維基百科,自由的百科全書
前往: 導覽搜尋
2He
-



外觀
無色氣體,高壓電場下發橙紅色光


氦的譜線
概況
名稱·符號·序數 氦(helium)·He·2
元素類別 稀有氣體
·週期· 18·1·s
標準原子質量 4.002602(2)
電子排布

1s2
2

氦的電子層(2)
歷史
發現 皮埃爾·讓森, 約瑟夫·諾曼·洛克耶英語Norman Lockyer(1868年)
分離 威廉·拉姆齊皮·特奧多爾·克利夫英語Per Teodor Cleve尼爾斯·朗勒特英語Abraham Langlet(1895年)
物理性質
物態 氣態
密度 (0 °C, 101.325 kPa
0.1786 g/L
熔點時液體密度 0.145 g·cm−3
沸點時液體密度 0.125 g·cm−3
熔點 (at 2.5 MPa) 0.95 K,−272.20 °C,−457.96 °F
沸點 4.222 K,−268.928 °C,−452.070 °F
三相點 2.177 K(-271 °C),5.043 kPa
臨界點 5.1953 K,0.22746 MPa
熔化熱 0.0138 kJ·mol−1
汽化熱 0.0829 kJ·mol−1
比熱容 5R/2 = 20.786 J·mol−1·K−1

蒸汽壓((由ITS-90定義))

壓(Pa) 1 10 100 1 k 10 k 100 k
溫(K)     1.23 1.67 2.48 4.21
原子性質
氧化態 0
電負性 N/A(鮑林標度)
電離能

第一:2372.3 kJ·mol−1

第二:5250.5 kJ·mol−1
共價半徑 28 pm
范德華半徑 140 pm
雜項
晶體結構

六方最密堆積

磁序 抗磁性[1]
熱導率 0.1513 W·m−1·K−1
聲速 972 m·s−1
CAS號 7440-59-7
最穩定同位素

主條目:氦的同位素

同位素 豐度 半衰期 方式 能量MeV 產物
3He 0.000137%* 穩定,帶1個中子
4He 99.999863%* 穩定,帶2個中子
  • 為大氣層中的數值;其它地方可能有所不同。

Helium,舊譯作)是一種化學元素,其化學符號He原子序數是2,是一種無色的惰性氣體,放電時發深黃色的光。在常溫下,氦是一種極輕的無色、無臭、無味的單原子氣體。氦在空氣中含量較少,但在宇宙中是第二豐富的元素,在銀河系佔24%。

發現[編輯]

首個證明氦存在的證據是太陽色球的發射光譜中的一條亮黃色譜線。1868年8月18日英語Solar eclipse of August 18, 1868,法國天文學家皮埃爾·讓森印度貢土爾觀測日全食時,發現了這條波長為587.49 nm的譜線。[2][3]起初人們推測這條譜線來自。同年10月20日,英國天文學家約瑟夫·諾曼·洛克耶英語Norman Lockyer在太陽光譜中發現了一條黃線。由於這條譜線的波長和夫朗和斐譜線產生的D1線和D2的波長相似,洛克耶將其命名為D3線。[4]他還提出這條譜線來自太陽上的一種尚未在地球上發現的元素。洛克耶和英國化學家愛德華·弗蘭克蘭英語Edward Frankland以希臘語中的ἥλιος(helios,意為「太陽」)一詞,將這一元素命名為Helium.[5][6][7]

光譜圖,特別標出了亮黃色、藍色和紫色譜線。
氦的譜線

1882年,義大利物理學家路易吉·帕爾米耶里英語Luigi Palmieri在分析維蘇威火山岩漿時發現了氦的D3線,這是氦在地球上的首次發現記錄。[8]

地層氦的發現者威廉·拉姆齊爵士

1895年3月26日,蘇格蘭化學家威廉·拉姆齊爵士將釔鈾礦英語cleveite(一種瀝青鈾礦,其質量的10%為稀土元素)用處理,首次在地球上分離出氦。拉姆齊當時在尋找,他用硫酸處理礦物,分離釋放出的氣體中的。在剩下的氣體中,他發現了一條和太陽光譜中的D3線吻合的黃色譜線。[4][9][10][11]洛克耶和英國物理學家威廉·克魯克斯鑒定了這一氣體樣品,證明了它是氦氣。同一年,兩位化學家皮·特奧多爾·克利夫英語Per Teodor Cleve尼爾斯·朗勒特英語Abraham Langlet在瑞典烏普薩拉獨立從釔鈾礦中分離出氦;他們收集的氦足以測定這一元素的原子量[3][12][13]在拉姆齊分離氦之前,美國地質化學家威廉·弗朗西斯·希爾布蘭德英語William Francis Hillebrand同樣注意到一份瀝青鈾礦樣品中的一條不尋常的譜線,並從中分離出氦;但他認為這些譜線來自氮氣。他致拉姆齊的賀信是科學史上「發現」和「鄰近發現」的一個有趣例子。[14]

1907年,歐內斯特·盧瑟福托馬斯·羅伊茲英語Thomas Roydsα粒子穿透玻璃壁進入真空管,向管中放電後觀察管內氣體的發射光譜,證明α粒子就是氦。1908年,荷蘭物理學家海克·卡末林·昂內斯將氦冷卻至不到1K的低溫,從而首次製得液態氦。[15]他還試著將氦固化,但是氦沒有固、液、氣三相平衡的三相點,因此他的嘗試沒有成功。1926年,昂內斯的學生威廉·亨德里克·科索姆英語Willem Hendrik Keesom在低溫下向氦加壓,製得了1 cm3的固態氦。[16]

1938年,蘇聯物理學家彼得·列昂尼多維奇·卡皮察發現氦-4在接近絕對零度時幾乎沒有粘度,從而發現了今天所說的超流體[17]這一現象和玻色-愛因斯坦凝聚有關。1972年,美國物理學家道格拉斯·奧謝羅夫戴維·李、以及羅伯特·科爾曼·理查森發現氦-3也有超流體現象,但所需的溫度比氦-4低得多。氦-3的超流體現象被認為和氦-3費米子配對形成玻色子有關,這種配對和超導體中電子形成的庫珀對類似。[18]

名稱由來[編輯]

在皮埃爾·讓森從太陽光譜中發現氦時,英國人洛克耶(J. N. Lockyer)和弗蘭克蘭(E. F. Frankland)認為這種物質在地球上還沒有發現,因此定名為「氦」(法文hélium英文helium),源自希臘語ήλιος,意為「太陽」。

在中文裡,晚清時由傳教士創辦的益智書會譯作「氜」(讀作「日」),以表示從太陽光中發現的氣態元素。在1915年,由民國教育部頒布的《無機化學命名草案》則採用發音與英文更為一 致的「氦」,並沿用至今。[19]

分布[編輯]

氦存在於整個宇宙中,按質量計佔23%。但在自然界中主要存在於天然氣或放射性礦石中。在地球大氣層中,氦的濃度十分低,只有5.2萬分之一。在地球上的放射性礦物中所含的氦是α衰變的產物。氦在某些天然氣中含有在經濟上值得提取的量,最高可以含有7%,在美國的天然氣中氦大約有1%。在地表的空氣中每立方米含有4.6立方厘米的氦,大約佔整個體積的0.0005%,密度只有空氣的7.2分之一,是除了以外密度最小的氣體。

性質[編輯]

氦氣是所有氣體中最難液化的,沸點僅為4.22K,這源於氦極低的極性。同時,氦是唯一不能在標準大氣壓下固化的物質,也沒有三相點。基於類似的原因,氦在水中的溶解度也極小,20°C時每升水中僅能溶解8.61毫升。

液氦在溫度降至2.178K時,性質會發生突變,粘度極小,能形成只有幾個原子厚度的薄膜,發生無粘度流動,成為一種超流體,稱為氦(II),正常的液氦稱作氦(I)。這種氦(II)的表面張力很小,能沿容器壁向上流動,直到兩邊液面等高。此時的氦熱傳導性為的800倍,成為導熱性能極佳的熱導體。其比熱容壓縮性等都是反常的。液氦的另一重要性質是能穿透許多常見材料,如PVC、橡膠與大部分玻璃,所以玻璃杜瓦瓶無法用於液氦的操作[20]

氦的化學性質非常不活潑,一般狀態下不會和其他物質發生反應,目前檢測到的氦化合物僅痕量發現於質譜中,且不穩定[21]

製備[編輯]

  1. 天然氣分離法:工業上,主要以含有氦的天然氣為原料,反覆進行液化分餾,然後利用活性炭進行吸附提純,得到純氦。
  2. 合成氨法:在合成中,從尾氣經分離提純可得氦。
  3. 空氣分餾法:從液態空氣中用分餾法從氖氦混合氣中提出。
  4. 鈾礦石法:將含氦的鈾礦石經過焙燒,分離出氣體,再經過化學方法,除去水蒸氣、氫氣和二氧化碳等雜質提純出氦。

同位素[編輯]

現時已知的氦同位素有八種,包括氦3氦4氦5氦6氦8等,但只有氦3和氦4是穩定的,其餘的均帶有放射性。在自然界中,氦同位素中以氦4佔最多,多是從其他放射性物質的α衰變放出α粒子(氦4原子核)而來。氦3的含量在地球上極少,而在月球上儲量巨大,它們均是由超重氫()的β衰變所產生。

用途[編輯]

充滿氦氣,形似氦化學符號(He)的充氣放電管

由於氦很輕,而且不易燃,因此它可用於填充飛艇、氣球、溫度計電子管、潛水服等。也可用於原子反應爐和加速器、雷射器、冶煉和焊接時的保護氣體,還可用來填充燈泡和霓虹燈管,也用來製造泡沫塑料。

由於氦在血液中的溶解度很低,因此可以加到氧氣中防止減壓病,作為潛水員的呼吸用氣體,或用於治療氣喘和窒息。

液體氦的溫度(-268.93 °C)接近絕對零度(-273℃),因此它在超導研究中用作超流體,製造超導材料。液態氦還常用做冷卻劑和製冷劑。在醫學中,用於氬氦刀以治療癌症

它還可以用作人造大氣層和鐳射媒體的組成部分。

氦氣可以用於保存屍體毛澤東水晶棺內的氣體即為氦氣[22]

其他[編輯]

對聲音的影響[編輯]

因為氦氣傳播聲音的速度差不多為空氣的三倍,這會改變人的聲帶的共振態,於是使得吸入氦氣的人說話的聲音的頻率變高。這個有趣的現象使得吸入氦氣的人說話尖聲細氣,就好像舊時代的卡通人物一樣[23],與吸入六氟化硫後聲音變粗正好相反。這種現象經常被錯誤地解釋為音速的提高直接導致聲音頻率的增加,或者氦氣使得聲帶振動變快。

過度使用所產生的問題[編輯]

需要注意的是,如果大量吸入氦氣,會造成體內氧氣被氦取代,因而發生缺氧(呼吸反射是受體內過量二氧化碳驅動,而對缺氧並不敏感),嚴重的甚至會死亡。 另外,如果是由高壓氣瓶中直接吸入氦氣,那麼其高流速就會嚴重地破壞肺部組織。 大量而高壓的氦和氧會造成高壓緊張症候群英語High pressure nervous syndrome,不過少量的就能夠處理這個問題。

參考[編輯]

  1. ^ Magnetic susceptibility of the elements and inorganic compounds, in Handbook of Chemistry and Physics 81st edition, CRC press.
  2. ^ Kochhar, R. K. French astronomers in India during the 17th – 19th centuries. Journal of the British Astronomical Association. 1991, 101 (2): 95–100. Bibcode:1991JBAA..101...95K. 
  3. ^ 3.0 3.1 Emsley, John. Nature's Building Blocks. Oxford: Oxford University Press. 2001: 175–179. ISBN 0-19-850341-5. 
  4. ^ 4.0 4.1 Clifford A. Hampel. The Encyclopedia of the Chemical Elements. New York: Van Nostrand Reinhold. 1968: 256–268. ISBN 0-442-15598-0. 
  5. ^ Sir Norman Lockyer – discovery of the element that he named helium" Balloon Professional Magazine, 7 August 2009.
  6. ^ Helium. Oxford English Dictionary. 2008 [2008-07-20]. 
  7. ^ Thomson, William. Inaugural Address of Sir William Thompson. Nature. Aug. 3, 1871, 4 (92): 261–278 [268]. Bibcode:1871Natur...4..261.. doi:10.1038/004261a0. "Frankland and Lockyer find the yellow prominences to give a very decided bright line not far from D, but hitherto not identified with any terrestrial flame. It seems to indicate a new substance, which they propose to call Helium" 
  8. ^ Stewart, Alfred Walter. Recent Advances in Physical and Inorganic Chemistry. BiblioBazaar, LLC. 2008. 201. ISBN 0-554-80513-8. 
  9. ^ Ramsay, William. On a Gas Showing the Spectrum of Helium, the Reputed Cause of D3 , One of the Lines in the Coronal Spectrum. Preliminary Note. Proceedings of the Royal Society of London. 1895, 58 (347–352): 65–67. doi:10.1098/rspl.1895.0006. 
  10. ^ Ramsay, William. Helium, a Gaseous Constituent of Certain Minerals. Part I. Proceedings of the Royal Society of London. 1895, 58 (347–352): 80–89. doi:10.1098/rspl.1895.0010. 
  11. ^ Ramsay, William. Helium, a Gaseous Constituent of Certain Minerals. Part II--. Proceedings of the Royal Society of London. 1895, 59 (1): 325–330. doi:10.1098/rspl.1895.0097. 
  12. ^ (德文) Langlet, N. A. Das Atomgewicht des Heliums. Zeitschrift für anorganische Chemie. 1895, 10 (1): 289–292. doi:10.1002/zaac.18950100130 (German). 
  13. ^ Weaver, E.R. Bibliography of Helium Literature//Industrial & Engineering Chemistry. 1919. 
  14. ^ Munday, Pat. In John A. Garraty and Mark C. Carnes. Biographical entry for W.F. Hillebrand(1853–1925), geochemist and U.S. Bureau of Standards administrator in American National Biography. 10–11. Oxford University Press. 1999: 808–9; 227–8. 
  15. ^ van Delft, Dirk. Little cup of Helium, big Science (PDF). Physics Today. 2008: 36–42 [2008-07-20]. (原始內容存檔於June 25, 2008). 
  16. ^ Coldest Cold. Time Inc. 1929-06-10 [2008-07-27]. 
  17. ^ Kapitza, P.. Viscosity of Liquid Helium below the λ-Point. Nature. 1938, 141 (3558): 74. Bibcode:1938Natur.141...74K. doi:10.1038/141074a0. 
  18. ^ Osheroff, D. D.; Richardson, R. C.; Lee, D. M. Evidence for a New Phase of Solid He3. Phys. Rev. Lett. 1972, 28 (14): 885–888. Bibcode:1972PhRvL..28..885O. doi:10.1103/PhysRevLett.28.885. 
  19. ^ 余恆. 被遺忘的元素用字. 中國科技術語. 2013, 15 (6): 53–55 [2014-03-20]. 
  20. ^ 高等教育出版社《無機化學》(第四版)北京師範大學無機化學教研室等編
  21. ^ 高等教育出版社《無機化學》(第二版)宋天佑等編
  22. ^ 毛澤東水晶棺造價不菲用35噸天然水晶製成. 新聞午報. 東方網. 2005-09-21 [2011-07-02]. 
  23. ^ 喝「笑氣調酒」變唐老鴨聲