维基百科,自由的百科全书
跳转至: 导航搜索
雨中的风景
自然系列條目之
天氣
季節

春季 · 夏季
秋季 ·
冬季

風暴

雷暴 · 龍捲風
颶風 ·
熱帶氣旋
暴风雪

降水

· 毛毛雨 ·
冻雨 ·
雨夾雪 ·
·
·

其他

氣象學 · 天氣預報
氣候 ·
空氣污染

是一种自然降水现象。大气层中的水蒸氣凝结成小水珠,大量的小水珠形成了。当云中的水珠达到一定质量以后就会下落至地表,这就是降雨。雨是地球水循环不可缺少的一部分,是大部分生态系统的水分来源,是几乎所有的远离河流的陆生植物补给淡水的唯一方法。雨滴也有可能在还未到达地面时就完全蒸发,有些形況就是在當雨通過森林的林木時,雨常會被森林截流,而直接蒸發入大氣中,這種情形可以減少雨對於地表的侵蝕。在有些地表炎热的地区(如沙漠地区)水分直接蒸發尤为常见。这样的降雨被称为幡状云

航空例行天气报告中,降雨情况的代号是RA。

形成[编辑]

水循環
雨滴的形状:并非如A所示大多数人所设想的形状,而是依大小而异

由小水滴(小冰滴)构成的云称为水成云(冰成云)。当水成云冰成云时,云能否降水,取决于能否在较短时间内形成大量足够大的雨滴(一个雨滴约合一百万个云中水滴)。云中水滴形成雨滴的途径有两种。或者云中水滴自己不断凝结变大,或者云与云之间互相碰撞使得云中水滴相互结合,质量变大。当水滴的质量大到上升气流无法将其“托住”时,水滴下降,便形成了雨。实际上,水滴仅仅靠自我凝结是很难变成足够下降的雨滴的,主要的增长手段是通过水滴之间的相互结合。

在降雨过程中,云层中原始雨滴由于凝结核的大小不同,凝结发生的先后不同,雨滴的原始大小就是不相等的。大小水滴因水汽压的不同,水分容易由小水滴转移到大水滴上去,使大水滴不断增大,小水滴也会变小。当水滴不断增大,在空气中下降时就不再保持球形。开始下降时,雨滴底部平整,上部因表面张力而保持原来的球形。当水滴继续增大,在空气中下降时,除受表面张力外,还要受到周围的空气作用在水滴上的压力以及因重力引起的水滴内部的静压力差,二者均随水滴的增长及下降而不断增大。在三种力的作用下,水滴变形越来越剧烈,底部向内凹陷,形成一个空腔,形似降落伞[1]空腔越变越大,越变越深,上部越变越薄,最后破碎成许多大小不同的水滴。破裂的水滴又会被其它的大雨滴吞并形成新的大水滴。此外,雨滴所带有的正负电荷也是雨滴之间冲撞结合的原因之一。

水滴在下降过程中保持不破碎的最大尺度称为临界尺度,常用等体积球体的半径来表示,称为临界半径或破碎半径。在不同的气流条件下,临界半径是不同的。如在均匀气流条件下,临界半径为450至500μm,而在有扰动的瞬时气流条件下,临界半径约为300μm。。在自然界中观测到的临界半径为300至350μm,是因为大气具有湍流的缘故。

雨在下落时可能做数次垂直运动,这是由上升气流的强与弱有关的。如果云层含量少,那么就无法形成雨,而是云;如果层含量大,上升气流强,导致水滴在下降过程中凝结,而凝结成的又被上升气流托住而上升,如此反复则形成

人工降雨[编辑]

人类长期以来一直寻求人工降雨的方法。包括中国美国法国都有积极的人工降雨计划,即在云层中散播化学物质,导致雨滴凝聚,并形成降雨。化学物质的选用取决于所要催化的云层类型。通常使用碘化银,干冰,液态丙烷,但效果仍有争议。

分类[编辑]

根据雨的成因可把雨分为:

鋒面雨[编辑]

锋面降水

鋒面雨,又稱氣旋雨梅雨。当天气系统英语Synoptic scale meteorology气团缓慢上升时(以厘米每秒的速度量级),常常会发生层状降水(一个有着相似降水强度的广阔的降水带)和动力性降水(阵性的对流性降水,在较小范围内降雨强度会变化很大),比如在冷锋附近和暖锋南方近地面。在热带气旋眼壁外围附近,以及中纬度气旋逗号头型降水模式中也可以看到类似的上升活动。[2]沿着锢囚锋可以发现很多种类天气,甚至可能发生雷暴,但是这些天气过境后常会伴随着干气团的到来。锢囚锋一般形成在发展成熟的低压区附近。[3]区分降雨和其他降水形式(例如冰丸英语ice pellets)的标志是,有厚厚一层温度高于冰的熔点的气团存在,从而使得冰冻的降水在到达地面前能被完全融化。如果在接近地表有一层温度低于冰点的浅层,降雨下落后会形成冻雨(雨水接触低于冰点的表面时被冰冻)。[4]当大气中的低于冰点的温度层高于11,000英尺(3,400米)时,冰雹发生的机会将显著减小。[5]

對流雨[编辑]

对流性降水
地形性降水

對流雨有时又称热雷雨雷陣雨,台灣稱西北雨。在热带雨林气候区和夏季的亚热带季风气候温带季风气候区多见。对流性降雨或阵性降雨是由对流性云(比如积雨云,浓积云英语cumulus congestus)造成的。这类降雨一般都是阵雨,且强度变化很快。由于对流性降雨的水平覆盖范围有限,它一般只在某一区域下一小段时间。大多数热带地区的降雨都是对流性的,但是层状性降雨有时也会发生。[2][6]冰雹都意味着降水是对流性的。[7]在中纬度地区,对流性降雨经常发生在斜压性边界(比如冷锋暖锋飑线等)附近。[8]

地形雨[编辑]

暖湿气流在运行的过程中,遇到地形的阻挡,被迫沿着山坡爬行上升,从而引起水汽凝结而形成降水,称为地形雨。地形性降雨发生在山坡的迎风面。大尺度湿润空气跨越山脊时的抬升运动会导致绝热性冷却和凝结。在世界上有着相对持续的风(比如信风)的山脉地区,山脉的迎风面比起背风面经常会有着更湿润的气候。水汽在地形抬升过程中被渐渐移除,使得背风面下沉的的空气比较干燥和温暖(参见下降风),常常形成雨影区[9]

夏威夷考艾岛瓦埃莱尔山英语Mount Waiʻaleʻale以极端多的降雨而闻名,其年降雨量是世界第二高,有460英寸(12,000毫米)。[10]科纳风暴英语Kona storm每年在10月到4月间给该州带来暴雨。[11]当地的气候因为地形原因几乎在每个岛上都有所不同,大致根据相对于高山的位置被分为迎风(Koʻolau)和背风(Kona)区域。迎风一侧面对东北而来的信风,接收更多的降雨;背风一侧则更干燥些,阳光更多,雨水较少且云较少。[12]

在南美,安第斯山脉的山脊阻挡了太平洋的水汽到达内陆,从而造成背风面的阿根廷西部的沙漠气候。[13]內華達山脈在北美有着相同的效应,形成了大盆地莫哈韦沙漠[14][15]

颱風雨[编辑]

气旋中心附近气流上升,引起水汽凝结而形成降水,称为颱風雨。常见的有热带气旋温带气旋带来的降水。

速率[编辑]

根据降水速率可把雨分为(分类的标准会有差别):

  • 零星小雨-降水速率小于0.25毫米/小时
  • 小雨-降水速率在0.25毫米/小时和1.0毫米/小时之间
  • 中雨-降水速率在1.0毫米/小时和4.0毫米/小时之间
  • 大雨-降水速率在4.0毫米/小时和16.0毫米/小时之间
  • 暴雨-降水速率在16.0毫米/小时和50.0毫米/小时之间
  • 大暴雨-降水速率大于50.0毫米/小时

测量降水速率的工具是雨量计

测量[编辑]

雨量是以雨量計來計算,以在平面收集到的雨水深度表示,準確程度至0.25毫米或0.01。有時亦會以升每平方米(1 L m-2 = 1 mm)表示。在氣象統計名詞上,雨量又可稱為降雨量,即一定時間內之降水累積量,其中,若降水量若小於0.1公厘視為雨跡。

统计[编辑]

創下全世界一年內最多降雨紀錄的是印度乞拉朋齐(22987公釐,1861年),南极洲的平均降雨量最少,智利北部的阿塔卡马沙漠曾经91没有下雨。

灾害[编辑]

暴雨[编辑]

暴雨可以使河水暴涨,从而形成洪水泥石流;甚至导致水土流失。暴雨形成的原因很多,但很大程度上是因为环境破坏导致的。比如“聖嬰現象”和“温室效应”被认为是暴雨的成因。

酸雨[编辑]

酸雨的形成

酸雨是由于大量燃烧化石燃料或生物物质,将酸性化合物(如二氧化硫或者一些含氮的化合物,二氧化氮)排放至空气中,造成降雨中含硫酸硝酸等酸性物质的现象。酸雨具有很大的腐蚀性,除了會造成水體的酸化之外,酸雨並且會造成土壞中的陽離子交換系統的破壞,使土壤的肥力下降,並也會造成土壤中的生物的死亡,在水體方面,酸雨會造成水中的PH值的改變,造成水體中的較不能適應的生物的死亡,所以對於生態上會造成很大的影響。17、18世纪,“雾都”伦敦曾经长期受酸雨侵害。实际上,酸雨的形成和没有环保重工业产生有极大的关系。

另外,如果进入“核冬天”会大量的降雨。

影响[编辑]

文化[编辑]

清明时节雨纷纷,路上行人欲断魂。

·杜牧《清明》

好雨知时节,当春乃发生。

·杜甫《春夜喜雨》

地球的初期非常炽热,正因为雨的降临,才使地球降温,最终导致生命的出现。因此雨也被誉为生命。

肯尼·基在雨中》是萨克斯曲中脍炙人口的作品,莎士比亚曾经创作戏剧暴风雨》。

汉民族认为龙王是主管兴云布雨的,但祈雨仪式并非统一,晴天娃娃是一种祈求止雨布偶。 《山海經》中為蚩尤帶來狂風暴雨的有風伯雨師。 在古中国,雨被认为一种很重要的自然资源,因此雨又被称为“甘霖、甘澍”,二十四节气中有“谷雨”一节气。人们也可以根据雨前的变化判断雨的来临。有俗语:“燕子低飞麻雀叫;蚂蚁搬家蛇过道;水缸穿裙山带帽(指水蒸气凝结在水缸上和积雨云);就是大雨要来到。”

细雨可以使人温馨、也可以使人感伤;豪雨令人感到绝望。在诗歌影视中、雨可以使人产生爱恋,但并非有科学依据。美国著名电影雨中曲》拍摄于1946年,其主题曲《Singing In The Rain》自今仍是经典的作品。

山雨欲來

利用[编辑]

收集雨水有許多用途,如灌溉、種植、清洗、供水、沖廁等。

地外行星[编辑]

土星的最大的卫星土卫六上,不经常的甲烷雨被认为造成了星球表面无数的沟槽。[16]在金星上,硫酸幡狀雲在离地面25千米(16英里)的高空就已经被蒸发了。[17]氣體巨行星的上层大气中可能有各种成分的雨,在深厚的大气层里甚至可能会有液态的降雨。[18][19]人马座的太阳系外行星OGLE-TR-56b被认为甚至有雨。[20]

相關[编辑]

参考资料[编辑]

  1. ^ Alistair B. Fraser. Bad Meteorology: Raindrops are shaped like teardrops.. Pennsylvania State University. 2003-01-15 [2008-04-07]. 
  2. ^ 2.0 2.1 B. Geerts. Convective and stratiform rainfall in the tropics. University of Wyoming. 2002 [2007-11-27]. 
  3. ^ David Roth. Unified Surface Analysis Manual. Hydrometeorological Prediction Center. 2006 [2006-10-22]. 
  4. ^ MetEd. Precipitation Type Forecasts in the Southeastern and Mid-Atlantic states. University Corporation for Atmospheric Research. 2003-03-14 [2010-01-30]. 
  5. ^ Pete Wolf. Meso-Analyst Severe Weather Guide. University Corporation for Atmospheric Research. 2003-01-16 [2009-07-16]. (原始内容存档于2003-3-20). 
  6. ^ Robert Houze. Stratiform Precipitation in Regions of Convection: A Meteorological Paradox?. Bulletin of the American Meteorological Society. 1997.October, 78 (10): 2179. Bibcode:1997BAMS...78.2179H. doi:10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2. ISSN 1520-0477. 
  7. ^ Glossary of Meteorology. Graupel. American Meteorological Society. 2009 [2009-01-02]. 
  8. ^ Toby N. Carlson. Mid-latitude Weather Systems. Routledge. 1991. 216 [2009-02-07]. ISBN 978-0-04-551115-0. 
  9. ^ Dr. Michael Pidwirny. CHAPTER 8: Introduction to the Hydrosphere (e). Cloud Formation Processes. Physical Geography. 2008 [2009-01-01]. 
  10. ^ Diana Leone. Rain supreme. Honolulu Star-Bulletin. 2002 [2008-03-19]. 
  11. ^ Steven Businger and Thomas Birchard, Jr. A Bow Echo and Severe Weather Associated with a Kona Low in Hawaii. Retrieved on 2007-05-22.
  12. ^ Western Regional Climate Center. Climate of Hawaii. 2002 [2008-03-19]. 
  13. ^ Paul E. Lydolph. The Climate of the Earth. Rowman & Littlefield. 1985. 333 [2009-01-02]. ISBN 978-0-86598-119-5. 
  14. ^ Michael A. Mares. Encyclopedia of Deserts. University of Oklahoma Press. 1999. 252 [2009-01-02]. ISBN 978-0-8061-3146-7. 
  15. ^ Adam Ganson. Geology of Death Valley. Indiana University. 2003 [2009-02-07]. 
  16. ^ Emily Lakdawalla. Titan: Arizona in an Icebox?. The Planetary Society. 2004-01-21 [2005-03-28]. (原始内容存档于2005-1-14). 
  17. ^ Paul Rincon. Planet Venus: Earth's 'evil twin'. BBC News. 2005-11-07 [2010-01-25]. 
  18. ^ Paul Mahaffy. Highlights of the Galileo Probe Mass Spectrometer Investigation. NASA Goddard Space Flight Center, Atmospheric Experiments Laboratory. [2007-06-06]. 
  19. ^ Katharina Lodders. Jupiter Formed with More Tar than Ice. The Astrophysical Journal. 2004, 611 (1): 587–597 [2007-07-03]. Bibcode:2004ApJ...611..587L. doi:10.1086/421970. 
  20. ^ Harvard University and Smithsonian Institution. New World of Iron Rain. Astrobiology Magazine. 2003-01-08 [2010-01-25]. 

参考书籍[编辑]

  • 周淑贞. 氣象學與氣候學. 高等教育出版社. 2007. ISBN 7-040-06016-7. 

外部链接[编辑]