本页使用了标题或全文手工转换

相对论

维基百科,自由的百科全书
(重定向自相對論
跳转至: 导航搜索
E=mc^2

相对论英语Theory of relativity)是关于时空引力的理论,主要由爱因斯坦创立,依其研究对象的不同可分为狭义相对论广义相对论。相对论和量子力学的提出给物理学带来了革命性的变化,它们共同奠定了现代物理学的基础。相对论极大的改变了人类对宇宙自然的“常识性”观念,提出了“同时的相对性”、“四维时空”、“弯曲时空”等全新的概念。不过近年来,人们对于物理理论的分类有了一种新的认识——以其理论是否是决定论的来划分经典与非经典的物理学,即“非古典的=量子的”。在这个意义下,相对论仍然是一种经典的理论。

狭义与广义相对论的分野[编辑]

传统上,在爱因斯坦刚刚提出相对论的初期,人们以所讨论的问题是否涉及非惯性参考系来作为狭义与广义相对论分类的标志。随着相对论理论的发展,这种分类方法越来越显出其缺点——参考系是跟观察者有关的,以这样一个相对的物理对象来划分物理理论,被认为不能反映问题的本质。目前一般认为,狭义与广义相对论的区别在于所讨论的问题是否涉及引力(弯曲时空),即狭义相对论只涉及那些没有引力作用或者引力作用可以忽略的问题,而广义相对论则是讨论有引力作用时的物理学的。用相对论的语言来说,就是狭义相对论的背景时空是平直的,即四维平凡流型配以闵氏度规,其曲率张量为零,又称闵氏时空;而广义相对论的背景时空则是弯曲的,其曲率张量不为零。

狭义相对论[编辑]

爱因斯坦在他1905年的论文《论动体的电动力学》中介绍了其狭义相对论。

狭义相对论建立在如下的两个基本公设上:

  • 狭义相对性原理(狭义协变性原理):一切的惯性参考系都是平权的,即物理规律的形式在任何的惯性参考系中是相同的。这意味着物理规律对于一位静止在实验室裡的观察者和一个相对于实验室高速匀速运动着的电子是相同的。
  • 光速不变原理真空中的光速在任何参考系下是恒定不变的,这用几何语言可以表述为光子在时空中的世界线总是类光的。也正是由于光子有这样的实验性质,在国际单位制中使用了“光在真空中1/299,792,458秒内所走过的距离”来定义长度单位“米”(公尺)。光速不变原理是宇宙时空对称性的体现,而中微子的超光速现象可能只是时空对称性的对称破缺而决不能推翻相对论(已证实该实验有误)[1]

在狭义相对论提出以前,人们认为时间和空间是各自独立的绝对的存在,自伽利略时代以来这种绝对时空的观念就开始建立,牛顿创立的牛顿经典力学和经典运动学就是在绝对时空观的基础上创立。而爱因斯坦的相对论在牛顿经典力学、麦克斯韦经典电磁学等得基础上首次提出了“四维时空”的概念,它认为时间和空间各自都不是绝对的,而绝对的是一个它们的整体——时空,在时空中运动的观者可以建立“自己的”参照系,可以定义“自己的”时间和空间(即对四维时空做“3+1分解”),而不同的观者所定义的时间和空间可以是不同的。具体的来说,在闵氏时空中,而如果一个惯性观者(G)相对于另一个惯性观者(G')在做匀速运动,则他们所定义的时间(t与t')和空间({x,y,z}与{x',y',z'})之间满足洛伦兹变换。而在这一变换关系下就可以推导出“尺缩”、“钟慢”等效应,具体见狭义相对论条目。因为爱因斯坦之前的科学家们并没有高速运动的观测和体验,所以绝对时空观在古代科技水平下无疑是真理,而爱因斯坦的狭义相对论更新了人们的世界观,为广义相对论的诞生奠定了坚实的基础。

在爱因斯坦以前,人们广泛的关注于麦克斯韦方程组在伽利略变换下不协变的问题,也有人(如庞加莱和洛伦兹)注意到过爱因斯坦提出狭义相对论所基于的实验(如迈克尔孙-莫雷干涉仪实验等),也有人推导出过与爱因斯坦类似的数学表达式(如洛伦兹变换),但只有爱因斯坦将这些因素与经典物理的时空观结合起来提出了狭义相对论,并极大的改变了我们的时空观。在这一点上,狭义相对论是革命性的。

广义相对论[编辑]

在本质上,所有的物理学问题都涉及采用什么时空观的问题。在二十世纪以前的古典物理学裡,人们采用的是牛顿绝对时空观。而相对论的提出改变了这种时空观,这就导致人们必须依相对论的要求对古典物理学的公式进行改写,以使其具有相对论所要求的洛伦兹协变性而不是以往的伽利略协变性。在古典理论物理的三大领域中,电动力学本身就是洛伦兹协变的,无需改写;统计力学有一定的特殊性,但这一特殊性并不带来很多急需解决的原则上的困难;而古典力学的大部分都可以成功的改写为相对论形式,以使其可以用来更好的描述高速运动下的物体,但是唯独牛顿的引力理论无法在狭义相对论的框架体系下改写,这直接导致爱因斯坦扩展其狭义相对论,而得到了广义相对论。

爱因斯坦在1915年左右发表的一系列论文中给出了广义相对论最初的形式。他首先注意到了被称之为(弱)等效原理的实验事实:引力质量惯性质量是相等的(目前实验证实,在10^{-12}的精确度范围内,仍没有看到引力质量与惯性质量的差别)。这一事实也可以理解为,当除了引力之外不受其他力时,所有质量足够小(即其本身的质量对引力场的影响可以忽略)的测验物体在同一引力场中以同样的方式运动。既然如此,则不妨认为引力其实并不是一种“力”,而是一种时空效应,即物体的质量(准确的说应当为非零的能动张量)能够产生时空的弯曲,引力源对于测验物体的引力正是这种时空弯曲所造成的一种几何效应。这时,所有的测验物体就在这个弯曲的时空中做惯性运动,其运动轨迹正是该弯曲时空的测地线,它们都遵守测地线方程。正是在这样的思路下,爱因斯坦得到了其广义相对论。

系统的说,广义相对论包括如下几条基本假设[2]。:

  • 广义相对性原理(广义协变性原理):任何物理规律都应该用与参考系无关的物理量表示出来。用几何语言描述即为,任何在物理规律中出现的时空量都应当为该时空的度规或者由其导出的物理量。
  • 爱因斯坦场方程(详见广义相对论条目):它具体表达了时空中的物质(能动张量)对于时空几何(曲率张量的函数)的影响,其中对应能动张量的要求(其梯度为零)则包含了上面关于在其中做惯性运动的物体的运动方程的内容。

在现有的广义相对论的理论框架下,等效原理是可以由其他假设推出。具體來說,就是如果時空中有一觀者(G),則可在其世界線的一個鄰域內建立的侷域慣性參考系,而廣義相對性原理要求該系中的克氏符(Christoffel symbols)在觀者G的世界綫上的值為零。因而现代的相对论学家经常认为其不应列入广义相对论的基本假设,其中比较有代表性的如Synge就认为:等效原理在相对论创立的初期起到了与以往经典物理的桥梁的作用,它可以被称之为“广义相对论的接生婆”,而现在“在广义相对论这个新生婴儿诞生后把她体面地埋葬掉”[3]

如果说到了二十世纪初狭义相对论因为古典物理原来固有的矛盾、大量的新实验以及广泛的关注而呼之欲出的话,那么广义相对论的提出则在某种意义下是“理论走在了实验前面”的一次实践。在此之前,虽然有一些后来用以支持广义相对论的实验现象(如水星轨道近日点的进动),但是它们并不总是物理学关注的焦点。而广义相对论的提出,在很大程度上是由于相对论理论自身发展的需要,而并非是出于有一些实验现象急待有理论去解释的现实需要,这在物理学的发展史上是并不多见的。因而在相对论提出之后的一段时间内其进展并不是很快,直到后来天文学上的一系列观测的出现,才使广义相对论有了比较大的发展。到了当代,在对于引力波的观测和对于一些高密度天体的研究中,广义相对论都成为了其理论基础之一。而另一方面,广义相对论的提出也为人们重新认识一些如宇宙学时间旅行等古老的问题提供了新的工具和视角。

相对论的应用[编辑]

相对论主要在两个方面有用:一是高速运动(与光速可比拟的高速),一是强引力场。

  • 在醫院的放射治療部,多數設有一臺粒子加速器,產生高能粒子來制造同位素,作治療之用。由於粒子運動的速度相當接近光速(0.9c-0.9999c),故粒子加速器的設計和使用必須考慮相對論效應。
  • 全球衛星定位系統衛星上的原子鐘,對精確定位非常重要。這些時鐘同時受狹義相對論因高速運動而導致的時間變慢(-7.2 μs/日),和廣義相對論因較(地面物件)承受著較弱的重力場而導致時間變快效應(+45.9 μs/日)影響。相對論的淨效應是那些時鐘較地面的時鐘運行的為快。故此,這些衛星的軟件需要計算和抵消一切的相對論效應,確保定位準確。[4]
  • 過渡金屬的內層電子,運行速度極快,相對論效應不可忽略。在設計或研究新型的催化劑時,便需要考慮相對論對電子軌態能級的影響。同理,相對論亦可解釋為何的6s2惰性电子对效应。這個效應可以解釋為何某些化學電池有著較高的能量密度,為設計更輕巧的電池提供理論根據[5]。相對論也可以解釋為何水銀在常温下是液體,而其他金屬卻不是。[6]
  • 相對論指出,光速是信息傳遞速度的極限。超級電腦匯流排時脈一般不能超越30GHz,否則在脈沖到達超級電腦的另一處之前,另一脈沖就已經發出了。結果電腦內不同地方的元件會不協調。相對論為超級電腦的布線長度和時脈上限提供了理論基礎。[來源請求]
  • 由廣義相對論推導出來的重力透鏡效應,讓天文學家可以觀察到黑洞和不發射電磁波的暗物質,和評估質量在太空的分布狀況。

值得一提的是,原子彈的出現并非由於著名的質能關系式(E=mc2),而爱因斯坦本人也肯定了一点[7]。質能關系式只是解釋原子彈威力的數學工具而已。

相對論對物理學發展的影響[编辑]

相對論直接和間接地催生了量子力學的誕生,也為研究微觀世界的高速運動確立全新的數學模型。

注释[编辑]

  1. ^ 中微子超光速,都是光线惹的禍. 新京報. 2012-02-25 [2013-04-19] (繁体中文). 
  2. ^ Robert.M.Wald, General Relativity, The University of Chicago Press, 1984
  3. ^ Synge L. Relativity, the general theory. Amsterdam: North-Holland Publishing Company, 1960.
  4. ^ http://en.wikipedia.org/wiki/GPS#Relativity
  5. ^ Focus: Relativity Powers Your Car Battery. [2013-04-19] (英文). 
  6. ^ Relativity in Chemistry: The Color of Gold. [2013-04-19]. 
  7. ^ 爱因斯坦. 《爱因斯坦文集》. 由许良英、赵中立、张宣三翻译. 商务印书馆. 1979: 335. CSBN 2017·212 (简体中文). "关于原子弹和罗斯福,我所做的仅仅是:鉴于希特勒可能首先拥有原子弹的危险,我签署了一封由西拉德起草给总统的信。" 

参见[编辑]

外部連結[编辑]