约60%氩、氮和二氧化碳损失相一致[272]。作为太阳风活动的补充,撞击则会在没有同位素分馏的情况下大量喷射掉大气层成分。尽管如此,彗星撞击可能为该行星提供了挥发物的主要来源[272]。
赫斯珀里亚纪到亚马逊纪时代(约38亿年前至现今)
虽然太阳风对大气层的剥离强度已不如太阳年轻时强烈,但还是抵消了零星释气事件的补充作用[273]。这一时期爆发的灾难性的洪水,有利于地下挥发物的突然释放,而不是持续的在地表流动[272]。虽然该时代早期可能是以酸性水环境和从诺亚晚期起以塔尔西斯为中心的地下水排放为主[276],但后期大部分的表面蚀变过程都是以氧化为标志,包括形成了使火星表面呈现红棕色的三价氧化铁[273]。原生矿物相的这种氧化可通过与形成橙玄玻质(palagonitic)火山灰有关的低pH值(可能是高温)作用、火星大气层中光化学形成的过氧化氢作用[277]以及水的作用[274]来实现,这些都不需自由氧的介入。鉴于近期水和火成岩活动的急剧减少,过氧化氢的作用可能暂时占据了主导地位,使得观察到的三价氧化铁量非常小,虽然它们无处不在,而且在光谱上占主导地位[278]。然而,在最近的地质史中,含水层可能驱动了持续但高度局部化的地表水,就如莫哈韦陨击坑所显示的地貌[279]。此外,拉法耶特(Lafayette)火星陨石显示了最近6.5亿年前水蚀变的证据[272]。
2020年,科学家们报告说,当前火星从水中失去氢原子的主要原因是季节性因素和直接将水输送至高层大气层的沙尘暴,这可能影响了行星过去10亿年的气候[280][281]。
冰河时代
在过去的五百万年中,火星表面冰的数量和分布大约经历了40次大规模的变化[282][263],最近一次的变化大约在210至40万年前,发生于火星分界的晚亚马逊纪冰川活动[283][284],这些变化被称为冰河期[285]。火星上的冰河期与地球经历的冰河期大不相同,火星上的冰河期是由轨道和倾斜—也称为倾角的变化所驱动。轨道计算表明,火星在其轴线上的摆动比地球大得多。地球因其相对较大的卫星而稳定,因此它只摆动几度,而火星的倾角可能会改变几十度[247][286]。当倾角很高时,它的两极会得到更多的直射阳光和热量,导致冰盖变暖,并随着冰升华而缩小,气候相应出现变化。火星轨道的偏心率变化是地球的两倍,随着两极的升华,冰被重新沉积到更靠近赤道的地方,在高倾角时期,赤道受到的太阳辐射有所减少[287]。计算机模拟显示,火星自转轴倾斜45度,将导致冰堆积在显示有冰川地貌的区域[288]。
冰盖中的水分以霜或雪与尘埃混合的形式向低纬度地区移动,火星大气层中含有大量细小的尘埃微粒,水蒸气在这些颗粒上凝结,然后由于水膜层的额外重量而落到地面形成一层覆盖层。当覆盖层顶部的冰返回大气层时,会留下尘埃隔离剩余的冰[287]。蒸发的水分总量只占冰盖的百分之几,或者在整个火星表面形成一层1米深的水层。大部分来自冰盖的水分都形成一层冰尘混合的平整、厚实的覆盖层[246][289][290],这层富含冰的覆盖层,在中纬度区可达100米厚[291],使低纬度区的陆地变得非常平坦,但在某些地方,它显示出一种凹凸不平的纹理或图案,显示出下面存在着水冰。
宜居性评估
自1976年海盗号登陆器搜寻当前微生物生命以来,美国宇航局在火星上一直遵循“跟随着水”的战略。然而,正如我们所知,液态水是生命存在的必要条件,但并非充分条件,因为行星宜居性是多种环境参数的函数[292]。化学、物理、地质和地理属性决定了火星上的环境,对这些因素的单独测量尚不足以认定环境的适居住,但测量的总和有助于预测具有更大或更小宜居潜力的位置[293]。
可居住的环境并不需要有人居住,出于行星保护的目的,科学家们正在尝试确定火星上可能会被航天器上偷渡的地球细菌污染的潜在栖息地[294]。假如火星上存在或曾存在过生命,则在远离如今高氯酸盐[295][296]、电离辐射、干燥寒冷[297]等严酷表面条件的地下可能会找到证据或生命印迹。在假设的水圈中,可居住的位置可能位于地表以下数公里处,或者可能出现在与永久冻土接触的近地表附近[56][57][58][59][60]。
好奇号火星车正在评估火星过去和现在的宜居性潜力,而欧洲-俄罗斯计划启动的“火星太空生物学”任务是一项致力于寻找和识别火星上生命信号的天体生物学项目,包括2018年4月开始绘制火星大气层甲烷图的“火星微量气体任务卫星”和2022年将钻探和分析2米深地下样品的“火星生物探测漫游车”。美国宇航局的火星2020任务探测车将储存数十个钻孔岩芯样本,以便在2020或2030年代将其带回地球实验室。
航天探测器调查
水手9号
1971年发射的水手9号轨道飞行器所获得的图像首次以干涸河床、峡谷(包括长约4020公里的峡谷系统)、水侵蚀及沉积、锋面、雾等形式揭示了过去存在过水的直接证据[298]。水手9号任务的发现支持了后来的海盗计划,为纪念水手9号取得的成就,以它的名字命名了巨大的水手峡谷系统。
海盗计划
两艘海盗轨道飞行器和两台着陆器在火星表面发现了很多典型由大规模水流造成的地质形态,引发了学界对火星上是否有水的认知革命。在许多地区发现了巨大的溢出河道,显示洪水曾冲溃河坝、切出深谷、在岩床上凿刻出道道沟壑,一路肆虐数千公里[299];分布于南半球大片地区的分支河谷网道,表明那儿曾经有过降雨[300];许多陨石坑看上去好像陨石撞进了湿泥里,在它们形成时,土壤中的冰可能被融化,使地面变成四处流动泥浆[119][120][234][301];被称为“混沌地形”的地区似乎快速流失了大量的水,导致下游形成了巨大的河道,据估计这些河道的流量是密西西比河的一万倍[302]。地下火山的活动可能融化了冰层,在水流大量流失后,地面塌陷形成混沌地形。另外,两台海盗着陆器的常规化学分析表明,火星表面过去要么露出在水面,要么就浸没于水中[303][304]。
火星全球探勘者号
火星全球探勘者号的热辐射光谱仪(TES)是一台能够测定火星表面矿物成分的仪器,而矿物成分能提供古代是否存在水的信息。热辐射光谱仪在尼利槽沟地层中发现了一大片(3万平方公里(1.2万平方英里))含有橄榄石矿物的区域[305]。据认为,造成伊希斯盆地的古代小行星撞击导致了暴露出橄榄石的断层。橄榄石的发现有力地证明了火星部分地区极端干燥的时间已经很长。在赤道南北南60度范围内的其他许多小型露头中也发现了橄榄石[306]。该探测器已拍摄到多条表明过去有持续液体流动的流道,其中两条位于纳内迪谷和尼尔格谷[307]。
火星探路者号
火星探路者号着陆器记录了白昼气温循环的变化,日出前最冷,大约为零下78摄氏度(华氏零下108度;195 K);午后最暖,约为零下8摄氏度(华氏18度;265 K)。在该位置,最高温从未达到水的冰点(摄氏0度、华氏32度或273 K),由于温度过低,纯液态水无法在地表存在。
探路者号在火星上测得的大气压也非常低,约为地球的0.6%,同样也不允许纯液态水存在于表面[308]。
其他观察结果则与过去存在水的情况一致,探测器着陆点的一些岩石以地质学家称之为“叠瓦”的方式相互斜靠,可能是过去巨大的洪水将岩石推离水流方向时所形成;一些圆润的鹅卵石可能是在溪流中翻滚而致;而部分坚硬的地面则可能是含矿物质流体产生的胶结作用[309];另外,还探测到有云的迹象,也许还有雾[309]。
= 火星奥德赛号
2001火星奥德赛号以图像形式发现了许多火星上存在水的证据,通过中子光谱仪,证明了大部分地表都贮藏有水冰,火星地表下的水冰足够填满两座密歇根湖[310]。在两半球中纬55度到两极的地表下,分布着高密度的冰,每公斤土壤含有约500克(18盎司)的水冰,但靠近赤道的地方,土壤中水分的含量只有2%到10%[311]。科学家们认为,这些水分大部分也被锁定在矿物的化学结构中,如粘土和硫酸盐[312][313]。虽然火星上表层只含百分之几的化学结合态水,但冰就位于较下方数米处,尤如在阿拉伯高地、亚马逊区和埃律西昂区所显示的那样,那儿含有大量的水冰[314]。轨道飞行器还在赤道地区表面附近发现了大量的大块水冰沉积物[196],赤道水合作用的证据既有形态上的,也有成分上的,在梅杜莎槽沟层和塔尔西斯山群塔尔西斯山都可看到[196]。数据分析表明,南半球可能具有分层结构,表明在现已消失的大型水域下面存在层状沉积物[315]。
火星奥德赛号上的仪器可研究地表下1米深的土壤。2002年,利用现有数据计算,如果所有土壤表面都被一层均匀的水层覆盖,则将相当于火星0.5-1.5公里(0.31-0.93英里)深的全球等高水层(GLW)[316]。
奥德赛轨道飞行器返回的数千张图像也支持火星上曾有大量的水流淌在表面的观点, 一些图像显示了分支河谷的形态,另一些则显示了可能在湖泊下形成的地层,甚至识别出了河流和湖泊三角洲[44][317]。多年来,研究人员一直怀疑冰川存在于一层隔热岩石之下[37][52][53],在一些河道底表上发现的线状谷底沉积就是这些被岩石覆盖的冰川示例,它们的表面分布有脊状和沟槽状的材料,可在障碍物周围偏转。线性谷底沉积物可能与舌状岩屑坡有关,轨道雷达显示舌状岩屑坡内含有大量的水冰[37][53]。
“凤凰号”
凤凰号着陆器也确认了火星北部地区存在大量水冰[318][319],这一发现是由以前的轨道数据和理论预测[320]并由火星奥德赛仪器在轨测量得出的[311]。2008年6月19日,美国宇航局宣布,机械手臂挖掘的“渡渡鸟-金发姑娘”沟中骰子般大小的明亮团块在四天内蒸发,强烈表明那些明亮团块是暴露后升华的水冰。虽然二氧化碳霜(干冰)在当时条件下也会升华,但它们的速度应该比观测到的要快得多[321]。2008年7月31日,美国宇航局宣布凤凰号进一步证实了着陆地点存在水冰的证据,在对土壤样品进行加热测试中,当样品温度升到摄氏0度(华氏32度;273 K)时,质谱仪检测到了水蒸气[322]。在当前极低的大气压和气温环境下,除非短时内位于海拔最低处,否则,液态水不可能存在于火星表面[190][191][318][323]。
火星土壤中存在强氧化剂—高氯酸盐(ClO4–)阴离子,这种盐可以大大降低水的冰点。
凤凰号着陆时,减速火箭喷出的气流将泥土和融化的冰溅射到了着陆器上[324]。照片显示,探测器降陆时有一些物质粘在了着陆支架上[324]这些物质以潮解的速率膨胀,在消失之前变暗(与先液化后滴落一致),并似乎融合在一起。这些观察结果结合热力学证据,表明这些斑滴很可能是液态卤水水滴[324][325];其他研究人员认为这些斑滴可能是“霜冻”[326][327][328]。2015年,已证实高氯酸盐在陡坡冲沟上形成复发性坡线方面发挥了作用[7][329]。
在相机所能看到的范围内,着陆区表面是大致平坦,但形成了一块块直径2-3米(6英尺7英寸-9英尺10英寸),被20-50厘米(7.9-19.7英寸)深凹槽环绕的多边形地面。这些形状縁于土壤中的冰在温度变化较大时产生的膨胀和收缩。显微镜显示,多边形顶部的土壤由圆形和扁平颗粒组成,可能是一种粘土[330],冰存在于多边形中间地表下几英寸处,而多边形边缘区冰至少有8英寸(200毫米)深[323]。
观察到雪从卷云中飘落,云层形成于大气层中温度为摄氏零下65度(华氏-85度;208K)的高度,因此,云必定是由水冰,而非二氧化碳冰(二氧化碳或干冰)所组成,因为形成二氧化碳冰的温度远低于摄氏零下120度(华氏-184度;摄153 K)。根据任务观察结果,现在怀疑今年晚些时候在该地点会积聚水冰(雪)[331]。在任务执行期间的火星夏季,测得的最高气温为摄氏零下19.6度(华氏−3.3度;253.6K),最冷气温是摄氏零下97.7度(华氏−143.9度;175.5K),因此,这一地区气温度远低于水的冰点(摄氏0度,华氏32度或273 K)[332]。
火星探测漫游者
勇气号和机遇号火星探测车发现了大量火星上曾经存在过水的证据。勇气号探测车降落在一处被认为是大型湖床的地方。该湖床已被熔岩流覆盖,因此,最初很难发现过去水的证据。2004年3月5日,美国宇航局宣布勇气号在一块名为“汉弗莱”的岩石中发现了火星上有水的历史线索[333]。
当勇气号在2007年12月拖着一只被卡住的轮子倒车时,该车轮刮掉了表层土壤,露出了一块富含二氧化硅的白色地面。科学家们认为该二氧化硅地面一定是通过两种方式之一产生的[334],其一:水在某处溶解的二氧化硅,然后带至另一处(即间歇泉)产生的温泉沉积物;其二:从岩缝中喷出的酸性蒸汽剥去了岩石的矿物成分,留下了二氧化硅[335]。勇气号探测车还在古瑟夫撞击坑的哥伦比亚丘陵发现了水的证据,在克洛维斯岩石群中,穆斯堡尔光谱仪(MB)检测到了只能在有水情况下才会形成[336][337][338]的针铁矿[339]。以三价铁离子(Fe3+)形态存在的铁氧化物[340]、富含碳酸盐的岩石,这意味着该行星上的一些地区曾经有过水[341][342]。
机遇号探测车被引导至一处在轨道上检测到有大量赤铁矿的地点,赤铁矿通常由水形成。探测车确实发现了层状岩石和大理石或蓝莓状赤铁矿结核 (地质学)结核。在路过其他地方时,机遇号勘查了坚忍撞击坑中伯恩斯崖中的风成沙丘层,得出的结论是,这些露头的保存和胶结受到浅层地下水流的控制[159]。在它连续运行的数年中,机遇号传回的证据表明,火星上该区域过去曾被液态水浸透过[343][344]。
火星漫游者发现了古代潮湿环境酸性很强的证据,事实上,机遇号发现了硫酸的证据,这是一种对生命有害的化学物质[38][39][345][346],但2013年5月17日,美国宇航局宣布机遇号发现了粘土沉积物,这些沉积物通常形成于酸碱度接近中性的潮湿环境中。这一发现为潮湿的古代环境可能有利于生命提供了额外的证据[[38][39]。
火星勘测轨道飞行器
火星勘测轨道飞行器的高分辨率成像科学设备拍摄了许多图像,有力地表明了火星有着丰富的与水有关的历史过程。一项重大发现是找到了古温泉证据,如果那里曾拥有微生物生命,那么就可能会保留下生命印迹[347]。2010年1月发表的研究报告描述了水手谷周围地区持续降水的有力证据[128][129],那里的矿物类型与水有关。此外,高密度的小型支流也表明曾经的降水量很大。
火星上的岩石被发现经常在许多不同的地方以分层的形式出现[348],这种地层的可通过多种方式形成,包括火山、风或水等 [349],而火星上浅色调的岩石通常与硫酸盐和粘土等水合矿物有关[350]。
该轨道器还帮助科学家们确定了火星大部分表面所覆盖的厚厚平坦层为冰和尘混合物[246][351][352]。
位于浅地表下的冰层被认为是重大气候频繁变化结果,火星轨道和倾角的变化导致从极地到相当于德克萨斯所在纬度区的水冰分布发生重大变化。在某些气候时期,水蒸气离开极地冰层进入大气,在低纬度区形成大量与尘埃混合的霜或雪沉积物。火星大气层中含有大量的尘埃微粒[193],当水蒸气在尘埃颗粒上凝结后,由于额外增加的重量,这些颗粒会落到地面构成一层厚厚的含冰覆盖层。当覆盖层顶部的冰升华返回大气层后,则留下了一层尘埃,从而隔绝了下方剩留的水冰[287]。
2008年,利用火星勘测轨道飞行器上浅层雷达进行的研究提供了强有力的证据,证明希腊平原和中北纬地区的舌状岩屑坡(LDA)是覆盖着一层薄岩屑的冰川。雷达探测到了来自舌状岩屑坡顶层和底部的强烈反射信号,这意味着该构造大部分是由纯净水冰组成[37]。舌状岩屑坡中水冰的发现,表明在更低纬度区也能找到水[234]。
2009年9月发表的研究表明,火星上一些新陨石坑显示出裸露的纯水冰[353]。一段时间后,这些几英尺厚的冰全部蒸发消失在大气中。火星勘测轨道飞行器上的小型成像光谱仪(CRISM)证实了冰的存在[354]。
2019年发布的其他合作报告评估了北极的水冰量,一份报告使用了火星勘测轨道飞行器上浅层雷达(SHARAD)的探测数据。该雷达能以15米(49英尺)的跨度扫描地表以下约2公里(1.2英里)的区域,对雷达运行的分析表明,北极高原下方存在水冰和沙尘层,其中60%至88%为水冰。这支持了由全球冷暖循环构成的火星全球长期天气理论,即在冷冻期,水在两极聚集形成冰层,然后随着全球变暖的发生,未解冻的水冰被火星上频繁沙尘暴带来的尘埃和沙土覆盖。这项研究测定的总冰量表明,火星表面约有2.2×105公里3(5.3×104英里3),如果融化的活,足以形成一层完全覆盖火星表面的1.5米(4.9英尺)水层[355]。这项研究得到了另一项研究的证实,该研究利用记录到的重力数据估算了北极高原的密度,表明就平均而言,所含水冰比率高达55%[356]。
通过检查高分辨率成像科学设备拍摄的照片,在乌托邦平原(北纬35-50度、东经80-115度)发现了许多看起来像地球上冰核丘的地貌,冰核丘是有一颗大冰核的土丘,常见于永久冻土地带[357]。
好奇号火星车
美国宇航局好奇号探测车在任务执行初期,就在火星上发现了清晰的河流沉积物。这些露头中的卵石特性表明,以前河床上曾奔流着强劲的水流,水流深度达脚踝和腰部之间。这些岩石是从陨石坑壁向下的冲积扇底部发现的,而这一冲积扇系统是以前从轨道上所识别出的[138][139][140]。
2012年10月,好奇号对火星土壤进行了首次X射线衍射分析。结果显示存在包括长石、辉石和橄榄石等在内的多种矿物,并表明样品中的火星土壤与夏威夷火山风化玄武岩土壤相类似。所使用的样本由来自全球沙尘暴的尘埃和当地细砂组成。截止目前,好奇号分析的材料与对盖尔撞击坑中沉积物的最初看法相一致,这些沉积物记录了从潮湿到干燥环境期的变迁过程[358]。
2012年12月,美国宇航局报告说好奇号进行了首次全面性的土壤分析,揭示了火星土壤中存在水分子、硫和氯[359][360]。2013年3月,美国宇航局报告了矿物水合作用的证据,在多个岩石样本中,包括被击破的“廷蒂纳岩石”碎块和“萨顿内露层”岩石,以及“克诺尔”(Knorr)和“韦内克”(Wernicke)等其他岩石的矿脉和结核中可能存在水合硫酸钙[361][362][363]。在探测车从布雷德伯里着陆场到格莱内尔格地的黄刀湾区穿越过程中,车载动态中子返照率设备(DAN)所作的分析提供了地下水的证据,显示地下水含量高达4%,深度为60厘米(2.0英尺)左右[361]。
2013年9月26日,美国宇航局科学家报告说,火星好奇号探测车在盖尔撞击坑埃俄利斯沼石巢区的土壤样本中检测到大量化学结合态水(重量比1.5-3%)[364][365][366][367][368][369]。此外,美国宇航局报告,探测车发现了两种主要的土壤类型:细粒铁镁质型和局部衍生的粗粒长英质型[366][368][370]。铁镁质型与其他火星土壤及尘埃相类似,与土壤非晶态相的水合作用有关[370]。另外,在好奇号探测车着陆点(以及时间更早更靠近极地的凤凰号着陆器位置)都发现了可能使生命相关有机分子检测变得困难的高氯酸盐,表明“这些盐类在全球范围内分布”[369]。美国宇航局还报告,好奇号在前往格莱内尔格途中遇到的一块杰克·马蒂耶维奇岩石,是一种橄榄粗安岩,与地球上的非常相似[371]。
2013年12月9日,美国宇航局报告,火星盖尔陨石坑内曾拥有过一座适宜微生物生存的大型淡水湖[31][32]。
2014年12月16日又报告称,火星大气层中的甲烷含量出现异常的大幅起落;此外,好奇号探测车从岩石上钻取的粉末中检测到了有机化学物质。另外,根据氘氢比研究,发现火星盖尔撞击坑中大部分的水在古代,也即撞击坑湖床形成前就已流失,之后,湖水继续大量流失[372][373][374]。
2015年4月13日,《自然》杂志发表了一份好奇号所收集湿度和地面温度数据的分析报告,显示了火星夜间地表5厘米以下会形成液态卤水膜的证据,但水的活性和温度仍低于地球上所知微生物繁殖和代谢的要求[6][375]。
2015年10月8日,美国宇航局确认,33-38亿年前盖尔撞击坑中湖泊和溪流搬运、堆积的沉积物构成了夏普山的下层山体[376][377]。2018年11月4日,地质学家根据好奇号火星车对盖尔撞击坑的研究提出了证据,证明早期火星上曾存在过大量的水[378][379]。
火星快车号
由欧空局发射的火星快车号轨道飞行器一直在绘制火星表面地图,并使用雷达设备寻找地下水的证据。2012年至2015年间,轨道器扫描了南极高原冰盖下的区域。到2018年,科学家们确定,读数显示有一座约20公里(12英里)宽的地下湖泊,湖顶位于地表面下1.5公里(0.93英里)处,液态水的深度还不清楚[380][381]。
交互地图
另请查看
- 火星大气层中的水——行星火星上的水文–环火星的气体层。
- 火星气候——行星火星上的水文–类地行星的气候模式。
- 火星殖民——计划–人类在火星定居的拟议概念。
- 火星和地球上水的演化——行星火星上的水文
- 地外液态水——行星火星上的水文–地球外自然存在的液态水。
- 火星湖泊–火星上湖泊的存在概述。
- 火星生命——在火星上的生命–火星上微生物宜居性的科学评估。
- 火星快车号§科学发现和重要事件
- 火星全球探勘者号§火星上水冰的发现
- 火星运河 –19世纪末20世纪初火星上存在运河的想法。
- 火星泥裂缝
参考文献
- ^ Torbet, Georgina. 美国宇航局就在火星表面下方发现了“水冰”—专家说,冰层可以用铲子铲到。. 瘾科技. 12 December 2019 [2019年12月10日].
- ^ 2.0 2.1 2.2 Staff. 扇形地形导致在火星上发现了埋藏的冰. NASA. November 22, 2016 [November 23, 2016].
- ^ 3.0 3.1 3.2 火星上发现的新墨西哥州大的冰水湖—美国宇航局. The Register. 2016年11月22日 [November 23, 2016].
- ^ 4.0 4.1 4.2 火星冰层的水量与苏必利尔湖相当. 美国宇航局. November 22, 2016 [2016年11月23日].
- ^ Jakosky, B.M.; Haberle, R.M. The Seasonal Behavior of Water on Mars. Kieffer, H.H.; et al (编). Mars. Tucson, AZ: University of Arizona Press. 1992: 969–1016.
- ^ 6.0 6.1 Martín-Torres, F. Javier; Zorzano, María-Paz; Valentín-Serrano, Patricia; Harri, Ari-Matti; Genzer, Maria. Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience. April 13, 2015, 8 (5): 357–361. Bibcode:2015NatGe...8..357M. doi:10.1038/ngeo2412.
- ^ 7.0 7.1 7.2 7.3 Ojha, L.; Wilhelm, M. B.; Murchie, S. L.; McEwen, A. S.; Wray, J. J.; Hanley, J.; Massé, M.; Chojnacki, M. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nature Geoscience. 2015, 8 (11): 829–832. Bibcode:2015NatGe...8..829O. S2CID 59152931. doi:10.1038/ngeo2546.
- ^ Recurring Martian Streaks: Flowing Sand, Not Water?, Nasa.org 2017-11-20
- ^ Carr, M.H. Water on Mars. New York: Oxford University Press. 1996: 197.
- ^ Bibring, J.-P.; Langevin, Yves; Poulet, François; Gendrin, Aline; Gondet, Brigitte; Berthé, Michel; Soufflot, Alain; Drossart, Pierre; Combes, Michel; Bellucci, Giancarlo; Moroz, Vassili; Mangold, Nicolas; Schmitt, Bernard; Omega Team, the; Erard, S.; Forni, O.; Manaud, N.; Poulleau, G.; Encrenaz, T.; Fouchet, T.; Melchiorri, R.; Altieri, F.; Formisano, V.; Bonello, G.; Fonti, S.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Kottsov, V.; et al. Perennial Water Ice Identified in the South Polar Cap of Mars. Nature. 2004, 428 (6983): 627–630. Bibcode:2004Natur.428..627B. PMID 15024393. S2CID 4373206. doi:10.1038/nature02461.
- ^ Pradeep, Thalappil; Kumar, Rajnish; Choudhary, Nilesh; Ragupathy, Gopi; Bhuin, Radha Gobinda; Methikkalam, Rabin Rajan J.; Ghosh, Jyotirmoy. Clathrate hydrates in interstellar environment. Proceedings of the National Academy of Sciences. 2019-01-29, 116 (5): 1526–1531. ISSN 0027-8424. PMC 6358667 . PMID 30630945. doi:10.1073/pnas.1814293116 (英语).
- ^ Water at Martian south pole. European Space Agency (ESA). March 17, 2004.
- ^ 13.0 13.1 Christensen, P. R. Water at the Poles and in Permafrost Regions of Mars. Elements. 2006, 3 (2): 151–155. doi:10.2113/gselements.2.3.151.
- ^ Carr, 2006, p. 173.
- ^ 15.0 15.1 Webster, Guy; Brown, Dwayne. NASA Mars Spacecraft Reveals a More Dynamic Red Planet. NASA. December 10, 2013.
- ^ Liquid Water From Ice and Salt on Mars. Geophysical Research Letters (NASA Astrobiology). July 3, 2014 [August 13, 2014]. (原始内容存档于August 14, 2014).
- ^ Pollack, J.B. Climatic Change on the Terrestrial Planets. Icarus. 1979, 37 (3): 479–553. Bibcode:1979Icar...37..479P. doi:10.1016/0019-1035(79)90012-5.
- ^ Pollack, J.B.; Kasting, J.F.; Richardson, S.M.; Poliakoff, K. The Case for a Wet, Warm Climate on Early Mars. Icarus. 1987, 71 (2): 203–224. Bibcode:1987Icar...71..203P. PMID 11539035. doi:10.1016/0019-1035(87)90147-3. hdl:2060/19870013977 .
- ^ Fairén, A. G. A cold and wet Mars Mars. Icarus. 2010, 208 (1): 165–175. Bibcode:2010Icar..208..165F. doi:10.1016/j.icarus.2010.01.006.
- ^ Fairén, A. G.; et al. Stability against freezing of aqueous solutions on early Mars. Nature. 2009, 459 (7245): 401–404. Bibcode:2009Natur.459..401F. PMID 19458717. S2CID 205216655. doi:10.1038/nature07978.
- ^ Clifford, S.M.; Parker, T.J. The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains. Icarus. 2001, 154 (1): 40–79. Bibcode:2001Icar..154...40C. S2CID 13694518. doi:10.1006/icar.2001.6671.
- ^ 22.0 22.1 22.2 Di Achille, Gaetano; Hynek, Brian M. Ancient ocean on Mars supported by global distribution of deltas and valleys. Nature Geoscience. 2010, 3 (7): 459–463. Bibcode:2010NatGe...3..459D. doi:10.1038/ngeo891.
- ^ 23.0 23.1 23.2 Ancient ocean may have covered third of Mars. Sciencedaily.com. June 14, 2010.
- ^ Parker, T.J.; Saunders, R.S.; Schneeberger, D.M. Transitional Morphology in West Deuteronilus Mensae, Mars: Implications for Modification of the Lowland/Upland Boundary. Icarus. 1989, 82 (1): 111–145. Bibcode:1989Icar...82..111P. doi:10.1016/0019-1035(89)90027-4.
- ^ Dohm, J.M.; Baker, Victor R.; Boynton, William V.; Fairén, Alberto G.; Ferris, Justin C.; Finch, Michael; Furfaro, Roberto; Hare, Trent M.; Janes, Daniel M.; Kargel, Jeffrey S.; Karunatillake, Suniti; Keller, John; Kerry, Kris; Kim, Kyeong J.; Komatsu, Goro; Mahaney, William C.; Schulze-Makuch, Dirk; Marinangeli, Lucia; Ori, Gian G.; Ruiz, Javier; Wheelock, Shawn J. GRS Evidence and the Possibility of Paleooceans on Mars (PDF). Planetary and Space Science. 2009, 57 (5–6): 664–684. Bibcode:2009P&SS...57..664D. doi:10.1016/j.pss.2008.10.008.
- ^ PSRD: Ancient Floodwaters and Seas on Mars. Psrd.hawaii.edu. July 16, 2003.
- ^ Gamma-Ray Evidence Suggests Ancient Mars Had Oceans. SpaceRef. November 17, 2008.
- ^ Carr, 2006, pp 144–147.
- ^ Fassett, C. I.; Dickson, James L.; Head, James W.; Levy, Joseph S.; Marchant, David R. Supraglacial and Proglacial Valleys on Amazonian Mars. Icarus. 2010, 208 (1): 86–100. Bibcode:2010Icar..208...86F. doi:10.1016/j.icarus.2010.02.021.
- ^ Flashback: Water on Mars Announced 10 Years Ago. SPACE.com. June 22, 2000.
- ^ 31.0 31.1 Chang, Kenneth. On Mars, an Ancient Lake and Perhaps Life. New York Times. December 9, 2013.
- ^ 32.0 32.1 Various. Science – Special Collection – Curiosity Rover on Mars. Science. December 9, 2013.
- ^ {{cite journal name="lpi.usra.edu">Parker, T.; Clifford, S. M.; Banerdt, W. B. Argyre Planitia and the Mars Global Hydrologic Cycle (PDF). Lunar and Planetary Science. 2000, XXXI: 2033. Bibcode:2000LPI....31.2033P.
- ^ 34.0 34.1 Heisinger, H.; Head, J. Topography and morphology of the Argyre basin, Mars: implications for its geologic and hydrologic history. Planet. Space Sci. 2002, 50 (10–11): 939–981. Bibcode:2002P&SS...50..939H. doi:10.1016/S0032-0633(02)00054-5.
- ^ Soderblom, L.A. Kieffer, H.H.; et al , 编. The composition and mineralogy of the Martian surface from spectroscopic observations – 0.3 micron to 50 microns. Tucson, AZ: University of Arizona Press. 1992: 557–593. ISBN 978-0-8165-1257-7.
- ^ Glotch, T.; Christensen, P. Geologic and mineralogical mapping of Aram Chaos: Evidence for water-rich history. J. Geophys. Res. 2005, 110 (E9): E09006. Bibcode:2005JGRE..110.9006G. S2CID 53489327. doi:10.1029/2004JE002389 .
- ^ 37.0 37.1 37.2 37.3 37.4 37.5 37.6 Holt, J. W.; Safaeinili, A.; Plaut, J. J.; Young, D. A.; Head, J. W.; Phillips, R. J.; Campbell, B. A.; Carter, L. M.; Gim, Y.; Seu, R.; Team, Sharad. Radar Sounding Evidence for Ice within Lobate Debris Aprons near Hellas Basin, Mid-Southern Latitudes of Mars (PDF). Lunar and Planetary Science. 2008, XXXIX (1391): 2441. Bibcode:2008LPI....39.2441H.
- ^ 38.0 38.1 38.2 Amos, Jonathan. Old Opportunity Mars rover makes rock discovery. BBC News. June 10, 2013.
- ^ 39.0 39.1 39.2 Mars Rover Opportunity Examines Clay Clues in Rock. Jet Propulsion Laboratory, NASA. May 17, 2013.
- ^ 40.0 40.1 40.2 Regional, Not Global, Processes Led to Huge Martian Floods. Planetary Science Institute (SpaceRef). September 11, 2015 [September 12, 2015].
- ^ Harrison, K; Grimm, R. Groundwater-controlled valley networks and the decline of surface runoff on early Mars. Journal of Geophysical Research. 2005, 110 (E12): E12S16. Bibcode:2005JGRE..11012S16H. S2CID 7755332. doi:10.1029/2005JE002455 .
- ^ Howard, A.; Moore, Jeffrey M.; Irwin, Rossman P. An intense terminal epoch of widespread fluvial activity on early Mars: 1. Valley network incision and associated deposits. Journal of Geophysical Research. 2005, 110 (E12): E12S14. Bibcode:2005JGRE..11012S14H. S2CID 14890033. doi:10.1029/2005JE002459 .
- ^ Salese, F.; Di Achille, G.; Neesemann, A.; Ori, G. G.; Hauber, E. Hydrological and sedimentary analyses of well-preserved paleofluvial-paleolacustrine systems at Moa Valles, Mars. J. Geophys. Res. Planets. 2016, 121 (2): 194–232. Bibcode:2016JGRE..121..194S. doi:10.1002/2015JE004891.
- ^ 44.0 44.1 44.2 44.3 Irwin, Rossman P.; Howard, Alan D.; Craddock, Robert A.; Moore, Jeffrey M. An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development. Journal of Geophysical Research. 2005, 110 (E12): E12S15. Bibcode:2005JGRE..11012S15I. doi:10.1029/2005JE002460 .
- ^ 45.0 45.1 Fassett, C.; Head, III. Valley network-fed, open-basin lakes on Mars: Distribution and implications for Noachian surface and subsurface hydrology. Icarus. 2008, 198 (1): 37–56. Bibcode:2008Icar..198...37F. doi:10.1016/j.icarus.2008.06.016.
- ^ 46.0 46.1 Moore, J.; Wilhelms, D. Hellas as a possible site of ancient ice-covered lakes on Mars (PDF). Icarus. 2001, 154 (2): 258–276. Bibcode:2001Icar..154..258M. doi:10.1006/icar.2001.6736. hdl:2060/20020050249.
- ^ 47.0 47.1 Weitz, C.; Parker, T. New evidence that the Valles Marineris interior deposits formed in standing bodies of water (PDF). Lunar and Planetary Science. 2000, XXXI: 1693. Bibcode:2000LPI....31.1693W.
- ^ New Signs That Ancient Mars Was Wet. Space.com. October 28, 2008.
- ^ 49.0 49.1 Head, J.; Marchant, D. Modifications of the walls of a Noachian crater in Northern Arabia Terra (24 E, 39 N) during northern mid-latitude Amazonian glacial epochs on Mars: Nature and evolution of Lobate Debris Aprons and their relationships to lineated valley fill and glacial systems (abstract). Lunar Planet. Sci. 2006, 37: 1128.
- ^ Head, J.; et al. Modification if the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation. Geophys. Res. Lett. 2006, 33 (8): 33. Bibcode:2006GeoRL..33.8S03H. S2CID 9653193. doi:10.1029/2005gl024360 .
- ^ Head, J.; Marchant, D. Evidence for global-scale northern mid-latitude glaciation in the Amazonian period of Mars: Debris-covered glacial and valley glacial deposits in the 30 – 50 N latitude band (abstract). Lunar Planet. Sci. 2006, 37: 1127.
- ^ 52.0 52.1 52.2 Lewis, Richard. Glaciers Reveal Martian Climate Has Been Recently Active. Brown University. April 23, 2008.
- ^ 53.0 53.1 53.2 53.3 53.4 53.5 53.6 53.7 Plaut, Jeffrey J.; Safaeinili, Ali; Holt, John W.; Phillips, Roger J.; Head, James W.; Seu, Roberto; Putzig, Nathaniel E.; Frigeri, Alessandro. Radar Evidence for Ice in Lobate Debris Aprons in the Mid-Northern Latitudes of Mars (PDF). Geophysical Research Letters. 2009, 36 (2): n/a. Bibcode:2009GeoRL..3602203P. doi:10.1029/2008GL036379.
- ^ Squyres, S.W.; et al. Ice in the Martian Regolith. Kieffer, H.H. (编). Mars. Tucson, AZ: University of Arizona Press. 1992: 523–554. ISBN 978-0-8165-1257-7.
- ^ Wall, Mike. Q & A with Mars Life-Seeker Chris Carr. Space.com. March 25, 2011.
- ^ 56.0 56.1 Dartnell, L.R.; Desorgher; Ward; Coates. Modelling the surface and subsurface Martian radiation environment: Implications for astrobiology. Geophysical Research Letters. January 30, 2007, 34 (2): L02207. Bibcode:2007GeoRL..34.2207D. doi:10.1029/2006GL027494.
The damaging effect of ionising radiation on cellular structure is one of the prime limiting factors on the survival of life in potential astrobiological habitats.
- ^ 57.0 57.1 Dartnell, L. R.; Desorgher, L.; Ward, J. M.; Coates, A. J. Martian sub-surface ionising radiation: biosignatures and geology (PDF). Biogeosciences. 2007, 4 (4): 545–558. Bibcode:2007BGeo....4..545D. doi:10.5194/bg-4-545-2007 .
This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation. [..] Even at a depth of 2 meters beneath the surface, any microbes would likely be dormant, cryopreserved by the current freezing conditions, and so metabolically inactive and unable to repair cellular degradation as it occurs.
- ^ 58.0 58.1 de Morais, A. A Possible Biochemical Model for Mars (PDF). 43rd Lunar and Planetary Science Conference (2012). 2012 [June 5, 2013].
The extensive volcanism at that time much possibly created subsurface cracks and caves within different strata, and the liquid water could have been stored in these subterraneous places, forming large aquifers with deposits of saline liquid water, minerals organic molecules, and geothermal heat – ingredients for life as we know on Earth.
- ^ 59.0 59.1 Didymus, JohnThomas. Scientists find evidence Mars subsurface could hold life. Digital Journal – Science. January 21, 2013.
There can be no life on the surface of Mars, because it is bathed in radiation and it's completely frozen. Life in the subsurface would be protected from that. – Prof. Parnell.
- ^ 60.0 60.1 Steigerwald, Bill. Martian Methane Reveals the Red Planet is not a Dead Planet. NASA's Goddard Space Flight Center (NASA). January 15, 2009.
If microscopic Martian life is producing the methane, it likely resides far below the surface, where it's still warm enough for liquid water to exist
- ^ 61.0 61.1 61.2 61.3 61.4 61.5 Orosei, R.; et al. Radar evidence of subglacial liquid water on Mars. Science. July 25, 2018, 361 (6401): 490–493. Bibcode:2018Sci...361..490O. PMID 30045881. S2CID 206666385. arXiv:2004.04587 . doi:10.1126/science.aar7268. hdl:11573/1148029 .
- ^ Halton, Mary. Liquid water 'lake' revealed on Mars. BBC News. July 25, 2018 [July 26, 2018].
- ^ NASA Mars Exploration Program Overview. http://www.nasa.gov/mission_pages/mars/overview/index.html.
- ^ Lauro, Sebastian Emanuel; et al. Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data. Nature Astronomy. 28 September 2020, 5: 63–70 [29 September 2020]. Bibcode:2020NatAs.tmp..194L. S2CID 222125007. arXiv:2010.00870 . doi:10.1038/s41550-020-1200-6.
- ^ O'Callaghan, Jonathan. Water on Mars: discovery of three buried lakes intrigues scientists - Researchers have detected a group of lakes hidden under the red planet's icy surface.. Nature. 28 September 2020 [29 September 2020]. PMID 32989309. doi:10.1038/d41586-020-02751-1.
- ^ Hautaluoma, Grey; Johnson, Alana; Good, Andrew. New Study Challenges Long-Held Theory of Fate of Mars' Water. NASA. 16 March 2021 [16 March 2021].
- ^ Mack, Eric. Mars hides an ancient ocean beneath its surface - New research finds a surprising amount of water locked away in the red planet.. CNET. 16 March 2021 [16 March 2021].
- ^ Scheller, E.L.; et al. Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust. Science. 16 March 2021, 372 (6537): 56–62. Bibcode:2021Sci...372...56S. PMID 33727251. doi:10.1126/science.abc7717 .
- ^ Chang, Kenneth. The Water on Mars Vanished. This Might Be Where It Went. Mars once had rivers, lakes and seas. Although the planet is now desert dry, scientists say most of the water is still there, just locked up in rocks.. The New York Times. 19 March 2021 [19 March 2021].
- ^ Sheehan, 1996, p. 35.
- ^ Kieffer, H.H.; Jakosky, B.M; Snyder, C. The Planet Mars: From Antiquity to the Present. Kieffer, H.H.; et al (编). Mars. Tucson, AZ: University of Arizona Press. 1992: 1–33.
- ^ hartmann, 2003, p. 20.
- ^ Sheehan, 1996, p. 150.
- ^ Spinrad, H.; Münch, G.; Kaplan, L. D. Letter to the Editor: the Detection of Water Vapor on Mars. Astrophysical Journal. 1963, 137: 1319. Bibcode:1963ApJ...137.1319S. doi:10.1086/147613.
- ^ Leighton, R.B.; Murray, B.C. Behavior of Carbon Dioxide and Other Volatiles on Mars. Science. 1966, 153 (3732): 136–144. Bibcode:1966Sci...153..136L. PMID 17831495. S2CID 28087958. doi:10.1126/science.153.3732.136.
- ^ Leighton, R.B.; Murray, B.C.; Sharp, R.P.; Allen, J.D.; Sloan, R.K. Mariner IV Photography of Mars: Initial Results. Science. 1965, 149 (3684): 627–630. Bibcode:1965Sci...149..627L. PMID 17747569. S2CID 43407530. doi:10.1126/science.149.3684.627.
- ^ Kliore, A.; et al. Occultation Experiment: Results of the First Direct Measurement of Mars's Atmosphere and Ionosphere. Science. 1965, 149 (3689): 1243–1248. Bibcode:1965Sci...149.1243K. PMID 17747455. S2CID 34369864. doi:10.1126/science.149.3689.1243.
- ^ Grotzinger, John P. Introduction to Special Issue – Habitability, Taphonomy, and the Search for Organic Carbon on Mars. Science. January 24, 2014, 343 (6169): 386–387. Bibcode:2014Sci...343..386G. PMID 24458635. doi:10.1126/science.1249944 .
- ^ Various. Special Issue – Table of Contents – Exploring Martian Habitability. Science. January 24, 2014, 343 (6169): 345–452.
- ^ Grotzinger, J.P.; et al. A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science. January 24, 2014, 343 (6169): 1242777. Bibcode:2014Sci...343A.386G. CiteSeerX 10.1.1.455.3973 . PMID 24324272. S2CID 52836398. doi:10.1126/science.1242777.
- ^ 81.0 81.1 Rodriguez, J. Alexis P.; Kargel, Jeffrey S.; Baker, Victor R.; Gulick, Virginia C.; et al. Martian outflow channels: How did their source aquifers form, and why did they drain so rapidly?. Scientific Reports. September 8, 2015, 5: 13404. Bibcode:2015NatSR...513404R. PMC 4562069 . PMID 26346067. doi:10.1038/srep13404.
- ^ Staff. Ancient Mars Water Existed Deep Underground. Space.com. July 2, 2012.
- ^ Craddock, R.; Howard, A. The case for rainfall on a warm, wet early Mars. J. Geophys. Res. 2002, 107 (E11): E11. Bibcode:2002JGRE..107.5111C. doi:10.1029/2001je001505.
- ^ Head, J.; et al. Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for the late Amazonian obliquity-driven climate change. Earth Planet. Sci. Lett. 2006, 241 (3–4): 663–671. Bibcode:2006E&PSL.241..663H. doi:10.1016/j.epsl.2005.11.016.
- ^ Staff. NASA Mars Reconnaissance Orbiter Reveals Details of a Wetter Mars. SpaceRef. NASA. October 28, 2008.
- ^ 86.0 86.1 Lunine, Jonathan I.; Chambers, John; et al. The Origin of Water on Mars. Icarus. September 2003, 165 (1): 1–8. Bibcode:2003Icar..165....1L. doi:10.1016/S0019-1035(03)00172-6.
- ^ Soderblom, L.A.; Bell, J.F. Exploration of the Martian Surface: 1992–2007. Bell, J.F. (编). The Martian Surface: Composition, Mineralogy, and Physical Properties. Cambridge University Press. 2008: 3–19. Bibcode:2008mscm.book.....B. ISBN 9780521866989.
- ^ Ming, D.W.; Morris, R.V.; Clark, R.C. Aqueous Alteration on Mars. Bell, J.F. (编). The Martian Surface: Composition, Mineralogy, and Physical Properties. Cambridge University Press. 2008: 519–540. Bibcode:2008mscm.book.....B.
- ^ Lewis, J.S. Physics and Chemistry of the Solar System revised. San Diego, CA: Academic Press. 1997. ISBN 978-0-12-446742-2.
- ^ Lasue, J.; et al. Quantitative Assessments of the Martian Hydrosphere. Space Sci. Rev. 2013, 174 (1–4): 155–212. Bibcode:2013SSRv..174..155L. S2CID 122747118. doi:10.1007/s11214-012-9946-5.
- ^ Clark, B.C.; et al. Chemistry and Mineralogy of Outcrops at Meridiani Planum. Earth Planet. Sci. Lett. 2005, 240 (1): 73–94. Bibcode:2005E&PSL.240...73C. doi:10.1016/j.epsl.2005.09.040.
- ^ Bloom, A.L. Geomorphology: A Systematic Analysis of Late Cenozoic Landforms. Englewood Cliffs, N.J: Prentice-Hall. 1978: 114. ISBN 9780133530865.
- ^ Boynton, W.V.; et al. Evidence for Calcium Carbonate at the Mars Phoenix Landing Site. Science. 2009, 325 (5936): 61–4. Bibcode:2009Sci...325...61B. PMID 19574384. S2CID 26740165. doi:10.1126/science.1172768.
- ^ Gooding, J.L.; Arvidson, R.E.; Zolotov, M. YU. Physical and Chemical Weathering. Kieffer, H.H.; et al (编). Mars. Tucson, AZ: University of Arizona Press. 1992: 626–651. ISBN 978-0-8165-1257-7.
- ^ Melosh, H.J. Planetary Surface Processes. Cambridge University Press. 2011: 296. ISBN 978-0-521-51418-7.
- ^ Abramov, O.; Kring, D.A. Impact-Induced Hydrothermal Activity on Early Mars. J. Geophys. Res. 2005, 110 (E12): E12S09. Bibcode:2005JGRE..11012S09A. S2CID 20787765. doi:10.1029/2005JE002453 .
- ^ Schrenk, M.O.; Brazelton, W.J.; Lang, S.Q. Serpentinization, Carbon, and Deep Life. Reviews in Mineralogy & Geochemistry. 2013, 75 (1): 575–606. Bibcode:2013RvMG...75..575S. S2CID 8600635. doi:10.2138/rmg.2013.75.18.
- ^ Baucom, Martin. Life on Mars?. American Scientist. March–April 2006, 94 (2): 119. doi:10.1511/2006.58.119.
- ^ Chassefière, E; Langlais, B; Quesnel, Y; Leblanc, F., The Fate of Early Mars' Lost Water: The Role of Serpentinization (PDF), EPSC Abstracts 8, 2013, 8: EPSC2013-188
- ^ Ehlmann, B. L.; Mustard, J.F.; Murchie, S.L. Geologic Setting of Serpentine Deposits on Mars (PDF). Geophys. Res. Lett. 2010, 37 (6): L06201. Bibcode:2010GeoRL..37.6201E. doi:10.1029/2010GL042596.
- ^ Bloom, A.L. Geomorphology: A Systematic Analysis of Late Cenozoic Landforms. Englewood Cliffs, N.J.: Prentice-Hall. 1978. ., p. 120
- ^ Ody, A.; et al. Global Investigation of Olivine on Mars: Insights into Crust and Mantle Compositions. J. Geophys. Res. 2013, 118 (2): 234–262. Bibcode:2013JGRE..118..234O. doi:10.1029/2012JE004149 .
- ^ Swindle, T. D.; Treiman, A. H.; Lindstrom, D. J.; Burkland, M. K.; Cohen, B. A.; Grier, J. A.; Li, B.; Olson, E. K. Noble Gases in Iddingsite from the Lafayette meteorite: Evidence for Liquid water on Mars in the last few hundred million years. Meteoritics and Planetary Science. 2000, 35 (1): 107–115. Bibcode:2000M&PS...35..107S. doi:10.1111/j.1945-5100.2000.tb01978.x .
- ^ Head, J.; Kreslavsky, M. A.; Ivanov, M. A.; Hiesinger, H.; Fuller, E. R.; Pratt, S. Water in Middle Mars History: New Insights From MOLA Data. AGU Spring Meeting Abstracts. 2001, 2001: P31A–02 INVITED. Bibcode:2001AGUSM...P31A02H.
- ^ Head, J.; et al. Exploration for standing Bodies of Water on Mars: When Were They There, Where did They go, and What are the Implications for Astrobiology?. AGU Fall Meeting Abstracts. 2001, 21: P21C–03. Bibcode:2001AGUFM.P21C..03H.
- ^ Meyer, C. (2012) The Martian Meteorite Compendium; National Aronautics and Space Administration. http://curator.jsc.nasa.gov/antmet/mmc/.
- ^ Shergotty Meteorite – JPL, NASA. NASA. [December 19, 2010].
- ^ Hamiliton, W.; Christensen, Philip R.; McSween, Harry Y. Determination of Martian meteorite lithologies and mineralogies using vibrational spectroscopy. Journal of Geophysical Research. 1997, 102 (E11): 25593–25603. Bibcode:1997JGR...10225593H. doi:10.1029/97JE01874.
- ^ Treiman, A. The nakhlite meteorites: Augite-rich igneous rocks from Mars (PDF). Chemie der Erde – Geochemistry. 2005, 65 (3): 203–270 [September 8, 2006]. Bibcode:2005ChEG...65..203T. doi:10.1016/j.chemer.2005.01.004.
- ^ Agee, Carl B.; Wilson, Nicole V.; McCubbin, Francis M.; Ziegler, Karen; Polyak, Victor J.; Sharp, Zachary D.; Asmerom, Yemane; Nunn, Morgan H.; Shaheen, Robina; Thiemens, Mark H.; Steele, Andrew; Fogel, Marilyn L.; Bowden, Roxane; Glamoclija, Mihaela; Zhang, Zhisheng; Elardo, Stephen M. Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034. Science. February 15, 2013, 339 (6121): 780–785. Bibcode:2013Sci...339..780A. PMID 23287721. S2CID 206544554. doi:10.1126/science.1228858.
- ^ Agree, C., et al. 2013. Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034. Science: 339, 780–785.
- ^ McKay, D.; Gibson Jr., EK; Thomas-Keprta, KL; Vali, H; Romanek, CS; Clemett, SJ; Chillier, XD; Maechling, CR; Zare, RN. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite AL84001. Science. 1996, 273 (5277): 924–930. Bibcode:1996Sci...273..924M. PMID 8688069. S2CID 40690489. doi:10.1126/science.273.5277.924.
- ^ Gibbs, W.; Powell, C. Bugs in the Data?. Scientific American. August 19, 1996.
- ^ Controversy Continues: Mars Meteorite Clings to Life – Or Does It?. SPACE.com. March 20, 2002.
- ^ Bada, J.; Glavin, DP; McDonald, GD; Becker, L. A Search for Endogenous Amino Acids in Martian Meteorite AL84001. Science. 1998, 279 (5349): 362–365. Bibcode:1998Sci...279..362B. PMID 9430583. S2CID 32301715. doi:10.1126/science.279.5349.362.
- ^ 116.0 116.1 Garcia-Ruiz, Juan-Manuel Garcia-Ruiz. Morphological behavior of inorganic precipitation systems – Instruments, Methods, and Missions for Astrobiology II. SPIE Proceedings. Instruments, Methods, and Missions for Astrobiology II. December 30, 1999,. Proc. SPIE 3755: 74–82. S2CID 84764520. doi:10.1117/12.375088.
It is concluded that "morphology cannot be used unambiguously as a tool for primitive life detection."
- ^ Agresti; House; Jögi; Kudryavstev; McKeegan; Runnegar; Schopf; Wdowiak. Detection and geochemical characterization of Earth's earliest life. NASA Astrobiology Institute (NASA). December 3, 2008 [January 15, 2013]. (原始内容存档于January 23, 2013).
- ^ Schopf, J. William; Kudryavtsev, Anatoliy B.; Czaja, Andrew D.; Tripathi, Abhishek B. Evidence of Archean life: Stromatolites and microfossils (PDF). Precambrian Research. April 28, 2007, 158 (3–4): 141–155 [January 15, 2013]. Bibcode:2007PreR..158..141S. doi:10.1016/j.precamres.2007.04.009. (原始内容 (PDF)存档于December 24, 2012).
- ^ 119.0 119.1 Raeburn, P. Uncovering the Secrets of the Red Planet Mars. National Geographic (Washington D.C.). 1998.
- ^ 120.0 120.1 Moore, P.; et al. The Atlas of the Solar System. New York: Mitchell Beazley Publishers. 1990.
- ^ Berman, Daniel C.; Crown, David A.; Bleamaster, Leslie F. Degradation of mid-latitude craters on Mars. Icarus. 2009, 200 (1): 77–95. Bibcode:2009Icar..200...77B. doi:10.1016/j.icarus.2008.10.026.
- ^ Fassett, Caleb I.; Head, James W. The timing of martian valley network activity: Constraints from buffered crater counting. Icarus. 2008, 195 (1): 61–89. Bibcode:2008Icar..195...61F. doi:10.1016/j.icarus.2007.12.009.
- ^ Malin, Michael C. An overview of the 1985–2006 Mars Orbiter Camera science investigation. The Mars Journal. 2010, 5: 1–60. Bibcode:2010IJMSE...5....1M. S2CID 128873687. doi:10.1555/mars.2010.0001.
- ^ Sinuous Ridges Near Aeolis Mensae. Hiroc.lpl.arizona.edu. January 31, 2007 [October 8, 2009]. (原始内容存档于March 5, 2016).
- ^ Zimbelman, J.; Griffin, L. HiRISE images of yardangs and sinuous ridges in the lower member of the Medusae Fossae Formation, Mars. Icarus. 2010, 205 (1): 198–210. Bibcode:2010Icar..205..198Z. doi:10.1016/j.icarus.2009.04.003.
- ^ Newsom, H.; Lanza, Nina L.; Ollila, Ann M.; Wiseman, Sandra M.; Roush, Ted L.; Marzo, Giuseppe A.; Tornabene, Livio L.; Okubo, Chris H.; Osterloo, Mikki M.; Hamilton, Victoria E.; Crumpler, Larry S. Inverted channel deposits on the floor of Miyamoto crater, Mars. Icarus. 2010, 205 (1): 64–72. Bibcode:2010Icar..205...64N. doi:10.1016/j.icarus.2009.03.030.
- ^ Morgan, A.M.; Howard, A.D.; Hobley, D.E.J.; Moore, J.M.; Dietrich, W.E.; Williams, R.M.E.; Burr, D.M.; Grant, J.A.; Wilson, S.A.; Matsubara, Y. Sedimentology and climatic environment of alluvial fans in the martian Saheki crater and a comparison with terrestrial fans in the Atacama Desert (PDF). Icarus. 2014, 229: 131–156. Bibcode:2014Icar..229..131M. doi:10.1016/j.icarus.2013.11.007.
- ^ 128.0 128.1 Weitz, C.; Milliken, R.E.; Grant, J.A.; McEwen, A.S.; Williams, R.M.E.; Bishop, J.L.; Thomson, B.J. Mars Reconnaissance Orbiter observations of light-toned layered deposits and associated fluvial landforms on the plateaus adjacent to Valles Marineris. Icarus. 2010, 205 (1): 73–102. Bibcode:2010Icar..205...73W. doi:10.1016/j.icarus.2009.04.017.
- ^ 129.0 129.1 129.2 Zendejas, J.; Segura, A.; Raga, A.C. Atmospheric mass loss by stellar wind from planets around main sequence M stars. Icarus. December 2010, 210 (2): 539–1000. Bibcode:2010Icar..210..539Z. S2CID 119243879. arXiv:1006.0021 . doi:10.1016/j.icarus.2010.07.013.
- ^ 130.0 130.1 130.2 Cabrol, N.; Grin, E. (编). Lakes on Mars. New York: Elsevier. 2010.
- ^ Goldspiel, J.; Squires, S. Groundwater sapping and valley formation on Mars. Icarus. 2000, 148 (1): 176–192. Bibcode:2000Icar..148..176G. doi:10.1006/icar.2000.6465.
- ^ Parker, T.; Clifford, S. M.; Banerdt, W. B. Argyre Planitia and the Mars Global Hydrologic Cycle (PDF). Lunar and Planetary Science. 2000, XXXI: 2033. Bibcode:2000LPI....31.2033P.
- ^ 133.00 133.01 133.02 133.03 133.04 133.05 133.06 133.07 133.08 133.09 Carr, Michael H. The Surface of Mars. Cambridge Planetary Science Series (No. 6). ISBN 978-0-511-26688-1.
- ^ Nedell, S.; Squyres, Steven W.; Andersen, David W. Origin and evolution of the layered deposits in the Valles Marineris, Mars. Icarus. 1987, 70 (3): 409–441. Bibcode:1987Icar...70..409N. doi:10.1016/0019-1035(87)90086-8.
- ^ Matsubara, Yo, Alan D. Howard, and Sarah A. Drummond. "Hydrology of early Mars: Lake basins." Journal of Geophysical Research: Planets 116.E4 (2011).
- ^ Spectacular Mars images reveal evidence of ancient lakes. Sciencedaily.com. January 4, 2010 [February 28, 2018]. (原始内容存档于August 23, 2016).
- ^ Gupta, Sanjeev; Warner, Nicholas; Kim, Rack; Lin, Yuan; Muller, Jan; -1#Jung-, Shih-. Hesperian equatorial thermokarst lakes in Ares Vallis as evidence for transient warm conditions on Mars. Geology. 2010, 38 (1): 71–74. Bibcode:2010Geo....38...71W. doi:10.1130/G30579.1.
- ^ 138.0 138.1 138.2 138.3 Brown, Dwayne; Cole, Steve; Webster, Guy; Agle, D.C. NASA Rover Finds Old Streambed On Martian Surface. NASA. September 27, 2012.
- ^ 139.0 139.1 139.2 NASA. NASA's Curiosity Rover Finds Old Streambed on Mars – video (51:40). NASAtelevision. September 27, 2012.
- ^ 140.0 140.1 140.2 Chang, Alicia. Mars rover Curiosity finds signs of ancient stream. Associated Press. September 27, 2012.
- ^ NASA Rover Finds Conditions Once Suited for Ancient Life on Mars. NASA. March 12, 2013.
- ^ Parker, T., D. Curie. 2001. Geomorphology 37. 303–328.
- ^ de Pablo, M., M. Druet. 2002. XXXIII LPSC. Abstract #1032.
- ^ de Pablo, M. 2003. VI Mars Conference, Abstract #3037.
- ^ Mars Study Yields Clues to Possible Cradle of Life – Astrobiology Magazine. astrobio.net. October 8, 2017.
- ^ Mars' Eridania Basin Once Held Vast Sea - Planetary Science, Space Exploration - Sci-News.com. sci-news.com.
- ^ 147.0 147.1 Michalski, J.; et al. Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nature Communications. 2017, 8: 15978. Bibcode:2017NatCo...815978M. PMC 5508135 . PMID 28691699. doi:10.1038/ncomms15978.
- ^ Baker, D., J. Head. 2014. 44th LPSC, abstract #1252
- ^ Irwin, R.; et al. Geomorphology of Ma'adim Vallis, Mars, and associated paleolake basins. J. Geophys. Res. Planets. 2004, 109 (E12): E12009. Bibcode:2004JGRE..10912009I. S2CID 12637702. doi:10.1029/2004je002287.
- ^ Hynek, B.; et al. Updated global map of Martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res. 2010, 115 (E9): E09008. Bibcode:2010JGRE..115.9008H. doi:10.1029/2009je003548 .
- ^ Di Achille, Gaetano; Hynek, Brian M. Ancient ocean on Mars supported by global distribution of deltas and valleys. Nature Geoscience. 2010, 3 (7): 459–463. Bibcode:2010NatGe...3..459D. doi:10.1038/ngeo891.
- ^ Carr, M.H. Formation of Martian flood features by release of water from confined aquifers (PDF). J. Geophys. Res. 1979, 84: 2995–3007. Bibcode:1979JGR....84.2995C. doi:10.1029/JB084iB06p02995.
- ^ Baker, V.; Milton, D. Erosion by Catastrophic Floods on Mars and Earth. Icarus. 1974, 23 (1): 27–41. Bibcode:1974Icar...23...27B. doi:10.1016/0019-1035(74)90101-8.
- ^ Mars Global Surveyor MOC2-862 Release. Msss.com. [January 16, 2012]. (原始内容存档于April 12, 2009).
- ^ Andrews-Hanna, Jeffrey C.; Phillips, Roger J.; Zuber, Maria T. Meridiani Planum and the global hydrology of Mars. Nature. 2007, 446 (7132): 163–6. Bibcode:2007Natur.446..163A. PMID 17344848. S2CID 4428510. doi:10.1038/nature05594.
- ^ Irwin; Rossman, P.; Craddock, Robert A.; Howard, Alan D. Interior channels in Martian valley networks: Discharge and runoff production. Geology. 2005, 33 (6): 489–492. Bibcode:2005Geo....33..489I. S2CID 5663347. doi:10.1130/g21333.1.
- ^ Jakosky, Bruce M. Water, Climate, and Life. Science. 1999, 283 (5402): 648–649. PMID 9988657. S2CID 128560172. doi:10.1126/science.283.5402.648.
- ^ Lamb, Michael P., et al. "Can springs cut canyons into rock?." Journal of Geophysical Research: Planets (1991–2012) 111.E7 (2006).
- ^ 159.0 159.1 159.2 Grotzinger, J.P.; Arvidson, R.E.; Bell III, J.F.; Calvin, W.; Clark, B.C.; Fike, D.A.; Golombek, M.; Greeley, R.; Haldemann, A.; Herkenhoff, K.E.; Jolliff, B.L.; Knoll, A.H.; Malin, M.; McLennan, S.M.; Parker, T.; Soderblom, L.; Sohl-Dickstein, J.N.; Squyres, S.W.; Tosca, N.J.; Watters, W.A. Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum. Earth and Planetary Science Letters. November 25, 2005, 240 (1): 11–72. Bibcode:2005E&PSL.240...11G. ISSN 0012-821X. doi:10.1016/j.epsl.2005.09.039.
- ^ Michalski, Joseph R.; Niles, Paul B.; Cuadros, Javier; Parnell, John; Rogers, A. Deanne; Wright, Shawn P. Groundwater activity on Mars and implications for a deep biosphere. Nature Geoscience. January 20, 2013, 6 (2): 133–138. Bibcode:2013NatGe...6..133M. doi:10.1038/ngeo1706.
Here we present a conceptual model of subsurface habitability of Mars and evaluate evidence for groundwater upwelling in deep basins.
- ^ 161.0 161.1 161.2 Zuber, Maria T. Planetary Science: Mars at the tipping point. Nature. 2007, 447 (7146): 785–786. Bibcode:2007Natur.447..785Z. PMID 17568733. S2CID 4427572. doi:10.1038/447785a.
- ^ Andrews‐Hanna, J. C.; Zuber, M. T.; Arvidson, R. E.; Wiseman, S. M. Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. J. Geophys. Res. 2010, 115 (E6): E06002. Bibcode:2010JGRE..115.6002A. doi:10.1029/2009JE003485 .
- ^ McLennan, S. M.; et al. Provenance and diagenesis of the evaporitebearing Burns formation, Meridiani Planum, Mars. Earth Planet. Sci. Lett. 2005, 240 (1): 95–121. Bibcode:2005E&PSL.240...95M. doi:10.1016/j.epsl.2005.09.041.
- ^ Squyres, S. W.; Knoll, A. H. Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars. Earth Planet. Sci. Lett. 2005, 240 (1): 1–10. Bibcode:2005E&PSL.240....1S. doi:10.1016/j.epsl.2005.09.038..
- ^ Squyres, S. W.; et al. Two years at Meridiani Planum: Results from the Opportunity rover (PDF). Science. 2006, 313 (5792): 1403–1407. Bibcode:2006Sci...313.1403S. PMID 16959999. S2CID 17643218. doi:10.1126/science.1130890..
- ^ Wiseman, M.; Andrews-Hanna, J. C.; Arvidson, R. E.; Mustard, J. F.; Zabrusky, K. J. Distribution of Hydrated Sulfates Across Arabia Terra Using CRISM Data: Implications for Martian Hydrology (PDF). 42nd Lunar and Planetary Science Conference. 2011.
- ^ Andrews‐Hanna, Jeffrey C.; Lewis, Kevin W. Early Mars hydrology: 2. Hydrological evolution in the Noachian and Hesperian epochs. Journal of Geophysical Research: Planets. 2011, 116 (E2): E2. Bibcode:2011JGRE..116.2007A. S2CID 17293290. doi:10.1029/2010je003709 .
- ^ ESA Staff. First Evidence of "Planet-Wide Groundwater System" on Mars Found. European Space Agency. 28 February 2019 [28 February 2019].
- ^ Houser, Kristin. First Evidence of "Planet-Wide Groundwater System" on Mars Found. Futurism.com. 28 February 2019 [28 February 2019].
- ^ Salese, Francesco; Pondrelli, Monica; Neeseman, Alicia; Schmidt, Gene; Ori, Gian Gabriele. Geological Evidence of Planet-Wide Groundwater System on Mars. Journal of Geophysical Research: Planets. 2019, 124 (2): 374–395. Bibcode:2019JGRE..124..374S. PMC 6472477 . PMID 31007995. doi:10.1029/2018JE005802.
- ^ Mars: Planet‐Wide Groundwater System – New Geological Evidence. February 19, 2019.
- ^ Andrews, Robin George. Mysterious magnetic pulses discovered on Mars - The nighttime events are among initial results from the InSight lander, which also found hints that the red planet may host a global reservoir of liquid water deep below the surface.. National Geographic Society. 20 September 2019 [20 September 2019].
- ^ Brandenburg, John E., The Paleo-Ocean of Mars, MECA Symposium on Mars: Evolution of its Climate and Atmosphere, Lunar and Planetary Institute: 20–22, 1987, Bibcode:1987meca.symp...20B
- ^ 174.0 174.1 引用错误:没有为名为
Baker
的参考文献提供内容 - ^ Clifford, S. M.; Parker, T. J. The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains. Icarus. 2001, 154 (1): 40–79. Bibcode:2001Icar..154...40C. S2CID 13694518. doi:10.1006/icar.2001.6671.
- ^ Smith, D.; et al. The Gravity Field of Mars: Results from Mars Global Surveyor (PDF). Science. 1999, 286 (5437): 94–97. Bibcode:1999Sci...286...94S. PMID 10506567. doi:10.1126/science.286.5437.94.
- ^ Read, Peter L.; Lewis, S. R. The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet (Paperback). Chichester, UK: Praxis. 2004 [December 19, 2010]. ISBN 978-3-540-40743-0.
- ^ Martian North Once Covered by Ocean. Astrobio.net. November 26, 2009 [December 19, 2010].
- ^ New Map Bolsters Case for Ancient Ocean on Mars. SPACE.com. November 23, 2009.
- ^ Carr, M.; Head, J. Oceans on Mars: An assessment of the observational evidence and possible fate. Journal of Geophysical Research. 2003, 108 (E5): 5042. Bibcode:2003JGRE..108.5042C. S2CID 16367611. doi:10.1029/2002JE001963.
- ^ Mars Ocean Hypothesis Hits the Shore. NASA Astrobiology. NASA. January 26, 2001. (原始内容存档于February 20, 2012).
- ^ Perron; Taylor, J.; et al. Evidence for an ancient Martian ocean in the topography of deformed shorelines. Nature. 2007, 447 (7146): 840–843. Bibcode:2007Natur.447..840P. PMID 17568743. S2CID 4332594. doi:10.1038/nature05873.
- ^ Kaufman, Marc. Mars Had an Ocean, Scientists Say, Pointing to New Data. The New York Times. March 5, 2015 [March 5, 2015].
- ^ Ancient Tsunami Evidence on Mars Reveals Life Potential – Astrobiology. astrobiology.com.
- ^ Rodriguez, J., et al. 2016. Tsunami waves extensively resurfaced the shorelines of an early Martian ocean. Scientific Reports: 6, 25106.
- ^ Rodriguez, J. Alexis P.; Fairén, Alberto G.; Tanaka, Kenneth L.; Zarroca, Mario; Linares, Rogelio; Platz, Thomas; Komatsu, Goro; Miyamoto, Hideaki; Kargel, Jeffrey S.; Yan, Jianguo; Gulick, Virginia; Higuchi, Kana; Baker, Victor R.; Glines, Natalie. Tsunami waves extensively resurfaced the shorelines of an early Martian ocean. Scientific Reports. May 19, 2016, 6 (1): 25106. Bibcode:2016NatSR...625106R. PMC 4872529 . PMID 27196957. doi:10.1038/srep25106.
- ^ Cornell University. "Ancient tsunami evidence on Mars reveals life potential." ScienceDaily. ScienceDaily, May 19, 2016. <https://www.sciencedaily.com/releases/2016/05/160519101756.htm>.
- ^ Andrews, Robin George. When a Mega-Tsunami Drowned Mars, This Spot May Have Been Ground Zero - The 75-mile-wide crater could be something like a Chicxulub crater for the red planet.. The New York Times. July 30, 2019 [July 31, 2019].
- ^ Costard, F.; et al. The Lomonosov Crater Impact Event: A Possible Mega‐Tsunami Source on Mars. Journal of Geophysical Research: Planets. June 26, 2019, 124 (7): 1840–1851. Bibcode:2019JGRE..124.1840C. doi:10.1029/2019JE006008. hdl:20.500.11937/76439 .
- ^ 190.0 190.1 Kostama, V.-P.; Kreslavsky, M. A.; Head, J. W. Recent high-latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement. Geophysical Research Letters. June 3, 2006, 33 (11): L11201. Bibcode:2006GeoRL..3311201K. CiteSeerX 10.1.1.553.1127 . doi:10.1029/2006GL025946.
- ^ 191.0 191.1 Heldmann, Jennifer L.; et al. Formation of Martian gullies by the action of liquid water flowing under current Martian environmental conditions (PDF). Journal of Geophysical Research. May 7, 2005, 110: Eo5004. Bibcode:2005JGRE..11005004H. doi:10.1029/2004JE002261. hdl:2060/20050169988 . 'conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water' … 'Liquid water is typically stable at the lowest elevations and at low latitudes on the planet, because the atmospheric pressure is greater than the vapor pressure of water and surface temperatures in equatorial regions can reach 220 K(−53 °C;−64 °F) for parts of the day.
- ^ 192.0 192.1 Malin, Michael C.; Edgett, Kenneth S.; Posiolova, Liliya V.; McColley, Shawn M.; Dobrea, Eldar Z. Noe. Present-Day Impact Cratering Rate and Contemporary Gully Activity on Mars. Science. December 8, 2006, 314 (5805): 1573–1577. Bibcode:2006Sci...314.1573M. PMID 17158321. S2CID 39225477. doi:10.1126/science.1135156.
- ^ 193.0 193.1 Head, JW; Marchant, DR; Kreslavsky, MA. Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin. PNAS. 2008, 105 (36): 13258–63. Bibcode:2008PNAS..10513258H. PMC 2734344 . PMID 18725636. doi:10.1073/pnas.0803760105.
- ^ Henderson, Mark. Water has been flowing on Mars within past five years, Nasa says. The Times (UK). December 7, 2006.
- ^ Malin, Michael C.; Edgett, Kenneth S. Evidence for Recent Groundwater Seepage and Surface Runoff on Mars. Science. 2000, 288 (5475): 2330–2335. Bibcode:2000Sci...288.2330M. PMID 10875910. S2CID 14232446. doi:10.1126/science.288.5475.2330.
- ^ 196.0 196.1 196.2 196.3 196.4 Wilson, Jack T.; et al. Equatorial locations of water on Mars: Improved resolution maps based on Mars Odyssey Neutron Spectrometer data. Icarus. January 2018, 299: 148–160. Bibcode:2018Icar..299..148W. S2CID 59520156. arXiv:1708.00518 . doi:10.1016/j.icarus.2017.07.028.
- ^ Kolb, K.; Pelletier, Jon D.; McEwen, Alfred S. Modeling the formation of bright slope deposits associated with gullies in Hale Crater, Mars: Implications for recent liquid water. Icarus. 2010, 205 (1): 113–137. Bibcode:2010Icar..205..113K. doi:10.1016/j.icarus.2009.09.009.
- ^ Hoffman, Nick. Active polar gullies on Mars and the role of carbon dioxide. Astrobiology. 2002, 2 (3): 313–323. Bibcode:2002AsBio...2..313H. PMID 12530241. doi:10.1089/153110702762027899.
- ^ Musselwhite, Donald S.; Swindle, Timothy D.; Lunine, Jonathan I. Liquid CO2 breakout and the formation of recent small gullies on Mars. Geophysical Research Letters. 2001, 28 (7): 1283–1285. Bibcode:2001GeoRL..28.1283M. doi:10.1029/2000gl012496 .
- ^ McEwen, Alfred. S.; Ojha, Lujendra; Dundas, Colin M. Seasonal Flows on Warm Martian Slopes. Science (American Association for the Advancement of Science). June 17, 2011, 333 (6043): 740–743. Bibcode:2011Sci...333..740M. ISSN 0036-8075. PMID 21817049. S2CID 10460581. doi:10.1126/science.1204816.
- ^ Nepali Scientist Lujendra Ojha spots possible water on Mars. Nepali Blogger. August 6, 2011. (原始内容存档于June 4, 2013).
- ^ NASA Spacecraft Data Suggest Water Flowing on Mars. NASA. August 4, 2011.
- ^ McEwen, Alfred; Lujendra, Ojha; Dundas, Colin; Mattson, Sarah; Bryne, S; Wray, J; Cull, Selby; Murchie, Scott; Thomas, Nicholas; Gulick, Virginia. Seasonal Flows On Warm Martian Slopes.. Science. August 5, 2011, 333 (6043): 743. Bibcode:2011Sci...333..740M. PMID 21817049. S2CID 10460581. doi:10.1126/science.1204816. (原始内容存档于September 29, 2015). 已忽略未知参数
|df=
(帮助) - ^ Moskowitz, Clara. Water Flows on Mars Today, NASA Announces. [September 30, 2015].
- ^ Drake, Nadia; 28, National Geographic September. NASA Finds 'Definitive' Liquid Water on Mars. National Geographic News. September 28, 2015 [September 30, 2015].
- ^ NASA News Conference: Evidence of Liquid Water on Today's Mars. NASA. September 28, 2015.
- ^ NASA Confirms Evidence That Liquid Water Flows on Today's Mars. September 28, 2015 [September 30, 2015].
- ^ Recurring Martian Streaks: Flowing Sand, Not Water?. JPL NASA News. November 20, 2017.
- ^ Boynton, W. V.; et al. Concentration of H, Si, Cl, K, Fe, and Th in the low and mid latitude regions of Mars. Journal of Geophysical Research: Planets. 2007, 112 (E12): E12S99. Bibcode:2007JGRE..11212S99B. doi:10.1029/2007JE002887 .
- ^ Feldman, W. C.; Prettyman, T. H.; Maurice, S.; Plaut, J. J.; Bish, D. L.; Vaniman, D. T.; Tokar, R. L. Global distribution of near-surface hydrogen on Mars. Journal of Geophysical Research. 2004, 109 (E9): E9. Bibcode:2004JGRE..109.9006F. doi:10.1029/2003JE002160 . E09006.
- ^ 211.0 211.1 211.2 Feldman, W. C.; et al. Global distribution of near-surface hydrogen on Mars. Journal of Geophysical Research. 2004, 109 (E9): E09006. Bibcode:2004JGRE..109.9006F. doi:10.1029/2003JE002160 .
- ^ Cutts, James A. Nature and origin of layered deposits of the Martian polar regions. Journal of Geophysical Research. 1973-07-10, 78 (20): 4231–4249. Bibcode:1973JGR....78.4231C. doi:10.1029/JB078i020p04231 (英语).
- ^ Mars' South Pole Ice Deep and Wide. NASA News & Media Resources. NASA. March 15, 2007.
- ^ Plaut, J. J.; et al. Subsurface Radar Sounding of the South Polar Layered Deposits of Mars. Science. March 15, 2007, 316 (5821): 92–95. Bibcode:2007Sci...316...92P. PMID 17363628. S2CID 23336149. doi:10.1126/science.1139672.
- ^ Byrne, Shane. The Polar Deposits of Mars. Annual Review of Earth and Planetary Sciences. 2009, 37 (1): 535–560. Bibcode:2009AREPS..37..535B. S2CID 54874200. doi:10.1146/annurev.earth.031208.100101.
- ^ Scanlon, K., et al. 2018. The Dorsa Argentea Formation and the Noachian-Hesperian climate transition. Icarus: 299, 339–363.
- ^ Head, J, S. Pratt. 2001. Extensive Hesperian-aged south polar ice sheet on Mars: Evidence for massive melting and retreat, and lateral flow and pending of meltwater. J. Geophys. Res.-Planet, 106 (E6), 12275-12299.
- ^ Fishbaugh, KE; Byrne, Shane; Herkenhoff, Kenneth E.; Kirk, Randolph L.; Fortezzo, Corey; Russell, Patrick S.; McEwen, Alfred. Evaluating the meaning of "layer" in the Martian north polar layered depsoits and the impact on the climate connection (PDF). Icarus. 2010, 205 (1): 269–282. Bibcode:2010Icar..205..269F. doi:10.1016/j.icarus.2009.04.011.
- ^ How Mars Got Its Layered North Polar Cap. Eos. [2019-09-26] (美国英语).
- ^ Peeling Back the Layers of the Climate of Mars. Eos. [2019-09-26] (美国英语).
- ^ Conway, Susan J.; Hovius, Niels; Barnie, Talfan; Besserer, Jonathan; Le Mouélic, Stéphane; Orosei, Roberto; Read, Natalie Anne. Climate-driven deposition of water ice and the formation of mounds in craters in Mars' north polar region (PDF). Icarus. 2012-07-01, 220 (1): 174–193. Bibcode:2012Icar..220..174C. ISSN 0019-1035. doi:10.1016/j.icarus.2012.04.021.
- ^ Ice islands on Mars and Pluto could reveal past climate change. phys.org. [2019-09-26] (美国英语).
- ^ 223.0 223.1 A winter wonderland in red and white – Korolev Crater on Mars. German Aerospace Center (DLR). [20 December 2018].
- ^ Editor, Ian Sample Science. Mars Express beams back images of ice-filled Korolev crater. The Guardian. December 21, 2018 [December 21, 2018].
- ^ Duxbury, N. S.; Zotikov, I. A.; Nealson, K. H.; Romanovsky, V. E.; Carsey, F. D. A numerical model for an alternative origin of Lake Vostok and its exobiological implications for Mars (PDF). Journal of Geophysical Research. 2001, 106 (E1): 1453. Bibcode:2001JGR...106.1453D. doi:10.1029/2000JE001254 .
- ^ Chang, Kenneth; Overbye, Dennis. A Watery Lake Is Detected on Mars, Raising the Potential for Alien Life – The discovery suggests that watery conditions beneath the icy southern polar cap may have provided one of the critical building blocks for life on the red planet.. The New York Times. July 25, 2018 [July 25, 2018].
- ^ Huge reservoir of liquid water detected under the surface of Mars. EurekAlert. July 25, 2018 [July 25, 2018].
- ^ Liquid water 'lake' revealed on Mars. BBC News. July 25, 2018 [July 25, 2018].
- ^ Supplementary Materials for: Orosei, R; Lauro, SE; Pettinelli, E; Cicchetti, A; Coradini, M; Cosciotti, B; Di Paolo, F; Flamini, E; Mattei, E; Pajola, M; Soldovieri, F; Cartacci, M; Cassenti, F; Frigeri, A; Giuppi, S; Martufi, R; Masdea, A; Mitri, G; Nenna, C; Noschese, R; Restano, M; Seu, R. Radar evidence of subglacial liquid water on Mars. Science. 2018, 361 (6401): 490–493. Bibcode:2018Sci...361..490O. PMID 30045881. doi:10.1126/science.aar7268 .
- ^ Lauro, Sebastian Emanuel; Pettinelli, Elena; Caprarelli, Graziella; Guallini, Luca; Rossi, Angelo Pio; Mattei, Elisabetta; Cosciotti, Barbara; Cicchetti, Andrea; Soldovieri, Francesco; Cartacci, Marco; Di Paolo, Federico; Noschese, Raffaella; Orosei, Roberto. Multiple subglacial water bodies below the south pole of Mars unveiled by new MARSIS data. Nature Astronomy. 28 September 2020, 5: 63–70. Bibcode:2020NatAs.tmp..194L. ISSN 2397-3366. S2CID 222125007. arXiv:2010.00870 . doi:10.1038/s41550-020-1200-6 (英语).
- ^ Halton, Mary. Liquid water 'lake' revealed on Mars. BBC News. July 25, 2018.
- ^ Sori, Michael M.; Bramson, Ali M. Water on Mars, With a Grain of Salt: Local Heat Anomalies Are Required for Basal Melting of Ice at the South Pole Today. Geophysical Research Letters. 2019, 46 (3): 1222–1231. Bibcode:2019GeoRL..46.1222S. ISSN 1944-8007. doi:10.1029/2018GL080985. hdl:10150/633584 (英语).
- ^ 233.0 233.1 Giant liquid water lake found under Martian ice. RTÉ. July 25, 2018 [July 26, 2018].
- ^ 234.0 234.1 234.2 Kieffer, Hugh H. Mars. University of Arizona Press. 1992 [March 7, 2011]. ISBN 978-0-8165-1257-7.
- ^ Howell, Elizabeth. Water Ice Mystery Found at Martian Equator. Space.com. October 2, 2017 [October 2, 2017].
- ^ Polygonal Patterned Ground: Surface Similarities Between Mars and Earth. SpaceRef. September 28, 2002.
- ^ Squyres, S. Urey Prize Lecture: Water on Mars. Icarus. 1989, 79 (2): 229–288. Bibcode:1989Icar...79..229S. doi:10.1016/0019-1035(89)90078-X.
- ^ Lefort, A.; Russell, P.S.; Thomas, N. Scaloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE. Icarus. 2010, 205 (1): 259–268. Bibcode:2010Icar..205..259L. doi:10.1016/j.icarus.2009.06.005.
- ^ 239.0 239.1 239.2 239.3 239.4 Steep Slopes on Mars Reveal Structure of Buried Ice. NASA Press Release. January 11, 2018.
- ^ Dundas, Colin M.; Bramson, Ali M.; Ojha, Lujendra; Wray, James J.; Mellon, Michael T.; Byrne, Shane; McEwen, Alfred S.; Putzig, Nathaniel E.; Viola, Donna; Sutton, Sarah; Clark, Erin; Holt, John W. Exposed subsurface ice sheets in the Martian mid-latitudes. Science. 2018, 359 (6372): 199–201. Bibcode:2018Sci...359..199D. PMID 29326269. doi:10.1126/science.aao1619 .
- ^ Ice cliffs spotted on Mars. Science News. Paul Voosen. January 11, 2018.
- ^ Piqueux, Sylvain; Buz, Jennifer; Edwards, Christopher S.; Bandfield, Joshua L.; Kleinböhl, Armin; Kass, David M.; Hayne, Paul O. Widespread Shallow Water Ice on Mars at High and Mid Latitudes (PDF). Geophysical Research Letters. December 10, 2019. doi:10.1029/2019GL083947.
- ^ NASA's Treasure Map for Water Ice on Mars. Jet Propulsion Laboratory. 2019-12-10.
- ^ Supplementary Materials Exposed subsurface ice sheets in the Martian mid-latitudes Colin M. Dundas, Ali M. Bramson, Lujendra Ojha, James J. Wray, Michael T. Mellon, Shane Byrne, Alfred S. McEwen, Nathaniel E. Putzig, Donna Viola, Sarah Sutton, Erin Clark, John W. Holt
- ^ Dundas, C., S. Bryrne, A. McEwen. 2015. Modeling the development of martian sublimation thermokarst landforms. Icarus: 262, 154–169.
- ^ 246.0 246.1 246.2 Head, James W.; Mustard, John F.; Kreslavsky, Mikhail A.; Milliken, Ralph E.; Marchant, David R. Recent ice ages on Mars. Nature. 2003, 426 (6968): 797–802. Bibcode:2003Natur.426..797H. PMID 14685228. S2CID 2355534. doi:10.1038/nature02114.
- ^ 247.0 247.1 HiRISE Dissected Mantled Terrain (PSP_002917_2175). Arizona University. [December 19, 2010].
- ^ Lefort, A.; Russell, P.S.; Thomas, N. Scalloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE. Icarus. 2010, 205 (1): 259–268. Bibcode:2010Icar..205..259L. doi:10.1016/j.icarus.2009.06.005.
- ^ Huge Underground Ice Deposit on Mars Is Bigger Than New Mexico. space.com.
- ^ Bramson, A, et al. 2015. Widespread excess ice in Arcadia Planitia, Mars. Geophysical Research Letters: 42, 6566–6574
- ^ Archived copy. [November 29, 2016]. (原始内容存档于November 30, 2016).
- ^ Stuurman, C., et al. 2016. SHARAD detection and characterization of subsurface water ice deposits in Utopia Planitia, Mars. Geophysical Research Letters: 43, 9484_9491.
- ^ Byrne, S.; Ingersoll, A. P. A Sublimation Model for the Formation of the Martian Polar Swiss-cheese Features. American Astronomical Society. 2002, 34: 837. Bibcode:2002DPS....34.0301B.
- ^ Water ice in crater at Martian north pole (新闻稿). ESA. July 27, 2005.
- ^ Ice lake found on the Red Planet. BBC. July 29, 2005.
- ^ Murray, John B.; et al. Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars' equator. Nature. 2005, 434 (7031): 352–356. Bibcode:2005Natur.434..352M. PMID 15772653. S2CID 4373323. doi:10.1038/nature03379.
Here we present High Resolution Stereo Camera images from the European Space Agency Mars Express spacecraft that indicate that such lakes may still exist.
- ^ Orosei, R.; Cartacci, M.; Cicchetti, A.; Federico, C.; Flamini, E.; Frigeri, A.; Holt, J. W.; Marinangeli, L.; Noschese, R.; Pettinelli, E.; Phillips, R. J.; Picardi, G.; Plaut, J. J.; Safaeinili, A.; Seu, R. Radar subsurface sounding over the putative frozen sea in Cerberus Palus, Mars (PDF). Lunar and Planetary Science. 2008, XXXIX: P14B–05. Bibcode:2007AGUFM.P14B..05O. ISBN 978-1-4244-4604-9. S2CID 23296246. doi:10.1109/ICGPR.2010.5550143.
- ^ Barlow, Nadine G. Mars: an introduction to its interior, surface and atmosphere. Cambridge University Press. 2008-01-10. ISBN 978-0-521-85226-5.
- ^ Strom, R.G.; Croft, Steven K.; Barlow, Nadine G. The Martian Impact Cratering Record, Mars. University of Arizona Press. 1992. ISBN 978-0-8165-1257-7.
- ^ ESA – Mars Express – Breathtaking views of Deuteronilus Mensae on Mars. Esa.int. March 14, 2005.
- ^ Hauber, E.; et al. Discovery of a flank caldera and very young glacial activity at Hecates Tholus, Mars. Nature. 2005, 434 (7031): 356–61. Bibcode:2005Natur.434..356H. PMID 15772654. S2CID 4427179. doi:10.1038/nature03423.
- ^ Shean, David E.; Head, James W.; Fastook, James L.; Marchant, David R. Recent glaciation at high elevations on Arsia Mons, Mars: Implications for the formation and evolution of large tropical mountain glaciers (PDF). Journal of Geophysical Research. 2007, 112 (E3): E03004. Bibcode:2007JGRE..112.3004S. doi:10.1029/2006JE002761 .
- ^ 263.0 263.1 Shean, D.; et al. Origin and evolution of a cold-based mountain glacier on Mars: The Pavonis Mons fan-shaped deposit. Journal of Geophysical Research. 2005, 110 (E5): E05001. Bibcode:2005JGRE..110.5001S. S2CID 14749707. doi:10.1029/2004JE002360.
- ^ Basilevsky, A.; et al. Geological recent tectonic, volcanic and fluvial activity on the eastern flank of the Olympus Mons volcano, Mars. Geophysical Research Letters. 2006, 33 (13). L13201. Bibcode:2006GeoRL..3313201B. CiteSeerX 10.1.1.485.770 . doi:10.1029/2006GL026396.
- ^ Milliken, R.; et al. Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images. Journal of Geophysical Research. 2003, 108 (E6): 5057. Bibcode:2003JGRE..108.5057M. S2CID 12628857. doi:10.1029/2002je002005.
- ^ Arfstrom, J.; Hartmann, W. Martian flow features, moraine-like ridges, and gullies: Terrestrial analogs and interrelationships. Icarus. 2005, 174 (2): 321–35. Bibcode:2005Icar..174..321A. doi:10.1016/j.icarus.2004.05.026.
- ^ Head, J. W.; Neukum, G.; Jaumann, R.; Hiesinger, H.; Hauber, E.; Carr, M.; Masson, P.; Foing, B.; Hoffmann, H.; Kreslavsky, M.; Werner, S.; Milkovich, S.; van Gasselt, S.; HRSC Co-Investigator Team. Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars. Nature. 2005, 434 (7031): 346–350. Bibcode:2005Natur.434..346H. PMID 15772652. S2CID 4363630. doi:10.1038/nature03359.
- ^ Staff. Mars' climate in flux: Mid-latitude glaciers. Marstoday. Brown University. October 17, 2005.
- ^ Berman, D.; et al. The role of arcuate ridges and gullies in the degradation of craters in the Newton Basin region of Mars. Icarus. 2005, 178 (2): 465–86. Bibcode:2005Icar..178..465B. doi:10.1016/j.icarus.2005.05.011.
- ^ Fretted Terrain Valley Traverse. Hirise.lpl.arizona.edu. [January 16, 2012].
- ^ Jumbled Flow Patterns. Arizona University. [January 16, 2012].
- ^ 272.0 272.1 272.2 272.3 272.4 272.5 272.6 272.7 272.8 Jakosky, B. M.; Phillips, R. J. Mars' volatile and climate history. Nature. 2001, 412 (6843): 237–244. Bibcode:2001Natur.412..237J. PMID 11449285. doi:10.1038/35084184 .
- ^ 273.0 273.1 273.2 273.3 273.4 Chaufray, J. Y.; et al. Mars solar wind interaction: Formation of the Martian corona and atmospheric loss to space (PDF). Journal of Geophysical Research. 2007, 112 (E9): E09009. Bibcode:2007JGRE..112.9009C. doi:10.1029/2007JE002915 .
- ^ 274.0 274.1 Chevrier, V.; et al. Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates. Nature. 2007, 448 (7149): 60–63. Bibcode:2007Natur.448...60C. PMID 17611538. S2CID 1595292. doi:10.1038/nature05961.
- ^ 275.0 275.1 275.2 Catling, D. C. Mars: Ancient fingerprints in the clay. Nature. 2007, 448 (7149): 31–32. Bibcode:2007Natur.448...31C. PMID 17611529. S2CID 4387261. doi:10.1038/448031a.
- ^ Andrews-Hanna, J. C.; et al. Meridiani Planum and the global hydrology of Mars. Nature. 2007, 446 (7132): 163–6. Bibcode:2007Natur.446..163A. PMID 17344848. S2CID 4428510. doi:10.1038/nature05594.
- ^ Chevrier, V.; et al. Iron weathering products in a CO2+(H2O or H2O2) atmosphere: Implications for weathering processes on the surface of Mars. Geochimica et Cosmochimica Acta. 2006, 70 (16): 4295–4317. Bibcode:2006GeCoA..70.4295C. doi:10.1016/j.gca.2006.06.1368.
- ^ Bibring, J-P.; et al. Global mineralogical and aqueous mars history derived from OMEGA/Mars Express data. Science. 2006, 312 (5772): 400–4. Bibcode:2006Sci...312..400B. PMID 16627738. doi:10.1126/science.1122659 .
- ^ McEwen, A. S.; et al. A Closer Look at Water-Related Geologic Activity on Mars. Science. 2007, 317 (5845): 1706–1709. Bibcode:2007Sci...317.1706M. PMID 17885125. S2CID 44822691. doi:10.1126/science.1143987.
- ^ Escape from Mars: How water fled the red planet. phys.org. [8 December 2020] (英语).
- ^ Stone, Shane W.; Yelle, Roger V.; Benna, Mehdi; Lo, Daniel Y.; Elrod, Meredith K.; Mahaffy, Paul R. Hydrogen escape from Mars is driven by seasonal and dust storm transport of water. Science. 13 November 2020, 370 (6518): 824–831 [8 December 2020]. Bibcode:2020Sci...370..824S. ISSN 0036-8075. PMID 33184209. S2CID 226308137. doi:10.1126/science.aba5229 (英语).
- ^ Schorghofer, Norbert. Dynamics of ice ages on Mars (PDF). Nature. 2007, 449 (7159): 192–194 [January 12, 2018]. Bibcode:2007Natur.449..192S. PMID 17851518. S2CID 4415456. doi:10.1038/nature06082. (原始内容 (PDF)存档于January 13, 2018).
- ^ Dickson, James L.; Head, James W.; Marchant, David R. Late Amazonian glaciation at the dichotomy boundary on Mars: Evidence for glacial thickness maxima and multiple glacial phases. Geology. 2008, 36 (5): 411–4. Bibcode:2008Geo....36..411D. S2CID 14291132. doi:10.1130/G24382A.1.
- ^ Head, J. W.; III; Mustard, J. F.; Kreslavsky, M. A.; Milliken, R. E.; Marchant, D. R. Recent ice ages on Mars. Nature. 2003, 426 (6968): 797–802. Bibcode:2003Natur.426..797H. PMID 14685228. S2CID 2355534. doi:10.1038/nature02114.
- ^ Smith, Isaac B.; Putzig, Nathaniel E.; Holt, John W.; Phillips, Roger J. An ice age recorded in the polar deposits of Mars. Science. May 27, 2016, 352 (6289): 1075–1078. Bibcode:2016Sci...352.1075S. PMID 27230372. doi:10.1126/science.aad6968 .
- ^ Levrard, B.; Forget, F.; Montmessian, F.; Laskar, J. Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity. Nature. 2004, 431 (7012): 1072–1075. Bibcode:2004Natur.431.1072L. PMID 15510141. S2CID 4420650. doi:10.1038/nature03055.
- ^ 287.0 287.1 287.2 Mars may be emerging from an ice age. ScienceDaily (MLA NASA/Jet Propulsion Laboratory). December 18, 2003.
- ^ Forget, F.; et al. Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity. Science. 2006, 311 (5759): 368–71. Bibcode:2006Sci...311..368F. PMID 16424337. S2CID 5798774. doi:10.1126/science.1120335.
- ^ Mustard, J.; et al. Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature. 2001, 412 (6845): 411–4. Bibcode:2001Natur.412..411M. PMID 11473309. S2CID 4409161. doi:10.1038/35086515.
- ^ Kreslavsky, M.; Head, J. Mars: Nature and evolution of young latitude-dependent water-ice-rich mantle (PDF). Geophysical Research Letters. 2002, 29 (15): 14–1–14–4. Bibcode:2002GeoRL..29.1719K. doi:10.1029/2002GL015392 .
- ^ Beatty, Kelly. Water Ice Found Exposed in Martian Cliffs - Sky & Telescope. Sky & Telescope. 23 January 2018 [3 October 2018].
- ^ Astrobiology Strategy 2015 互联网档案馆的存檔,存档日期December 22, 2016,. (PDF) NASA.
- ^ Conrad, P. G.; Archer, D.; Coll, P.; De La Torre, M.; Edgett, K.; Eigenbrode, J. L.; Fisk, M.; Freissenet, C.; Franz, H.; et al. Habitability Assessment at Gale Crater: Implications from Initial Results. 44th Lunar and Planetary Science Conference. 2013, 1719 (1719): 2185. Bibcode:2013LPI....44.2185C.
- ^ Committee on an Astrobiology Strategy for the Exploration of Mars; National Research Council. Planetary Protection for Mars Missions. An Astrobiology Strategy for the Exploration of Mars. The National Academies Press. 2007: 95–98. ISBN 978-0-309-10851-5.
- ^ Daley, Jason. Mars Surface May Be Too Toxic for Microbial Life - The combination of UV radiation and perchlorates common on Mars could be deadly for bacteria. Smithsonian. 6 July 2017 [8 July 2017].
- ^ Wadsworth, Jennifer; Cockell, Charles S. Perchlorates on Mars enhance the bacteriocidal effects of UV light. Scientific Reports. 6 July 2017, 7 (4662): 4662. Bibcode:2017NatSR...7.4662W. PMC 5500590 . PMID 28684729. doi:10.1038/s41598-017-04910-3.
- ^ NASA Astrobiology Strategy (PDF). NASA. 2015 [September 5, 2018]. (原始内容 (PDF)存档于December 22, 2016).
- ^ Mars Exploration: Missions. Marsprogram.jpl.nasa.gov. [December 19, 2010]. (原始内容存档于April 11, 2004).
- ^ Viking Orbiter Views of Mars. History.nasa.gov. [December 19, 2010].
- ^ ch5. NASA History. NASA. [December 19, 2010].
- ^ Craters. NASA. [December 19, 2010].
- ^ Morton, O. Mapping Mars. Picador, NY. 2002.
- ^ Arvidson, R; Gooding, James L.; Moore, Henry J. The Martian surface as Imaged, Sampled, and Analyzed by the Viking Landers. Reviews of Geophysics. 1989, 27 (1): 39–60. Bibcode:1989RvGeo..27...39A. doi:10.1029/RG027i001p00039.
- ^ Clark, B.; Baird, AK; Rose Jr., HJ; Toulmin P, 3rd; Keil, K; Castro, AJ; Kelliher, WC; Rowe, CD; Evans, PH. Inorganic Analysis of Martian Samples at the Viking Landing Sites. Science. 1976, 194 (4271): 1283–1288. Bibcode:1976Sci...194.1283C. PMID 17797084. S2CID 21349024. doi:10.1126/science.194.4271.1283.
- ^ Hoefen, T.M.; et al. Discovery of Olivine in the Nili Fossae Region of Mars. Science. 2003, 302 (5645): 627–630. Bibcode:2003Sci...302..627H. PMID 14576430. S2CID 20122017. doi:10.1126/science.1089647.
- ^ Hoefen, T.; Clark, RN; Bandfield, JL; Smith, MD; Pearl, JC; Christensen, PR. Discovery of Olivine in the Nili Fossae Region of Mars. Science. 2003, 302 (5645): 627–630. Bibcode:2003Sci...302..627H. PMID 14576430. S2CID 20122017. doi:10.1126/science.1089647.
- ^ Malin, Michael C.; Edgett, Kenneth S. Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission. Journal of Geophysical Research. 2001, 106 (E10): 23429–23570. Bibcode:2001JGR...10623429M. S2CID 129376333. doi:10.1029/2000JE001455 .
- ^ Atmospheric and Meteorological Properties. NASA.
- ^ 309.0 309.1 Golombek, M. P.; Cook, R. A.; Economou, T.; Folkner, W. M.; Haldemann, A. F. C.; Kallemeyn, P. H.; Knudsen, J. M.; Manning, R. M.; Moore, H. J.; Parker, T. J.; Rieder, R.; Schofield, J. T.; Smith, P. H.; Vaughan, R. M. Overview of the Mars Pathfinder Mission and Assessment of Landing Site Predictions. Science. 1997, 278 (5344): 1743–1748. Bibcode:1997Sci...278.1743G. PMID 9388167. doi:10.1126/science.278.5344.1743 .
- ^ Mars Odyssey: Newsroom. Mars.jpl.nasa.gov. May 28, 2002.
- ^ 311.0 311.1 Feldman, W.C.; et al. Global Distribution of Near-Surface Hydrogen on Mars. Journal of Geophysical Research. 2004, 109. Bibcode:2004JGRE..10909006F. doi:10.1029/2003JE002160 .
- ^ Murche, S.; Mustard, John; Bishop, Janice; Head, James; Pieters, Carle; Erard, Stephane. Spatial Variations in the Spectral Properties of Bright Regions on Mars. Icarus. 1993, 105 (2): 454–468. Bibcode:1993Icar..105..454M. doi:10.1006/icar.1993.1141.
- ^ Home Page for Bell (1996) Geochemical Society paper. Marswatch.tn.cornell.edu. [December 19, 2010].
- ^ Feldman, W. C.; Boynton, W. V.; Tokar, R. L.; Prettyman, T. H.; Gasnault, O.; Squyres, S. W.; Elphic, R. C.; Lawrence, D. J.; Lawson, S. L.; Maurice, S.; McKinney, G. W.; Moore, K. R.; Reedy, R. C. Global Distribution of Neutrons from Mars: Results from Mars Odyssey. Science. 2002, 297 (5578): 75–78. Bibcode:2002Sci...297...75F. PMID 12040088. S2CID 11829477. doi:10.1126/science.1073541.
- ^ Mitrofanov, I.; Anfimov, D.; Kozyrev, A.; Litvak, M.; Sanin, A.; Tret'yakov, V.; Krylov, A.; Shvetsov, V.; Boynton, W.; Shinohara, C.; Hamara, D.; Saunders, R. S. Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey. Science. 2002, 297 (5578): 78–81. Bibcode:2002Sci...297...78M. PMID 12040089. S2CID 589477. doi:10.1126/science.1073616.
- ^ Boynton, W. V.; Feldman, W. C.; Squyres, S. W.; Prettyman, T. H.; Brückner, J.; Evans, L. G.; Reedy, R. C.; Starr, R.; Arnold, J. R.; Drake, D. M.; Englert, P. A. J.; Metzger, A. E.; Mitrofanov, Igor; Trombka, J. I.; d'Uston, C.; Wänke, H.; Gasnault, O.; Hamara, D. K.; Janes, D. M.; Marcialis, R. L.; Maurice, S.; Mikheeva, I.; Taylor, G. J.; Tokar, R.; Shinohara, C. Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits. Science. 2002, 297 (5578): 81–85. Bibcode:2002Sci...297...81B. PMID 12040090. S2CID 16788398. doi:10.1126/science.1073722.
- ^ Dao Vallis. Mars Odyssey Mission. THEMIS. August 7, 2002 [December 19, 2010].
- ^ 318.0 318.1 Smith, P. H.; Tamppari, L.; Arvidson, R. E.; Bass, D.; Blaney, D.; Boynton, W.; Carswell, A.; Catling, D.; Clark, B.; Duck, T.; DeJong, E.; Fisher, D.; Goetz, W.; Gunnlaugsson, P.; Hecht, M.; Hipkin, V.; Hoffman, J.; Hviid, S.; Keller, H.; Kounaves, S.; Lange, C. F.; Lemmon, M.; Madsen, M.; Malin, M.; Markiewicz, W.; Marshall, J.; McKay, C.; Mellon, M.; Michelangeli, D.; et al. Introduction to special section on the phoenix mission: Landing site characterization experiments, mission overviews, and expected science. Journal of Geophysical Research. 2008, 113 (E12): E00A18. Bibcode:2008JGRE..113.0A18S. S2CID 38911896. doi:10.1029/2008JE003083. hdl:2027.42/94752 .
- ^ NASA Data Shed New Light About Water and Volcanoes on Mars. NASA. September 9, 2010 [March 21, 2014].
- ^ Mellon, M.; Jakosky, B. Geographic variations in the thermal and diffusive stability of ground ice on Mars. Journal of Geophysical Research. 1993, 98 (E2): 3345–3364. Bibcode:1993JGR....98.3345M. doi:10.1029/92JE02355.
- ^ Confirmation of Water on Mars. Nasa.gov. June 20, 2008.
- ^ Johnson, John. There's water on Mars, NASA confirms. Los Angeles Times. August 1, 2008.
- ^ 323.0 323.1 The Dirt on Mars Lander Soil Findings. SPACE.com. [December 19, 2010].
- ^ 324.0 324.1 324.2 Martínez, G. M. & Renno, N. O. Water and brines on Mars: current evidence and implications for MSL. Space Science Reviews. 2013, 175 (1–4): 29–51. Bibcode:2013SSRv..175...29M. doi:10.1007/s11214-012-9956-3 .
- ^ Rennó, Nilton O.; Bos, Brent J.; Catling, David; Clark, Benton C.; Drube, Line; Fisher, David; Goetz, Walter; Hviid, Stubbe F.; Keller, Horst Uwe; Kok, Jasper F.; Kounaves, Samuel P.; Leer, Kristoffer; Lemmon, Mark; Madsen, Morten Bo; Markiewicz, Wojciech J.; Marshall, John; McKay, Christopher; Mehta, Manish; Smith, Miles; Zorzano, M. P.; Smith, Peter H.; Stoker, Carol; Young, Suzanne M. M. Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site. Journal of Geophysical Research. 2009, 114 (E1): E00E03. Bibcode:2009JGRE..114.0E03R. S2CID 55050084. doi:10.1029/2009JE003362. hdl:2027.42/95444 .
- ^ Chang, Kenneth. Blobs in Photos of Mars Lander Stir a Debate: Are They Water?. New York Times (online). March 16, 2009.
- ^ Liquid Saltwater Is Likely Present On Mars, New Analysis Shows. ScienceDaily. March 20, 2009.
- ^ Astrobiology Top 10: Too Salty to Freeze. Astrobio.net. [December 19, 2010].
- ^ Hecht, M. H.; Kounaves, S. P.; Quinn, R. C.; West, S. J.; Young, S. M. M.; Ming, D. W.; Catling, D. C.; Clark, B. C.; Boynton, W. V.; Hoffman, J.; DeFlores, L. P.; Gospodinova, K.; Kapit, J.; Smith, P. H. Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site. Science. 2009, 325 (5936): 64–67. Bibcode:2009Sci...325...64H. PMID 19574385. S2CID 24299495. doi:10.1126/science.1172466.
- ^ Smith, P. H.; Tamppari, L. K.; Arvidson, R. E.; Bass, D.; Blaney, D.; Boynton, W. V.; Carswell, A.; Catling, D. C.; Clark, B. C.; Duck, T.; DeJong, E.; Fisher, D.; Goetz, W.; Gunnlaugsson, H. P.; Hecht, M. H.; Hipkin, V.; Hoffman, J.; Hviid, S. F.; Keller, H. U.; Kounaves, S. P.; Lange, C. F.; Lemmon, M. T.; Madsen, M. B.; Markiewicz, W. J.; Marshall, J.; McKay, C. P.; Mellon, M. T.; Ming, D. W.; Morris, R. V.; et al. H2O at the Phoenix Landing Site. Science. 2009, 325 (5936): 58–61. Bibcode:2009Sci...325...58S. PMID 19574383. S2CID 206519214. doi:10.1126/science.1172339.
- ^ Whiteway, J. A.; Komguem, L.; Dickinson, C.; Cook, C.; Illnicki, M.; Seabrook, J.; Popovici, V.; Duck, T. J.; Davy, R.; Taylor, P. A.; Pathak, J.; Fisher, D.; Carswell, A. I.; Daly, M.; Hipkin, V.; Zent, A. P.; Hecht, M. H.; Wood, S. E.; Tamppari, L. K.; Renno, N.; Moores, J. E.; Lemmon, M. T.; Daerden, F.; Smith, P. H. Mars Water-Ice Clouds and Precipitation. Science. 2009, 325 (5936): 68–70. Bibcode:2009Sci...325...68W. PMID 19574386. S2CID 206519222. doi:10.1126/science.1172344.
- ^ CSA – News Release. Asc-csa.gc.ca. July 2, 2009. (原始内容存档于July 5, 2011).
- ^ Mars Exploration Rover Mission: Press Releases. Marsrovers.jpl.nasa.gov. March 5, 2004.
- ^ NASA – Mars Rover Spirit Unearths Surprise Evidence of Wetter Past. NASA. May 21, 2007.
- ^ Bertster, Guy. Mars Rover Investigates Signs of Steamy Martian Past. Press Release. Jet Propulsion Laboratory, Pasadena, California. December 10, 2007.
- ^ Schroder, C.; et al. Journal of Geophysical Research (abstr.) 7. European Geosciences Union, General Assembly: 10254. 2005.
- ^ Morris, S.; et al. Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journal through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills. J. Geophys. Res. 2006, 111 (E2): n/a. Bibcode:2006JGRE..111.2S13M. doi:10.1029/2005je002584. hdl:1893/17159 .
- ^ Ming, D.; Mittlefehldt, D. W.; Morris, R. V.; Golden, D. C.; Gellert, R.; Yen, A.; Clark, B. C.; Squyres, S. W.; Farrand, W. H.; Ruff, S. W.; Arvidson, R. E.; Klingelhöfer, G.; McSween, H. Y.; Rodionov, D. S.; Schröder, C.; De Souza, P. A.; Wang, A. Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. J. Geophys. Res. 2006, 111 (E2): E02S12. Bibcode:2006JGRE..111.2S12M. doi:10.1029/2005JE002560. hdl:1893/17114 .
- ^ Klingelhofer, G.; et al. volume XXXVI. Lunar Planet. Sci. (abstr.). 2005: 2349.
- ^ Bell, J (编). The Martian Surface. Cambridge University Press. 2008. ISBN 978-0-521-86698-9.
- ^ Morris, R. V.; Ruff, S. W.; Gellert, R.; Ming, D. W.; Arvidson, R. E.; Clark, B. C.; Golden, D. C.; Siebach, K.; Klingelhofer, G.; Schroder, C.; Fleischer, I.; Yen, A. S.; Squyres, S. W. Outcrop of long-sought rare rock on Mars found. Science (Sciencedaily.com). June 4, 2010, 329 (5990): 421–424. Bibcode:2010Sci...329..421M. PMID 20522738. S2CID 7461676. doi:10.1126/science.1189667.
- ^ Morris, Richard V.; Ruff, Steven W.; Gellert, Ralf; Ming, Douglas W.; Arvidson, Raymond E.; Clark, Benton C.; Golden, D. C.; Siebach, Kirsten; et al. Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover. Science. June 3, 2010, 329 (5990): 421–424. Bibcode:2010Sci...329..421M. PMID 20522738. S2CID 7461676. doi:10.1126/science.1189667.
- ^ Opportunity Rover Finds Strong Evidence Meridiani Planum Was Wet. [July 8, 2006].
- ^ Harwood, William. Opportunity rover moves into 10th year of Mars operations. Space Flight Now. January 25, 2013.
- ^ Benison, KC; Laclair, DA. Modern and ancient extremely acid saline deposits: terrestrial analogs for martian environments?. Astrobiology. 2003, 3 (3): 609–618. Bibcode:2003AsBio...3..609B. PMID 14678669. S2CID 36757620. doi:10.1089/153110703322610690.
- ^ Benison, K; Bowen, B. Acid saline lake systems give clues about past environments and the search for life on Mars. Icarus. 2006, 183 (1): 225–229. Bibcode:2006Icar..183..225B. doi:10.1016/j.icarus.2006.02.018.
- ^ Osterloo, MM; Hamilton, VE; Bandfield, JL; Glotch, TD; Baldridge, AM; Christensen, PR; Tornabene, LL; Anderson, FS. Chloride-Bearing Materials in the Southern Highlands of Mars. Science. 2008, 319 (5870): 1651–1654. Bibcode:2008Sci...319.1651O. CiteSeerX 10.1.1.474.3802 . PMID 18356522. S2CID 27235249. doi:10.1126/science.1150690.
- ^ Grotzinger, J.; Milliken, R. (编). Sedimentary Geology of Mars. SEPM. 2012.
- ^ HiRISE – High Resolution Imaging Science Experiment. HiriUniversity of Arizona. [December 19, 2010].
- ^ Target Zone: Nilosyrtis? | Mars Odyssey Mission THEMIS. Themis.asu.edu. [December 19, 2010].
- ^ Mellon, M. T.; Jakosky, B. M.; Postawko, S. E. The persistence of equatorial ground ice on Mars. J. Geophys. Res. (onlinelibrary.wiley.com). 1997, 102 (E8): 19357–19369. Bibcode:1997JGR...10219357M. doi:10.1029/97JE01346 .
- ^ Arfstrom, John D. A Conceptual Model of Equatorial Ice Sheets on Mars. J (PDF). Comparative Climatology of Terrestrial Planets. Lunar and Planetary Institute. 2012.
- ^ Byrne, Shane; Dundas, Colin M.; Kennedy, Megan R.; Mellon, Michael T.; McEwen, Alfred S.; Cull, Selby C.; Daubar, Ingrid J.; Shean, David E.; Seelos, Kimberly D.; Murchie, Scott L.; Cantor, Bruce A.; Arvidson, Raymond E.; Edgett, Kenneth S.; Reufer, Andreas; Thomas, Nicolas; Harrison, Tanya N.; Posiolova, Liliya V.; Seelos, Frank P. Distribution of mid-latitude ground ice on Mars from new impact craters. Science. 2009, 325 (5948): 1674–1676. Bibcode:2009Sci...325.1674B. PMID 19779195. S2CID 10657508. doi:10.1126/science.1175307.
- ^ Water Ice Exposed in Mars Craters. SPACE.com. [December 19, 2010].
- ^ S. Nerozzi, J.W. Holt. Buried ice and sand caps at the north pole of Mars: revealing a record of climate change in the cavi unit with SHARAD. Geophysical Research Letters. May 22, 2019, 46 (13): 7278–7286. Bibcode:2019GeoRL..46.7278N. doi:10.1029/2019GL082114. hdl:10150/634098 .
- ^ Lujendra Ojha, Stefano Nerozzi, Kevin Lewis. Compositional Constraints on the North Polar Cap of Mars from Gravity and Topography. Geophysical Research Letters. May 22, 2019, 46 (15): 8671–8679. Bibcode:2019GeoRL..46.8671O. doi:10.1029/2019GL082294.
- ^ Soare, E., et al. 2019. Possible (closed system) pingo and ice-wedge/thermokarst complexes at the mid latitudes of Utopia Planitia, Mars. Icarus. https://doi.org/10.1016/j.icarus.2019.03.010
- ^ Brown, Dwayne. NASA Rover's First Soil Studies Help Fingerprint Martian Minerals. NASA. October 30, 2012.
- ^ Brown, Dwayne; Webster, Guy; Neal-Jones, Nance. NASA Mars Rover Fully Analyzes First Martian Soil Samples. NASA. December 3, 2012. (原始内容存档于December 5, 2012).
- ^ Chang, Ken. Mars Rover Discovery Revealed. New York Times. December 3, 2012.
- ^ 361.0 361.1 Webster, Guy; Brown, Dwayne. Curiosity Mars Rover Sees Trend In Water Presence. NASA. March 18, 2013. (原始内容存档于March 22, 2013).
- ^ Rincon, Paul. Curiosity breaks rock to reveal dazzling white interior. BBC. March 19, 2013.
- ^ Staff. Red planet coughs up a white rock, and scientists freak out. MSN. March 20, 2013. (原始内容存档于March 23, 2013).
- ^ Lieberman, Josh. Mars Water Found: Curiosity Rover Uncovers 'Abundant, Easily Accessible' Water In Martian Soil. iSciencetimes. September 26, 2013.
- ^ Leshin, L. A.; et al. Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science. September 27, 2013, 341 (6153): 1238937. Bibcode:2013Sci...341E...3L. PMID 24072926. S2CID 206549244. doi:10.1126/science.1238937.
- ^ 366.0 366.1 Grotzinger, John. Introduction To Special Issue: Analysis of Surface Materials by the Curiosity Mars Rover. Science. September 26, 2013, 341 (6153): 1475. Bibcode:2013Sci...341.1475G. PMID 24072916. doi:10.1126/science.1244258 .
- ^ Neal-Jones, Nancy; Zubritsky, Elizabeth; Webster, Guy; Martialay, Mary. Curiosity's SAM Instrument Finds Water and More in Surface Sample. NASA. September 26, 2013.
- ^ 368.0 368.1 Webster, Guy; Brown, Dwayne. Science Gains From Diverse Landing Area of Curiosity. NASA. September 26, 2013.
- ^ 369.0 369.1 Chang, Kenneth. Hitting Pay Dirt on Mars. New York Times. October 1, 2013.
- ^ 370.0 370.1 Meslin, P.-Y.; et al. Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science. September 26, 2013, 341 (6153): 1238670. Bibcode:2013Sci...341E...1M. PMID 24072924. S2CID 7418294. doi:10.1126/science.1238670.
- ^ Stolper, E.M.; Baker, M.B.; Newcombe, M.E.; Schmidt, M.E.; Treiman, A.H.; Cousin, A.; Dyar, M.D.; Fisk, M.R.; Gellert, R.; King, P.L.; Leshin, L.; Maurice, S.; McLennan, S.M.; Minitti, M.E.; Perrett, G.; Rowland, S.; Sautter, V.; Wiens, R.C.; MSL ScienceTeam. The Petrochemistry of Jake_M: A Martian Mugearite (PDF). Science (AAAS). 2013, 341 (6153): 1239463. Bibcode:2013Sci...341E...4S. PMID 24072927. S2CID 16515295. doi:10.1126/science.1239463.
- ^ Webster, Guy; Neal-Jones, Nancy; Brown, Dwayne. NASA Rover Finds Active and Ancient Organic Chemistry on Mars. NASA. December 16, 2014 [December 16, 2014].
- ^ Chang, Kenneth. 'A Great Moment': Rover Finds Clue That Mars May Harbor Life. New York Times. December 16, 2014 [December 16, 2014].
- ^ Mahaffy, P. R.; et al. Mars Atmosphere – The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars (PDF). Science. December 16, 2014, 347 (6220): 412–414. Bibcode:2015Sci...347..412M. PMID 25515119. S2CID 37075396. doi:10.1126/science.1260291.
- ^ Rincon, Paul. Evidence of liquid water found on Mars. BBC News. April 13, 2015 [April 15, 2015].
- ^ Clavin, Whitney. NASA's Curiosity Rover Team Confirms Ancient Lakes on Mars. NASA. October 8, 2015 [October 9, 2015].
- ^ Grotzinger, J.P. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science. October 9, 2015, 350 (6257): aac7575. Bibcode:2015Sci...350.7575G. PMID 26450214. S2CID 586848. doi:10.1126/science.aac7575.
- ^ Geological Society of America. Evidence of outburst flooding indicates plentiful water on early Mars. EurekAlert!. November 3, 2018 [November 5, 2018].
- ^ Heydari, Ezat; et al. Significance of Flood Depositis in Gale Crater, Mars. Geological Society of America. November 4, 2018 [November 5, 2018].
- ^ Orosei R, Lauro SE, Pettinelli E, Cicchetti A, Coradini M, Cosciotti B, Di Paolo F, Flamini E, Mattei E, Pajola M, Soldovieri F, Cartacci M, Cassenti F, Frigeri A, Giuppi S, Martufi R, Masdea A, Mitri G, Nenna C, Noschese R, Restano M, Seu R. Radar evidence of subglacial liquid water on Mars. Science. July 25, 2018, 361 (3699): 490–493. Bibcode:2018Sci...361..490O. PMID 30045881. S2CID 206666385. arXiv:2004.04587 . doi:10.1126/science.aar7268. hdl:11573/1148029 .
- ^ Halton, Mary. Liquid water 'lake' revealed on Mars. BBC News. July 25, 2018 [July 25, 2018].
外部链接
- 美国宇航局—“好奇号”探测车发现了古河床的证据—2012年9月
- 图像—火星上水的迹象(高分辨率成像科学设备
- 视频(02:01)—火星上发现的液态流水—2011年8月
- 视频(04:32)—证据:水“强劲”地在火星上流动—2012年9月
- 视频(03:56)—测量火星远古海洋—2015年3月
- - 杰弗里·普劳特-地下冰-2018年第21届国际火星协会年会
- 克里斯·麦凯:凤凰号火星任务和地球模拟地点的结果
- 火星地球化不可能使用现在的技术[1]
- ^ Steigerwald, Bill. Mars Terraforming Not Possible Using Present-Day Technology. NASA. 2018-07-25 [2018-11-26] (英语).