邏輯與

維基百科,自由的百科全書
跳到: 導覽搜尋
文氏圖

邏輯數學中,邏輯合取邏輯與是一個二元邏輯運算符。如果其兩個變量的真值都為「真」,其結果為「真」,否則其結果為「假」。

相關名稱[編輯]

基本符號:
英文名:logical conjunction
中文名:邏輯與,合取交集按位與邏輯乘與門,...
命題邏輯中的二元連接詞合取,是一個兩元算子,集合論中的交集算子,二進制中的邏輯乘算子,按位與(Bitwise AND),邏輯門中的「與」門(AND gate),程式語言中的&或and運算符等等。

基本定義[編輯]

邏輯與(logical conjunction)是兩個邏輯變量的一種運算,經常是兩個命題的運算。它滿足:若且唯若其兩個變量的真值都為真時,其結果為真。
邏輯與是個二元算子,運算結果取值為真的條件是,若且唯若兩個命題的取值都真時。命題是取值要麼是真要麼是假的二值語句,沒有第三種取值,或說值域為{真,假}或是{T,F}或是{0,1}。未知真又未知假的語句是猜想;既真又假,既不真又不假的語句是悖論。
複合命題,讀作A合取B,在GCT邏輯中,也叫聯言命題。也有稱為合取命題的。

真值表定義[編輯]

A與B的真值表(也寫作AB(邏輯學),A && B(計算機科學),或AB(電子學))。

真值表:

輸入 輸出

推理規則[編輯]

合取引入規則(∧+)(conjunction introduction rule):

A,
B.
推出(Therefore), A and B.

形式化為:

例如:

Bob likes apples.
Bob likes oranges.
Therefore, Bob likes apples and oranges.

合取消去規則(∧-)(Conjunction elimination rule):

A and B.
推出(Therefore), A.

或者,

A and B.
推出(Therefore), B.

形式化為:

或者,

合成與分解規則[編輯]

作為一種推理規則,聯言推理的合成式是經典邏輯中簡單且有效論證形式。這個論證形式有兩個前提,AB,可以直觀地推出他們的合取。

A,
B.
因此AB.

邏輯運算符寫作:

下面的例子是一個滿足聯言推理的合成式的論證:

1小於2
6大於5
因此,1小於2,而且6大於5。

聯言推理的分解式是另一個在經典邏輯中簡單且有效論證形式。從任何合取式中都可以直觀地推論出兩個前提中的任意一個。

AB
因此A

...或者,

AB.
因此B.

邏輯運算符描述為,

...或者

性質[編輯]

邏輯與滿足以下性質:

  • 結合律:
  • 交換律:
  • 分配律:
  • 冪等律:
  • 單調性:
  • 保真性: 所有變量的真值皆為「真」的命題在邏輯與運算後的結果為真。
  • 保假性: 所有變量的真值皆為「假」的命題在邏輯與運算後的結果為假。

如果用二進制來表達真(1)和假(0),邏輯與運算與算術乘法運算一致。

計算機科學中的運用[編輯]

位運算[編輯]

邏輯與常在位運算中使用,比如:

  • 0 and 0 = 0
  • 0 and 1 = 0
  • 1 and 0 = 0
  • 1 and 1 = 1
  • 1100 and 1010 = 1000

編程中的使用[編輯]

在高等計算機編程中,邏輯合取「與」通常由內置算符and或&號來表達。很多程式語言還提供與邏輯與相應的短路求值控制結構。

布爾「與」也在SQL的運算符中使用。有些數據庫區分大小寫,需要"AND"符號。

在計算機科學中,AND運算符可以用來構造位屏蔽,以選擇二進制序列的一部分。比如10011101 AND 00001000 = 00001000用來取二進制序列的第五位。

交集運算[編輯]

集合論中的運算是用邏輯與來定義的:xAB若且唯若(xA) ∧ (xB)。因此邏輯與有很多與交集運算相同的性質,諸如結合律,交換律,分配律,及德·摩根定律

參見[編輯]

相關網頁[編輯]