数学基础
外观
数学上,数学基础(英語:foundations of mathematics)一词有时候用于数学的特定领域,例如数理逻辑,公理化集合论,证明论,模型论,和递归论(可計算性理論)。但是寻求数学的基础也是数学哲学的中心问题:在什么终极基础上命题可以称为“真”?
目前占统治地位的数学典範思想是基于公理化集合论和形式逻辑的。實際上,幾乎所有现在的数学定理都可以表述為集合论下的定理。在这个观点下,所謂数学命题的真实性,不过就是该命题可以从集合论公理使用形式逻辑推导出来。
这个形式化的方法不能解释一些问题:为什么我们應沿用现行的公理而不是別的,为什么我们應沿用现行的逻辑规则而不是別的,为什么「真」数学命题(例如,算術領域的皮亚诺公理)在物理世界中似乎是真的。这被尤金·维格纳在1960年叫做“数学在自然科学中无理由的有效性”(The unreasonable effectiveness of mathematics in the natural sciences)。
在數學實在論(有时也叫柏拉图主义)中,独立于人类的数学对象的世界的存在性被作为一个基本假设;这些对象的真实性由人类「发现」。在这种观点下,自然定律和数学定律有類似的地位,因此"有效性"不再"无理由"。不是我们的公理,而是数学对象的真实世界构成了數學基础。但,显然的问题在于,我们如何接触这个世界?
一些数学哲学的现代理论不承认這種數學基础的存在性。有些理论倾向于專注数学实践,並試圖把数学家的实際工作視為一種社會群體來作描述和分析。也有理論试图创造一个数学认知科学,把数学在"现实世界"中的可靠性歸結為人類的認知。这些理论建议只在人类的思考中找到基础,
参见
[编辑]参考来源
[编辑]- The Unreasonable Effectiveness of Mathematics in the Natural Sciences (页面存档备份,存于互联网档案馆), Eugene Wigner, 1960;
- What is mathematical truth?, Hilary Putnam, 1975;
- Mathematics as an objective science, Nicholas D. Goodman, 1979;
- Some proposals for reviving the philosophy of mathematics, Reuben Hersh, 1979;
- Challenging foundations, Thomas Tymoczko, 1986, preface to first section of New Directions in the Philosophy of Mathematics, 1986 and (revised) 1998, which includes also Putnam, Goodman, Hersh.