生物多樣性:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
→‎多樣化:​ 內容擴充翻譯自w:en:Biodiversity
→‎生態系統服務:​ 內容擴充翻譯自w:en:Biodiversity
第107行: 第107行:


大多數生物學家都認為人類出現以後的時期算是一種新的大規模滅絕事件,稱為[[全新世滅絕事件]],主要是人類帶給環境的衝擊所造成的。<ref>[http://www.amnh.org/museum/press/feature/biofact.html National Survey Reveals Biodiversity Crisis] {{webarchive|url=https://web.archive.org/web/20070607101209/http://www.amnh.org/museum/press/feature/biofact.html|date=7 June 2007}} American Museum of Natural History</ref>也有人主張按造目前的物種滅絕速度,不出100年地球上大多數物種就會全部消失。<ref name="Wilson2002">{{cite book|first=Edward O.|last=Wilson|title=The Future of Life|url={{google books |plainurl=y |id=Guosshxltn4C}}|date=1 January 2002|publisher=Alfred A. Knopf|isbn=978-0-679-45078-8}}</ref>另一方面,我們還是經常發現新物種,平均每年有5到10,000個新物種出現,其中大多數是[[昆虫|昆蟲]];另外還有許多物種雖然已經被發現卻還沒分類,例如將近90%節肢動物都尚未分類。<ref name="heywood" />
大多數生物學家都認為人類出現以後的時期算是一種新的大規模滅絕事件,稱為[[全新世滅絕事件]],主要是人類帶給環境的衝擊所造成的。<ref>[http://www.amnh.org/museum/press/feature/biofact.html National Survey Reveals Biodiversity Crisis] {{webarchive|url=https://web.archive.org/web/20070607101209/http://www.amnh.org/museum/press/feature/biofact.html|date=7 June 2007}} American Museum of Natural History</ref>也有人主張按造目前的物種滅絕速度,不出100年地球上大多數物種就會全部消失。<ref name="Wilson2002">{{cite book|first=Edward O.|last=Wilson|title=The Future of Life|url={{google books |plainurl=y |id=Guosshxltn4C}}|date=1 January 2002|publisher=Alfred A. Knopf|isbn=978-0-679-45078-8}}</ref>另一方面,我們還是經常發現新物種,平均每年有5到10,000個新物種出現,其中大多數是[[昆虫|昆蟲]];另外還有許多物種雖然已經被發現卻還沒分類,例如將近90%節肢動物都尚未分類。<ref name="heywood" />

== 生態系統服務 ==

=== 普遍的生態系統服務 ===
更多資訊請見:[[生態系統服務]]

「生態系統服務是生態系統為人類提供的整套利益<ref name="diversity-loss-and-its-impact">{{cite journal |last1=Cardinale |first1=Bradley |display-authors=etal |year=2012 |title=Biodiversity loss and its impact on humanity |url=https://pub.epsilon.slu.se/10240/7/wardle_d_etal_130415.pdf |journal=Nature |volume=486 |issue=7401 |pages=59–67 |bibcode=2012Natur.486...59C |doi=10.1038/nature11148 |pmid=22678280 |s2cid=4333166}}</ref>」。大自然的物種或生物群是所有生態系統的守護者。自然界就像是巨大的固定資產銀行帳戶,只要資產維持得宜,就能夠無限期地支付維持生命的紅利。<ref>Wright, Richard T., and Bernard J. Nebel.&nbsp;''Environmental Science : toward a Sustainable Future''. Eighth ed., Upper Saddle River, N.J., Pearson Education, 2002.</ref>生態系統服務分為三種類型:

1.供應服務:可再生資源的產出,例如食品、木材、淡水。<ref name="diversity-loss-and-its-impact" />

2.調節服務:減緩環境變化,例如調節氣候、控制病蟲害。<ref name="diversity-loss-and-its-impact" />

3.文化服務:提供給人類的價值和樂趣,例如景觀美學、文化遺產、戶外休閒及精神意涵。<ref>{{cite journal |last=Daniel |first=T. C. |display-authors=etal |date=21 May 2012 |title=Contributions of cultural services to the ecosystem services agenda |journal=Proceedings of the National Academy of Sciences |volume=109 |issue=23 |pages=8812–8819 |bibcode=2012PNAS..109.8812D |doi=10.1073/pnas.1114773109 |pmc=3384142 |pmid=22615401 |doi-access=free}}</ref>

生物多樣性對生態系統服務的影響有許多說法,尤其是供應服務及調節服務。對「同行評審」文獻做詳盡調查以評估相關的36項主張後,獲得一致認可的有14項,正反意見不一有6項,被認定為錯誤有3項,證據不足以得到明確結論的有13項。<ref name="diversity-loss-and-its-impact" />

生物多樣性的增長對生態系統服務的影響,究竟是提升、減損或是有利有弊:說明如下:


== 價值 ==
== 價值 ==

2022年9月21日 (三) 04:21的版本

2008 年夏季在加拿大薩斯喀徹溫省薩斯喀徹溫省北部混交林中採集的真菌樣本,是物種多樣性的範例。這張照片中還有地衣苔藓植物
未受破壞的珊瑚礁具很高的生物多樣性。
雨林是生物多樣性在這個星球上的一個例子,並且通常擁有大量的物種多樣性。這是在塞內加爾的尼奧科羅科巴國家公園内的岡比亞河。

生物多樣性Biodiversity)是生命變化的程度[1]。這可以是指在一個區域、生物群系行星範圍之內的基因變化、物種變化或生態系統變化[1]。陸地生物多樣性在靠近赤道的低緯度地區往往是最高的[2],這似乎是由於溫暖的氣候和高初級生產的結果[3]。海洋生物多樣性在西太平洋沿海海岸,和在各大洋中緯度帶往往是最高的,在那裡海洋表面溫度最高[4]

生物多樣性是生物界一個較新的概念。簡單來說,是指所有不同種類的生命,生活在一個地球上,其相互交替、影響令地球生態得到平衡。亦可解釋為:單位面積內生物種種類的數目,表示生物群落中顯示生態地位多樣化與基因變異。最後,生物多樣性是為維護生態平衡,且有公約。

生物多樣性包括三個層面:遺傳多样性(基因多樣性)、物种多样性生态系统多样性

命名及詞源

  • 1916年 – J. Arthur Harris 在《科學人》雜誌〈變幻的沙漠〉一文中首次使用「生物的多樣性( biological diversity)」一詞:「空泛的說該地區植物的物種豐富多樣、來自於許多地方或是有各式各樣的變種,完全不足以描述真實的生物多樣性。」[5]
  • 1967年 – Raymond F. Dasmann 在其著作《另類國家》中使用了生物的多樣性一詞來指涉保守主義者應保護的豐富生物。[6][7]
  • 1974年 – John Terborgh 採用「自然的多樣性」一詞。[8]
  • 1980年 – Thomas Lovejoy 在書中向科學界推廣生物的多樣性一詞,[9]並快速被普遍使用。[10]
  • 1985年 – 根據 Edward O. Wilson 的說法,W. G. Rosen 創造了縮略詞「生物多樣性(biodiversity)」:「Walter G.Rosen 博士代表美國國家科學院國家研究委員會(NRC/NAS),規劃執行『生物多樣性國際論壇』專案,並且採用『生物多樣性』一詞。」[11]
  • 1985年 – Laura Tangley 在〈保護地球生物群的新計劃〉文中使用生物多樣性一詞。[12]
  • 1988年 – 生物多樣性一詞首次出現在出版品上。[13][14]

定義

「生物多樣性」最常用來取代另外兩個定義更明確且歷史悠久的術語—物種多樣性和及物種豐富度。[15]生物學家最常把生物多樣性定義為「某個地區的基因物種生態系的總和」[16][17],這個定義的優點是它對於先前已確定的生物品種傳統類型,做了完整的呈現:

  • 功能多樣性—衡量某群生物中功能不同(例如攝食機制、運動性、捕獵關係等)的物種數量。[20]

其他定義包括:

Wilcox(1982年)

國際自然保護聯盟(IUCN)為了1982年世界國家公園會議委託 Bruce A. Wilcox 撰寫論文,文中首先提出與前述說明相一致的明確定義。[21]Wilcox 的定義是「生物的多樣性,指的是生命形式在生物系統各個層面(分子、有機體、類群、物種及生態系)中的多元樣態」。[21]

基因的角度(1984年)

Wilcox 在1984年指出,可以從基因的角度將生物多樣性定義為「等位基因、基因及有機體的多樣性」,聚焦在驅動著生物演化的突變基因水平轉移等過程。[21]

聯合國(1992年)

1992 年聯合國地球高峰會將「生物的多樣性」定義為「所有來源的的形形色色生物體,除了別的事物之外,包括陸地、海洋水生生態系統及其他生態區域所構成的生態綜合體;這包括物種內部、物種之間與生態系統的多樣性」。此定義用於聯合國《生物多樣性公約》。[22]

Gaston 及 Spicer(2004年)

Gaston 及 Spicer 在《生物多樣性導論》中的定義是「生命在各種生物組織層級的多元樣態」。[23]

糧農組織(2019年)

聯合國糧食及農業組織(FAO) 將生物多樣性定義為「生物體(包括物種內部和物種之間)及其所屬的生態系統間所存在的變異性。」[24]

森林生物多樣性

森林生物多樣性是個廣義的術語,意指所有在森林地區發現的生命類型及其扮演的生態角色。因此,森林生物多樣性不僅涵蓋樹木,還包括生長棲息在森林區的植物、動物、微生物及其關連的基因多樣性。我們可以從不同的層級來探討森林生物多樣性,包括生態系統、景觀、物種、種群和基因。各層級內部和層級彼此間都可能發生複雜的交互作用。在生物多樣性豐富的森林裡,複雜的交互作用讓生物體得以適應不斷變化的環境條件並維持生態系統的完整功能。

生物多樣性公約(CBD)締約方大會在COP2 II/9號決議的附件中,公開認定「森林生物多樣性源於數千年乃至數百萬年的演化過程,而這些演化過程本身是由生態力量所驅動的,例如氣候、火災、物種間的競爭和牽制。此外,森林生態系統的多樣性(無論是物理上或是生物學上)所帶來的高級別適應能力,正是森林生態系統不可缺少生物多樣性的特徵。甚至在特定的森林生態系統中,維持生態循環交替過程,其實就是在維持生物多樣性。」[25]

分佈

陸地脊椎動物現存物種分佈狀況,紅色代表生物多樣性最高,集中在赤道地區,越往極地生物多樣性越低,即光譜終端的藍色。(Mannion 2014)

生物多樣性並非平均分佈,無論從跨全球角度或特定區域內部來看,差異都很大。姑且不論個別因素,世上所有生物(生物群系)的多樣性都取決於溫度、降水、海拔、土壤、地理及其他物種的生存樣態。研究生物、物種和生態系的空間分佈科學稱為生物地理學[26][27]

熱帶和某些特定局部地區(例如好望角植物保護區)的生物多樣性總是比較高,而極地地區的生物多樣性則普遍較低。長久處於潮濕氣候的熱帶雨林(例如厄瓜多爾的亞蘇尼國家公園)的生物多樣性更是高得非比尋常。[28][29]

一般認為地球陸地生物多樣性是海洋生物多樣性的25倍。[30]而陸地生物多樣性幾乎都含藏在森林之中。因此,要保護世上的生物多樣性,幾乎就取決於人類用何種方式來運用全世界的森林,以及和森林間有什麼樣的互動。[25]

根據2011年新的估算方式,地球上的物種總計有870萬種,其中約有210萬種生存於海洋中。[31]然而這個算法恐怕不足以呈現微生物的多樣性。[32]森林是80%兩棲動物、75%鳥類和68%哺乳動物的棲息地。大約60%維管植物生長在熱帶森林中。紅樹林是許多魚類和貝類的繁殖生長之處,並有助於攔截沉積物,以免對海草草甸及珊瑚礁產生不良影響,間接保護了無數海洋物種的棲息區。[25]

森林生物多樣性隨著森林類型、地理、氣候、土壤及人類運用方式等因素而有差異。[33]大多數溫帶地區森林所孕育的動植物物種相對較少,且這些物種的地理分佈較大;而非洲、南美、東南亞山地森林、澳大利亞、巴西沿海、加勒比群島、中美洲低地森林及東南亞島嶼的物種,其地理分佈較小。[33]人口及農業用地密集的地區,例如歐洲、孟加拉部分地區、中國、印度及北美,其生物多樣性的完整性較差;北非、澳大利亞南部、巴西沿海、馬達加斯加及南非也被認定是生物多樣性嚴重不完整的地區。[33]

緯度梯度

一般來說,生物多樣性由熱帶地區往極地遞減,即低緯度地區的物種比高緯度地區的物種多,通常稱為「物種多樣性的緯度梯度」(LDG)。某些生態因素可能都對緯度梯度的形成有所影響,但終極因素是赤道的平均溫度高於極地的平均溫度。[34][35][36]

儘管陸地生物多樣性從赤道往極地下降,[37]有些研究還是認為緯度梯度在水域生態系統中尚未經證實,尤其是在海洋生態系統[38]寄生蟲的緯度分佈似乎不遵循這個規則。[26]

2016年,有人提出「碎形生物多樣性」的假說來說明生物多樣性緯度梯度。[39]研究中將物種庫的大小和生態系統的碎形性質結合起來,以說明梯度的一般模式。該假設將溫度濕度初級淨生產量(NPP)視為生態系統利基的主要變量,同時是生態四維空間的軸。通過這種方式可能建構出碎形超維空間,向赤道移動時其碎形維數會增加到三個。[40]

生物多樣性熱點

生物多樣性熱點指的是擁有大量特有種的地區,而這些特有種正處於棲地嚴重破壞的危機中。[41]「熱點」一詞由 Norman Myers 於1988年開始使用。雖然熱點遍布世界各地,但以森林區為主,且大多位於熱帶地區。[42][43][44][45]

巴西的大西洋沿岸森林就被歸類為這種熱點,該地區有大約20,000種植物、1,350 種脊椎動物和數百萬種昆蟲,其中大約一半是當地的特有種。[46][47]哥倫比亞的特點是生物多樣性高,以全球地區面積單位來看,其特有種比例最高,擁有的當地特有物種(在其他任何地方都沒有發現的野生物種)比任何國家都多。地球上大約有10%物種都可以在哥倫比亞找到,包括1,900多種鳥類,比歐洲加上北美的總數還多;哥倫比亞並擁有世上10%哺乳動物、14%兩棲動物和18%鳥類的物種。馬達加斯加島及印度也相當引人注目。[48]馬達加斯加島西北方乾燥落葉林及低地雨林的特有種比率同樣很高;[49][50]島嶼自6,600萬年前與非洲大陸分離之後,許多物種及生態系統都已經獨立演化。[51]印尼17,000個島嶼佔地約1,904,560平方公里,擁有世上10%開花植物、12%哺乳動物及17%爬行動物、兩棲動物和鳥類的物種,以及將近2.4億人口。[52]許多地區之所以擁有較高生物多樣性或較多特有種,乃是源自於棲地的特異性使得當地生物需要有非凡的適應力才能存活,例如高山氣候環境或北歐酸性泥炭沼澤[53]

要精準測量生物多樣性的差異之處是相當困難的。不同研究人員彼此的抽樣偏差也可能會造成對現代生物多樣性所做的實證研究出現偏向。英國牧師Gilbert White 在《賽爾本村自然史》(1768年)說得明白:「整個自然如此豐富,以至於嚴格檢證後,賽爾本村出產了最多種類的動植物。」[54]

演化

主條目:演化

-4500 —
-4250 —
-4000 —
-3750 —
-3500 —
-3250 —
-3000 —
-2750 —
-2500 —
-2250 —
-2000 —
-1750 —
-1500 —
-1250 —
-1000 —
-750 —
-500 —
-250 —
0 —

歷史

生物多樣性歷經35億年演化而成。[55]雖然科學上仍未確定生命的起源,但有證據表明,生命形式可能在地球形成後僅僅幾億年間就已經被安排妥當。25億年前,所有生命都還是由微生物組成,諸如古菌細菌單細胞原生動物原生生物[32]

顯生宙海洋生物多樣性的趨勢

顯生宙(過去5.4億年)生物多樣性肇始於寒武紀大爆發期間的快速增長,這個時期幾乎出現了所有多細胞生物的各個分門[56]接下來的4億年,無脊椎動物的整體多樣性趨勢並不明顯,脊椎動物的整體多樣性趨勢則呈現指數增長。生物多樣性急劇上升經常隨著周期性的、多樣性大量喪失(生物集群滅絕)之後發生。[18]例如石炭紀雨林崩潰事件令生物多樣性減損甚鉅。[57]最嚴重的是2.51億年前的二疊紀-三疊紀滅絕事件,脊椎動物花了3,000萬年才得以恢復到原本的多樣性數量。[58]

往昔的生物多樣性被稱為古生物多樣性。化石記錄顯示過去幾百萬年的生物多樣性可能是最豐富的。[18]然而並非所有科學家都支持這個觀點,因為化石紀錄會受到近期地質剖面的可用性和保存狀況的影響,導致不確定性。[59]也有科學家認為,人工重建的標本經過採樣校正後,現代的生物多樣性可能和3億年前相去不遠[56];別的科學家還是認為化石記錄合理地反映了生命的多樣化。[18]目前全球的宏觀物種多樣性的估計為200萬至1億種不等,最佳估計值為大約900萬種,[31]絕大多數是節肢動物[60]排除自然淘汰的情況,生物多樣性似乎持續增加中。[61]

多樣化

地球承載生命的能力是否會限制同時存活的生命數量,造成物種數量有其上限,尚有爭議。

根據紀錄來看,海洋中的生命多樣性呈現邏輯斯諦函數增長模式,但是陸地上的生命多樣性(昆蟲、植物和四足動物)卻呈現指數增長模式。[18]如同〈全球分類學多樣性、生態學多樣性及陸地上脊椎動物擴張之間的聯繫〉一文所述,「四足動物的擴張尚未達到潛能64%,要不是被人類影響,四足動物生態學多樣性及分類學多樣性將繼續呈現指數增長,直到大部分或所有的可用生態空間被填滿為止。」[18]

隨著時間的推移,生物多樣性似乎持續增長,特別是在每次大規模滅絕事件之後。[62]

另一方面,顯生宙生態變化與雙曲函數模型(廣泛用於族群生物學人口學、宏觀社會學及化石生物多樣性)的相關性,高於與指數模型和邏輯斯諦函數模型的相關性。邏輯斯諦函數模型意味著生物多樣性的變化必然是由一階的正回饋(更多祖先,更多後代)或負回饋(資源限制)所帶動。雙曲函數模型則屬於二階的正回饋。[63]由於物種間競爭的強度不同所導致的二階回饋強度有所差異,或許可以解釋在二疊紀-三疊紀滅絕事件後,菊石亞綱的物種多樣化再生速度比雙殼綱來得更快。[64]世界人口增長的雙曲函數模式源於人口規模及科技增長率之間的二階正回饋。[65]生物多樣性增長的雙曲函數特徵同樣可以用多樣性及群落結構複雜性之間的回饋來解釋。生物多樣性曲線與人口增長曲線的相似性,可能是因為兩者的雙曲函數趨勢都奠基於周期性與隨機動力學之間的互動消長。[65][66]

大多數生物學家都認為人類出現以後的時期算是一種新的大規模滅絕事件,稱為全新世滅絕事件,主要是人類帶給環境的衝擊所造成的。[67]也有人主張按造目前的物種滅絕速度,不出100年地球上大多數物種就會全部消失。[68]另一方面,我們還是經常發現新物種,平均每年有5到10,000個新物種出現,其中大多數是昆蟲;另外還有許多物種雖然已經被發現卻還沒分類,例如將近90%節肢動物都尚未分類。[60]

生態系統服務

普遍的生態系統服務

更多資訊請見:生態系統服務

「生態系統服務是生態系統為人類提供的整套利益[69]」。大自然的物種或生物群是所有生態系統的守護者。自然界就像是巨大的固定資產銀行帳戶,只要資產維持得宜,就能夠無限期地支付維持生命的紅利。[70]生態系統服務分為三種類型:

1.供應服務:可再生資源的產出,例如食品、木材、淡水。[69]

2.調節服務:減緩環境變化,例如調節氣候、控制病蟲害。[69]

3.文化服務:提供給人類的價值和樂趣,例如景觀美學、文化遺產、戶外休閒及精神意涵。[71]

生物多樣性對生態系統服務的影響有許多說法,尤其是供應服務及調節服務。對「同行評審」文獻做詳盡調查以評估相關的36項主張後,獲得一致認可的有14項,正反意見不一有6項,被認定為錯誤有3項,證據不足以得到明確結論的有13項。[69]

生物多樣性的增長對生態系統服務的影響,究竟是提升、減損或是有利有弊:說明如下:

價值

生物多樣性的價值包括為人類提供食物、藥物、工業原料、燃料,提供生態系統服務,以及供娛樂、藝術欣賞等。這些價值大致可以分為直接價值和間接價值兩類,除此有時也包括潛在價值,即尚未被發掘的價值。

威脅

造成生物多樣性降低的可能原因包括:

艾德華·威爾森將棲地破壞(Habitat destruction)、入侵物種(Invasive species)、污染(Pollution)、人口過多(human over-Population)和過度開發(Over-harvesting)五個字選出代表性的字母,組成首字母縮略字HIPPO[72][73]。這個字在英語有河馬的意思。

参考文献

  1. ^ 1.0 1.1 What is biodiversity?. United Nations Environment Programme, World Conservation Monitoring Centre. [2014-02-16]. (原始内容存档于2014-04-29). 
  2. ^ Gaston, Kevin J. Global patterns in biodiversity. Nature. 2000-05-11, 405 (6783): 220–227. PMID 10821282. doi:10.1038/35012228 (英语). 
  3. ^ Field, Richard; Hawkins, Bradford A.; Cornell, Howard V.; Currie, David J.; Diniz-Filho, J. Alexandre F.; Guégan, Jean-François; Kaufman, Dawn M.; Kerr, Jeremy T.; Mittelbach, Gary G.; Oberdorff, Thierry; O’Brien, Eileen M.; Turner, John R. G. Spatial species-richness gradients across scales: a meta-analysis. Journal of Biogeography. 1 January 2009, 36 (1): 132–147. doi:10.1111/j.1365-2699.2008.01963.x. 
  4. ^ Tittensor, Derek P.; Mora, Camilo; Jetz, Walter; Lotze, Heike K.; Ricard, Daniel; Berghe, Edward Vanden; Worm, Boris. Global patterns and predictors of marine biodiversity across taxa. Nature. 28 July 2010, 466 (7310): 1098–1101. Bibcode:2010Natur.466.1098T. PMID 20668450. doi:10.1038/nature09329. 
  5. ^ Harris, J. Arthur. The Variable Desert. The Scientific Monthly. 1916, 3 (1): 41–50. JSTOR 6182. 
  6. ^ Dasmann, Raymond F. A Different Kind of Country. Kirkus Reviews. 1967 [7 August 2022]. 
  7. ^ Brown, William Y. Brown. Conserving Biological Diversity. Brookings Institution. 9 August 2011 [7 August 2022]. 
  8. ^ Terbogh, John. The Preservation of Natural Diversity: The Problem of Extinction Prone Species. BioScience. 1974, 24 (12): 715–722. JSTOR 1297090. doi:10.2307/1297090. 
  9. ^ Soulé, Michael E.; Wilcox, Bruce A. Conservation biology: an evolutionary-ecological perspective. Sunder*land, Mass: Sinauer Associates. 1980. ISBN 978-0-87893-800-1. 
  10. ^ Robert E. Jenkins. Nature.org. 18 August 2011 [24 September 2011]. (原始内容存档于19 September 2012). 
  11. ^ Wilson, E. O. Biodiversity. National Academy Press. 1988: vi. ISBN 978-0-309-03739-6. PMID 25032475. doi:10.17226/989. 
  12. ^ Tangley, Laura. A New Plan to Conserve the Earth's Biota. BioScience. 1985, 35 (6): 334–336+341. JSTOR 1309899. doi:10.1093/bioscience/35.6.334. 
  13. ^ Wilson, E.O. Biodiversity. National Academies Press. 1 January 1988. ISBN 978-0-309-03739-6.  online edition 互联网档案馆存檔,存档日期13 September 2006.
  14. ^ Global Biodiversity Assessment: Summary for Policy-makers. Cambridge University Press. 1995. ISBN 978-0-521-56481-6.  Annex 6, Glossary. Used as source by "Biodiversity", Glossary of terms related to the CBD 互联网档案馆存檔,存档日期10 September 2011., Belgian Clearing-House Mechanism. Retrieved 26 April 2006.
  15. ^ Walker, Brian H. Biodiversity and Ecological Redundancy. Conservation Biology. 1992, 6 (1): 18–23. doi:10.1046/j.1523-1739.1992.610018.x. 
  16. ^ Tor-Björn Larsson. Biodiversity evaluation tools for European forests. Wiley-Blackwell. 2001: 178 [28 June 2011]. ISBN 978-87-16-16434-6. 
  17. ^ Davis. Intro To Env Engg (Sie), 4E. McGraw-Hill Education (India) Pvt Ltd. : 4 [28 June 2011]. ISBN 978-0-07-067117-1. 
  18. ^ 18.0 18.1 18.2 18.3 18.4 18.5 18.6 Sahney, S.; Benton, M.J.; Ferry, Paul. Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land. Biology Letters. 2010, 6 (4): 544–547. PMC 2936204可免费查阅. PMID 20106856. doi:10.1098/rsbl.2009.1024. 
  19. ^ Campbell, AK. Save those molecules: molecular biodiversity and life. Journal of Applied Ecology. 2003, 40 (2): 193–203. doi:10.1046/j.1365-2664.2003.00803.x. 
  20. ^ Lefcheck, Jon. What is functional diversity, and why do we care?. sample(ECOLOGY). 20 October 2014 [22 December 2015]. 
  21. ^ 21.0 21.1 21.2 Wilcox, Bruce A. 1984. In situ conservation of genetic resources: determinants of minimum area requirements. In National Parks, Conservation and Development, Proceedings of the World Congress on National Parks, J.A. McNeely and K.R. Miller, Smithsonian Institution Press, pp. 18–30.
  22. ^ D. L. Hawksworth. Biodiversity: measurement and estimation 345. Springer. 1996: 6 [28 June 2011]. ISBN 978-0-412-75220-9. PMID 7972355. doi:10.1098/rstb.1994.0081.  |journal=被忽略 (帮助); |issue=被忽略 (帮助)
  23. ^ Gaston, Kevin J.; Spicer, John I. Biodiversity: An Introduction. Wiley. 13 February 2004. ISBN 978-1-4051-1857-6. 
  24. ^ Bélanger, J.; Pilling, D. The State of the World's Biodiversity for Food and Agriculture (PDF). Rome: FAO. 2019: 4. ISBN 978-92-5-131270-4. 
  25. ^ 25.0 25.1 25.2 The State of the World's Forests 2020. In brief – Forests, biodiversity and people. Rome, Italy: FAO & UNEP. 2020. ISBN 978-92-5-132707-4. S2CID 241416114. doi:10.4060/ca8985en. 
  26. ^ 26.0 26.1 Morand, Serge; Krasnov, Boris R. The Biogeography of Host-Parasite Interactions. Oxford University Press. 1 September 2010: 93–94 [28 June 2011]. ISBN 978-0-19-956135-3. 
  27. ^ Cardinale, Bradley. J.; et al. The functional role of producer diversity in ecosystems. American Journal of Botany. March 2011, 98 (3): 572–592. PMID 21613148. S2CID 10801536. doi:10.3732/ajb.1000364. hdl:2027.42/141994可免费查阅. 
  28. ^ A Durable Yet Vulnerable Eden in Amazonia. Dot Earth blog, New York Times. 20 January 2010 [2 February 2013]. 
  29. ^ Margot S. Bass; Matt Finer; Clinton N. Jenkins; Holger Kreft; Diego F. Cisneros-Heredia; Shawn F. McCracken; Nigel C. A. Pitman; Peter H. English; Kelly Swing; Gorky Villa; Anthony Di Fiore; Christian C. Voigt; Thomas H. Kunz. Global Conservation Significance of Ecuador's Yasuní National Park. PLOS ONE. 2010, 5 (1): e8767. Bibcode:2010PLoSO...5.8767B. PMC 2808245可免费查阅. PMID 20098736. doi:10.1371/journal.pone.0008767可免费查阅. 
  30. ^ Benton M. J. Biodiversity on land and in the sea. Geological Journal. 2001, 36 (3–4): 211–230. S2CID 140675489. doi:10.1002/gj.877. 
  31. ^ 31.0 31.1 Mora, C.; et al. How Many Species Are There on Earth and in the Ocean?. PLOS Biology. 2011, 9 (8): e1001127. PMC 3160336可免费查阅. PMID 21886479. doi:10.1371/journal.pbio.1001127. 
  32. ^ 32.0 32.1 Microorganisms Editorial Office. Acknowledgement to Reviewers of Microorganisms in 2018. Microorganisms. 2019-01-09, 7 (1): 13. PMC 6352028可免费查阅. doi:10.3390/microorganisms7010013可免费查阅. 
  33. ^ 33.0 33.1 33.2 The State of the World's Forests 2020. Forests, biodiversity and people – In brief. Rome: FAO & UNEP. 2020. ISBN 978-92-5-132707-4. S2CID 241416114. doi:10.4060/ca8985en. 
  34. ^ Mora C, Robertson DR. Causes of latitudinal gradients in species richness: a test with fishes of the Tropical Eastern Pacific (PDF). Ecology. 2005, 86 (7): 1771–1792. doi:10.1890/04-0883. 
  35. ^ Currie, D. J.; Mittelbach, G. G.; Cornell, H. V.; Kaufman, D. M.; Kerr, J. T.; Oberdorff, T. A critical review of species-energy theory. Ecology Letters. 2004, 7 (12): 1121–1134. S2CID 212930565. doi:10.1111/j.1461-0248.2004.00671.x. 
  36. ^ Allen A. P.; Gillooly J. F.; Savage V. M.; Brown J. H. Kinetic effects of temperature on rates of genetic divergence and speciation. PNAS. 2006, 103 (24): 9130–9135. Bibcode:2006PNAS..103.9130A. PMC 1474011可免费查阅. PMID 16754845. doi:10.1073/pnas.0603587103可免费查阅. 
  37. ^ Hillebrand H. On the generality of the latitudinal diversity gradient (PDF). The American Naturalist. 2004, 163 (2): 192–211. PMID 14970922. S2CID 9886026. doi:10.1086/381004. 
  38. ^ Karakassis, Ioannis; Moustakas, Aristides. How diverse is aquatic biodiversity research?. Aquatic Ecology. September 2005, 39 (3): 367–375. S2CID 23630051. doi:10.1007/s10452-005-6041-y. 
  39. ^ Cazzolla Gatti, R. The fractal nature of the latitudinal biodiversity gradient. Biologia. 2016, 71 (6): 669–672. S2CID 199471847. doi:10.1515/biolog-2016-0077. 
  40. ^ Cogitore, Clément (1983–....)., Hypothesis, January 1988, ISBN 9780309037396, OCLC 968249007 
  41. ^ Biodiversity A-Z. Biodiversity Hotspots. 
  42. ^ Myers N. Threatened biotas: 'hot spots' in tropical forests. Environmentalist. 1988, 8 (3): 187–208. PMID 12322582. S2CID 2370659. doi:10.1007/BF02240252. 
  43. ^ Myers N. The biodiversity challenge: expanded hot-spots analysis (PDF). Environmentalist. 1990, 10 (4): 243–256. CiteSeerX 10.1.1.468.8666可免费查阅. PMID 12322583. S2CID 22995882. doi:10.1007/BF02239720. 
  44. ^ Tittensor D.; et al. Global patterns and predictors of marine biodiversity across taxa (PDF). Nature. 2011, 466 (7310): 1098–1101. Bibcode:2010Natur.466.1098T. PMID 20668450. S2CID 4424240. doi:10.1038/nature09329. 
  45. ^ McKee, Jeffrey K. Sparing Nature: The Conflict Between Human Population Growth and Earth's Biodiversity. Rutgers University Press. December 2004: 108 [28 June 2011]. ISBN 978-0-8135-3558-6. 
  46. ^ Galindo-Leal, Carlos. The Atlantic Forest of South America: Biodiversity Status, Threats, and Outlook. Washington: Island Press. 2003: 35. ISBN 978-1-55963-988-0. 
  47. ^ Myers, Norman; Mittermeier, Russell A.; Mittermeier, Cristina G.; da Fonseca, Gustavo A. B.; Kent, Jennifer. Biodiversity hotspots for conservation priorities. Nature. February 2000, 403 (6772): 853–858 [9 August 2022]. Bibcode:2000Natur.403..853M. ISSN 0028-0836. PMID 10706275. S2CID 4414279. doi:10.1038/35002501. eISSN 1476-4687. 
  48. ^ Colombia in the World. Alexander von Humboldt Institute for Research on Biological Resources. [30 December 2013]. (原始内容存档于29 October 2013). 
  49. ^ godfrey, laurie. isolation and biodiversity. pbs.org. [22 October 2017]. 
  50. ^ Harrison, Susan P., Plant Endemism in California, Plant and Animal Endemism in California (University of California Press), 2013-05-15: 43–76, ISBN 978-0-520-27554-6, doi:10.1525/california/9780520275546.003.0004 
  51. ^ Madagascar – A World Apart: Eden Evolution. www.pbs.org. [6 June 2019]. 
  52. ^ Normile, Dennis. Saving Forests to Save Biodiversity. Science. 10 September 2010, 329 (5997): 1278–1280. Bibcode:2010Sci...329.1278N. PMID 20829464. doi:10.1126/science.329.5997.1278可免费查阅. 
  53. ^ Harrison, Susan P., Plant Endemism in California, Plant and Animal Endemism in California (University of California Press), 2013-05-15: 43–76, ISBN 978-0-520-27554-6, doi:10.1525/california/9780520275546.003.0004 
  54. ^ White, Gilbert. letter xx. The Natural History of Selborne: With A Naturalist's Calendar & Additional Observations. Scott. 1887. 
  55. ^ Algeo, T. J.; Scheckler, S. E. Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philosophical Transactions of the Royal Society B: Biological Sciences. 29 January 1998, 353 (1365): 113–130. PMC 1692181可免费查阅. doi:10.1098/rstb.1998.0195. 
  56. ^ 56.0 56.1 Alroy, J; Marshall, CR; Bambach, RK; Bezusko, K; Foote, M; Fursich, FT; Hansen, TA; Holland, SM; et al. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences of the United States of America. 2001, 98 (11): 6261–6266. Bibcode:2001PNAS...98.6261A. PMC 33456可免费查阅. PMID 11353852. doi:10.1073/pnas.111144698可免费查阅. 
  57. ^ Sahney, S.; Benton, M.J. & Falcon-Lang, H.J. Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica. Geology. 2010, 38 (12): 1079–1082. Bibcode:2010Geo....38.1079S. doi:10.1130/G31182.1. 
  58. ^ Sahney, S. & Benton, M.J. Recovery from the most profound mass extinction of all time. Proceedings of the Royal Society B: Biological Sciences. 2008, 275 (1636): 759–765. PMC 2596898可免费查阅. PMID 18198148. doi:10.1098/rspb.2007.1370. 
  59. ^ Schopf, J. William; Kudryavtsev, Anatoliy B.; Czaja, Andrew D.; Tripathi, Abhishek B. Evidence of Archean life: Stromatolites and microfossils. Precambrian Research. Earliest Evidence of Life on Earth. 5 October 2007, 158 (3–4): 141–155. Bibcode:2007PreR..158..141S. doi:10.1016/j.precamres.2007.04.009. 
  60. ^ 60.0 60.1 Mapping the web of life. Unep.org. [21 June 2009]. (原始内容存档于14 February 2007). 
  61. ^ Okasha, S. Does diversity always grow?. Nature. 2010, 466 (7304): 318. Bibcode:2010Natur.466..318O. doi:10.1038/466318a可免费查阅. 
  62. ^ Stanford researchers discover that animal functional diversity started poor, became richer over time. biox.stanford.edu. 11 March 2015. 
  63. ^ Stanford researchers discover that animal functional diversity started poor, became richer over time. biox.stanford.edu. 11 March 2015. 
  64. ^ Hautmann, Michael; Bagherpour, Borhan; Brosse, Morgane; Frisk, Åsa; Hofmann, Richard; Baud, Aymon; Nützel, Alexander; Goudemand, Nicolas; Bucher, Hugo; Brayard, Arnaud. Competition in slow motion: the unusual case of benthic marine communities in the wake of the end-Permian mass extinction. Palaeontology. 2015, 58 (5): 871–901. S2CID 140688908. doi:10.1111/pala.12186. 
  65. ^ 65.0 65.1 Markov, AV; Korotaev, AV. Hyperbolic growth of marine and continental biodiversity through the phanerozoic and community evolution. Journal of General Biology. 2008, 69 (3): 175–194. PMID 18677962. 
  66. ^ Markov, A; Korotayev, A. Phanerozoic marine biodiversity follows a hyperbolic trend. Palaeoworld. 2007, 16 (4): 311–318. doi:10.1016/j.palwor.2007.01.002. 
  67. ^ National Survey Reveals Biodiversity Crisis 互联网档案馆存檔,存档日期7 June 2007. American Museum of Natural History
  68. ^ Wilson, Edward O. The Future of Life. Alfred A. Knopf. 1 January 2002. ISBN 978-0-679-45078-8. 
  69. ^ 69.0 69.1 69.2 69.3 Cardinale, Bradley; et al. Biodiversity loss and its impact on humanity (PDF). Nature. 2012, 486 (7401): 59–67. Bibcode:2012Natur.486...59C. PMID 22678280. S2CID 4333166. doi:10.1038/nature11148. 
  70. ^ Wright, Richard T., and Bernard J. Nebel. Environmental Science : toward a Sustainable Future. Eighth ed., Upper Saddle River, N.J., Pearson Education, 2002.
  71. ^ Daniel, T. C.; et al. Contributions of cultural services to the ecosystem services agenda. Proceedings of the National Academy of Sciences. 21 May 2012, 109 (23): 8812–8819. Bibcode:2012PNAS..109.8812D. PMC 3384142可免费查阅. PMID 22615401. doi:10.1073/pnas.1114773109可免费查阅. 
  72. ^ Chen, Jim. Across the Apocalypse on Horseback: Imperfect Legal Responses to Biodiversity Loss. The Jurisdynamics of Environmental Protection: Change and the Pragmatic Voice in Environmental Law. Environmental Law Institute. 2003: 197. ISBN 978-1-58576-071-8. 
  73. ^ Hippo dilemma. Windows on the Wild. New Africa Books. 2005. ISBN 978-1-86928-380-3. 

外部連結

参见