跳转到内容

脂類:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
Wolfch留言 | 贡献
Wolfch留言 | 贡献
第69行: 第69行:


== 营养和健康 ==
== 营养和健康 ==
大部份食物中的脂質是三酸甘油酯、甾醇和磷脂。若食物中有一些脂質,有助於脂溶性的[[維生素]](如[[維生素A]]、[[維生素D|D]]、[[維生素E|E]]、[[維生素K|K]])及[[類胡蘿蔔素]]的吸收<ref>[[#Bhagavan|Bhagavan]], p. 903.</ref>。人類和其他哺乳類因為無法合成一些特定的脂肪酸,需要藉由食物攝取,稱為[[必需脂肪酸]],例如[[ω-6脂肪酸]]的[[亚油酸]]及ω-3脂肪酸的[[α-亞麻酸]]<ref name="Stryer et al., p. 643"/>。上述兩種脂肪酸都是18個碳的[[多元不飽和脂肪|多元不飽和脂肪酸]],但雙鍵的數量和位置有所不同。大部份的[[植物油]]含有大量的亚油酸,像是[[紅花]]油、[[葵花籽油]]及[[玉米油]]等。α-亞麻酸則主要是在植物的葉子及以一些特定的種子、核果及豆類中,例如[[亞麻]]、[[油菜籽]]、[[核桃]]及[[大豆]]<ref name="pmid19022225">{{cite journal |author=Russo GL|title=Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention |journal=[[Biochemical Pharmacology]] |volume=77 |issue=6 |pages=937–46 |year=2009 |pmid=19022225 |doi=10.1016/j.bcp.2008.10.020}}</ref>。[[魚油]]中有大量長鏈的[[ω-3脂肪酸]],例如[[二十碳五烯酸]](EPA)和[[二十二碳六烯酸]](DHA)。<ref>[[#Bhagavan|Bhagavan]], p. 388.</ref>許多研究顯示攝取ω-3脂肪酸對於嬰兒發展、癌症及[[心血管疾病]]的預防,以及像抑鬱症,注意力缺陷多動障礙和癡呆等精神疾病的的預防都有幫助<ref name="pmid19328262">{{cite journal |author=Riediger ND, Othman RA, Suh M, Moghadasian MH|title=A systemic review of the roles of n-3 fatty acids in health and disease |journal=Journal of the American Dietetic Association |volume=109 |issue=4 |pages=668–79 |year=2009 |pmid=19328262 |doi=10.1016/j.jada.2008.12.022}}</ref><ref name="pmid19326716">{{cite journal |author=Galli C, Risé P|title=Fish consumption, omega 3 fatty acids and cardiovascular disease. The science and the clinical trials |journal=Nutrition and Health (Berkhamsted, Hertfordshire) |volume=20 |issue=1 |pages=11–20 |year=2009 |pmid=19326716 |doi=10.1177/026010600902000102}}</ref>。相反的,攝取由植物油[[氫化|部份氫化]]產生的[[反式脂肪]]是可能造成心血管疾病的危險因子<ref name="pmid18996687">{{cite journal |author=Micha R, Mozaffarian D|title=Trans fatty acids: effects on cardiometabolic health and implications for policy |journal=Prostaglandins, Leukotrienes, and Essential Fatty Acids |volume=79 |issue=3–5 |pages=147–52 |year=2008 |pmid=18996687 |doi=10.1016/j.plefa.2008.09.008 |pmc=2639783}}</ref><ref name="pmid18427401">{{cite journal |author=Dalainas I, Ioannou HP|title=The role of trans fatty acids in atherosclerosis, cardiovascular disease and infant development |journal=International Angiology: a Journal of the International Union of Angiology |volume=27 |issue=2 |pages=146–56 |year=2008 |pmid=18427401 }}</ref><ref name="pmid18377789">{{cite journal |author=Mozaffarian D, Willett WC|title=Trans fatty acids and cardiovascular risk: a unique cardiometabolic imprint? |journal=Current Atherosclerosis Reports |volume=9 |issue=6 |pages=486–93 |year=2007 |pmid=18377789 |doi= 10.1007/s11883-007-0065-9}}</ref>。
大部份食物中的脂質是三酸甘油酯、甾醇和磷脂。若食物中有一些脂質,有助於脂溶性的[[維生素]](如[[維生素A]]、[[維生素D|D]]、[[維生素E|E]]、[[維生素K|K]])及[[類胡蘿蔔素]]的吸收<ref>[[#Bhagavan|Bhagavan]], p. 903.</ref>。人類和其他哺乳類因為無法合成一些特定的脂肪酸,需要藉由食物攝取,稱為[[必需脂肪酸]],例如[[ω-6脂肪酸]]的[[亚油酸]]及ω-3脂肪酸的[[α-亞麻酸]]<ref name="Stryer et al., p. 643"/>。上述兩種脂肪酸都是18個碳的[[多元不飽和脂肪|多元不飽和脂肪酸]],但雙鍵的數量和位置有所不同。


== 相關條目 ==
== 相關條目 ==

2014年7月10日 (四) 00:27的版本

常見脂質的結構圖。圖片上方為膽固醇[1]油酸[2]。中央為三酸甘油酯,由丙三醇(又稱甘油)為主幹,旁接油酸硬脂酸棕櫚酸鏈構成。圖片下方是磷脂醯膽鹼,一種常見的磷脂[3]

脂質(英語:lipid)又稱脂類,是一類天然分子的總稱,其中包括脂肪类固醇、脂溶性維生素(如維生素D)[4]單酸甘油酯英语Monoglyceride甘油二酯磷脂等。它的主要生理功能包括儲存能量、構成細胞膜以及膜的訊息傳導[5][6]。如今,脂类已经被用于美容食品工业,以及纳米技术[7]

脂質可以廣義定義為疏水性雙親性小分子;某些脂質因為其雙親性的特質(兼具親水性與疏水性),能在水溶液環境中形成囊泡脂質體或膜等構造。生物體內的脂質完全或部分源自兩種截然不同的生物次單元:酮酸基異戊二烯[8]。由此,脂質可以概分為八類:脂肪酸甘油酯甘油磷脂鞘脂(神經脂質)、醣脂質聚酮类(由酮乙基次單元聚合而成)、固醇脂类,以及孕烯醇酮脂类(由異戊二烯次單元縮合聚合而成)[5][9]

脂類常被視為是脂肪的同義詞,但脂肪只是一種稱為三酸甘油脂的脂類。脂類也包括脂肪酸及其衍生物,包括單酸甘油酯、甘油二酯、磷脂等,也包括其他含有固醇代謝產物,像是膽固醇[10]。雖然人類和其他動物有許多不同的代謝方式,可以切斷脂肪鏈及合成脂質,不過仍有一些必需脂質無法自行合成,需要在食物中攝取。

有生物以前脂質的化學反應,以及原始生命體的形成,現已認為是生命起源模型中的關鍵。

分类

脂肪酸类

脂肪酸,或是脂質中的脂肪酸殘留部份,是由乙醯輔酶A丙二醯輔酶A甲基丙二酸單醯輔酶A合成的許多不同種類的分子,合成的反應稱為脂肪酸合成[11][12]。脂肪酸是由尾端為羧酸官能基的碳鏈組成,因此分子會有有極性親水的一端,另一端則是非極性且疏水的。脂肪酸結構是生物脂質中最基本的結構,常用來建構更複雜脂質[13]。碳鏈長度一般介於4到24個碳之間[14],可能是飽和化合物或是不饱和化合物,也可能連結其他含有鹵素或是官能基。若脂肪酸中含有雙鍵,則可能會有順式及反式的顺反异构,對分子組態英语molecular configuration有很大的影響。顺式的雙鍵會使碳鏈彎曲,若是分子中有多個雙鍵,反應會更明顯。18個碳的亚麻酸中有三個雙鍵,是植物的类囊体膜中最豐富的脂肪酸酰基链,因此在環境低溫時,仍可以使囊膜有高度的流動性[15]。大部份天然的(有雙鍵的)脂肪酸是順式的,不過有些天然的脂肪酸是反式的,而人工氫化的脂肪和油類也是反式的[16]

在生物中重要的脂肪酸包括主要衍生自花生四烯酸类花生酸,另一種為二十碳五烯酸(EPA),包括前列腺素白三烯血栓素等。二十二碳六烯酸(DHA)對生物體也相當的重要,尤其是在生物的視覺上[17][18]。其他重要的脂肪酸類脂質包括脂肪酸酯及脂肪酸胺,脂肪酸酯包括重要的生物化學中間產物,例如蜡酯英语wax ester、及脂肪酸硫酯辅酶A衍生物、脂肪酸硫酯醯基載體蛋白衍生物、及脂肪酸肉碱。脂肪酸胺包括N-脂肪酰基胺英语N-acylethanolamine,例如大麻素中的神經傳導物質花生四烯酸乙醇胺[19]

甘油酯类

甘油酯中包括單酸英语Monoglyceride二酸三酸甘油酯[20],分別是甘油和一、二、三個脂肪酸形成的酯類,其中最為人知的是三酸甘油酯,其中甘油 的三個羥基和脂肪酸反應,多半會是三種不同的脂肪酸。動物會用脂質儲存能量,而這些脂質也會儲存在動物的脂肪組織中。在代謝脂肪時三酸甘油酯的酯鍵會斷裂,分解為甘油和脂肪酸[21]

甘油酯类中的化合物還包括甘油葡糖苷(glycosylglycerol),是甘油和單醣糖苷键鍵結的化合物,例如在植物薄膜中常見的二半乳糖基二脂酰甘油(digalactosyldiacylglycerol)[22],或是哺乳類精子中常見的精脂英语seminolipid[23]

甘油磷脂类

甘油磷脂一般簡稱為磷脂,是含有磷酸的脂類,出現在自然界及細胞的磷脂雙分子層[24],和新陳代謝細胞信號傳送有關[25]。神經組織(包括大腦)含有大量的磷脂,其成份的改變意味著有可能有神經的病變[26]。磷脂可以分為兩類,真核生物細菌中的磷脂,其極性的分子團連結在甘油的sn-3位上,而古菌中的磷脂,其極性的分子團連結在甘油的sn-1位上[27]

磷脂醯乙醇胺[3]

生物膜中常見的磷脂有磷脂醯膽鹼(也稱為PC、GPCho或卵磷脂)、磷脂酰乙醇胺(PE或GPEtn)及磷脂絲胺酸(也稱為PS或GPSer)。磷脂除了作為細胞膜的主要成份,以及結合細胞內或細胞間蛋白質外。有些真核生物细胞中的磷脂是細胞膜衍生的第二信使系統或是其前驅體,這類磷脂有磷脂酰肌醇磷脂酸[28]。一般而言甘油的一或兩個羥基會連接長鏈的脂肪酸,不過也有連接烷基或是1Z-烯基(缩醛磷脂的磷脂,例如古菌中的二烷基醚变体[29]

鞘脂类

醣脂类

聚酮类

固醇脂类

孕烯醇酮脂类

生物功能

新陈代谢

人類和其他動物食物常見的脂質有動物及植物的三酸甘油酯、甾醇,和生物膜的磷脂。脂質代謝的過程可以合成及降解儲存的脂質,並產生個別組織需要的結構性及機能性的脂質。

营养和健康

大部份食物中的脂質是三酸甘油酯、甾醇和磷脂。若食物中有一些脂質,有助於脂溶性的維生素(如維生素ADEK)及類胡蘿蔔素的吸收[30]。人類和其他哺乳類因為無法合成一些特定的脂肪酸,需要藉由食物攝取,稱為必需脂肪酸,例如ω-6脂肪酸亚油酸及ω-3脂肪酸的α-亞麻酸[31]。上述兩種脂肪酸都是18個碳的多元不飽和脂肪酸,但雙鍵的數量和位置有所不同。大部份的植物油含有大量的亚油酸,像是紅花油、葵花籽油玉米油等。α-亞麻酸則主要是在植物的葉子及以一些特定的種子、核果及豆類中,例如亞麻油菜籽核桃大豆[32]魚油中有大量長鏈的ω-3脂肪酸,例如二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)。[33]許多研究顯示攝取ω-3脂肪酸對於嬰兒發展、癌症及心血管疾病的預防,以及像抑鬱症,注意力缺陷多動障礙和癡呆等精神疾病的的預防都有幫助[34][35]。相反的,攝取由植物油部份氫化產生的反式脂肪是可能造成心血管疾病的危險因子[36][37][38]

相關條目

参考文献

  1. ^ Maitland, Jr Jones. Organic Chemistry. W W Norton & Co Inc (Np). 1998: 139. ISBN 0-393-97378-6. 
  2. ^ Stryer et al., p. 328.
  3. ^ 3.0 3.1 Stryer et al., p. 330.
  4. ^ 生物1 必修 分子与细胞. 人民教育出版社. 2007: 32–33. ISBN 978-7-107-17670-8. 
  5. ^ 5.0 5.1 Fahy E, Subramaniam S, Murphy R, Nishijima M, Raetz C, Shimizu T, Spener F, Van Meer G, Wakelam M and Dennis E.A. Update of the LIPID MAPS comprehensive classification system for lipids. Journal of Lipid Research. 2009, 50 (Supplement): S9–S14. PMC 2674711可免费查阅. PMID 19098281. doi:10.1194/jlr.R800095-JLR200. 
  6. ^ Subramaniam S, Fahy E, Gupta S, Sud M, Byrnes RW, Cotter D, Dinasarapu AR and Maurya MR. Bioinformatics and Systems Biology of the Lipidome. Chemical Reviews. 2011, 111 (10): 6452–6490. PMC 3383319可免费查阅. PMID 21939287. doi:10.1021/cr200295k. 
  7. ^ Mashaghi S., Jadidi T., Koenderink G., Mashaghi A. Lipid Nanotechnology. Int. J. Mol. Sci. 2013, 2013 (14): 4242–4282. doi:10.3390/ijms14024242. 
  8. ^ Fahy E, Subramaniam S, Brown HA; et al. A comprehensive classification system for lipids. Journal of Lipid Research. 2005, 46 (5): 839–61. PMID 15722563. doi:10.1194/jlr.E400004-JLR200. 
  9. ^ 蔡潭溪、刘平生、杨福全、杨福愉. 脂质组学研究进展 (PDF). 生物化学与生物物理进展. 2010, 37 (2): 121–128 [2013-04-11]. 
  10. ^ Michelle A, Hopkins J, McLaughlin CW, Johnson S, Warner MQ, LaHart D, Wright JD. Human Biology and Health. Englewood Cliffs, New Jersey, USA: Prentice Hall. 1993. ISBN 0-13-981176-1. OCLC 32308337. 
  11. ^ Vance JE, Vance DE. Biochemistry of Lipids, Lipoproteins and Membranes. Amsterdam: Elsevier. 2002. ISBN 0-444-51139-3. OCLC 51001207. 
  12. ^ Brown HA (编). Lipodomics and Bioactive Lipids: Mass Spectrometry Based Lipid Analysis, Volume 432 (Methods in Enzymology). Boston: Academic Press. 2007. ISBN 0-12-373895-4. OCLC 166624879. 
  13. ^ Mandal, Ananya. Types of Lipids. news-medical.net. 
  14. ^ Hunt SM, Groff JL, Gropper SAS. Advanced Nutrition and Human Metabolism. Belmont, CA: West Pub. Co. 1995: 98. ISBN 0-314-04467-1. 
  15. ^ YashRoy R.C. (1987) 13-C NMR studies of lipid fatty acyl chains of chloroplast membranes. Indian Journal of Biochemistry and Biophysics, vol. 24(6), pp. 177-178.https://www.researchgate.net/publication/230822408_13-C_NMR_studies_of_lipid_fatty_acyl_chains_of_chloroplast_membranes?ev=prf_pub
  16. ^ Hunter JE. Dietary trans fatty acids: review of recent human studies and food industry responses. Lipids. November 2006, 41 (11): 967–92. PMID 17263298. doi:10.1007/s11745-006-5049-y. 
  17. ^ A Long Lipid, a Long Name: Docosahexaenoic Acid. The Lipid Chronicles. [2011-12-31]. 
  18. ^ DHA FOR OPTIMAL BRAIN AND VISUAL FUNCTIONING. DHA/EPA Omega-3 Institute. 
  19. ^ Fezza F, De Simone C, Amadio D, Maccarrone M. Fatty acid amide hydrolase: a gate-keeper of the endocannabinoid system. Subcellular Biochemistry. Subcellular Biochemistry. 2008, 49: 101–32. ISBN 978-1-4020-8830-8. PMID 18751909. doi:10.1007/978-1-4020-8831-5_4. 
  20. ^ Coleman RA, Lee DP. Enzymes of triglyceride synthesis and their regulation. Progress in Lipid Research. 2004, 43 (2): 134–76. PMID 14654091. doi:10.1016/S0163-7827(03)00051-1. 
  21. ^ van Holde and Mathews, p. 630–31.
  22. ^ Hölzl G, Dörmann P. Structure and function of glycoglycerolipids in plants and bacteria. Progress in Lipid Research. 2007, 46 (5): 225–43. PMID 17599463. doi:10.1016/j.plipres.2007.05.001. 
  23. ^ Honke K, Zhang Y, Cheng X, Kotani N, Taniguchi N. Biological roles of sulfoglycolipids and pathophysiology of their deficiency. Glycoconjugates Journal. 2004, 21 (1–2): 59–62. PMID 15467400. doi:10.1023/B:GLYC.0000043749.06556.3d. 
  24. ^ The Structure of a Membrane. The Lipid Chronicles. [2011-12-31]. 
  25. ^ Berridge MJ, Irvine RF. Inositol phosphates and cell signalling. Nature Journal. 1989, 341 (1): 197–205. doi:10.1038/341197a0. 
  26. ^ Farooqui AA, Horrocks LA, Farooqui T. Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chemistry and Physics of Lipids. 2000, 106 (1): 1–29. PMID 10878232. doi:10.1016/S0009-3084(00)00128-6. 
  27. ^ Ivanova PT, Milne SB, Byrne MO, Xiang Y, Brown HA. Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry. Methods in Enzymology. Methods in Enzymology. 2007, 432: 21–57. ISBN 9780123738950. PMID 17954212. doi:10.1016/S0076-6879(07)32002-8. 
  28. ^ van Holde and Mathews, p. 844.
  29. ^ Paltauf F. Ether lipids in biomembranes. Chemistry and Physics of Lipids. 1994, 74 (2): 101–39. PMID 7859340. doi:10.1016/0009-3084(94)90054-X. 
  30. ^ Bhagavan, p. 903.
  31. ^ 引用错误:没有为名为Stryer et al., p. 643的参考文献提供内容
  32. ^ Russo GL. Dietary n-6 and n-3 polyunsaturated fatty acids: from biochemistry to clinical implications in cardiovascular prevention. Biochemical Pharmacology. 2009, 77 (6): 937–46. PMID 19022225. doi:10.1016/j.bcp.2008.10.020. 
  33. ^ Bhagavan, p. 388.
  34. ^ Riediger ND, Othman RA, Suh M, Moghadasian MH. A systemic review of the roles of n-3 fatty acids in health and disease. Journal of the American Dietetic Association. 2009, 109 (4): 668–79. PMID 19328262. doi:10.1016/j.jada.2008.12.022. 
  35. ^ Galli C, Risé P. Fish consumption, omega 3 fatty acids and cardiovascular disease. The science and the clinical trials. Nutrition and Health (Berkhamsted, Hertfordshire). 2009, 20 (1): 11–20. PMID 19326716. doi:10.1177/026010600902000102. 
  36. ^ Micha R, Mozaffarian D. Trans fatty acids: effects on cardiometabolic health and implications for policy. Prostaglandins, Leukotrienes, and Essential Fatty Acids. 2008, 79 (3–5): 147–52. PMC 2639783可免费查阅. PMID 18996687. doi:10.1016/j.plefa.2008.09.008. 
  37. ^ Dalainas I, Ioannou HP. The role of trans fatty acids in atherosclerosis, cardiovascular disease and infant development. International Angiology: a Journal of the International Union of Angiology. 2008, 27 (2): 146–56. PMID 18427401. 
  38. ^ Mozaffarian D, Willett WC. Trans fatty acids and cardiovascular risk: a unique cardiometabolic imprint?. Current Atherosclerosis Reports. 2007, 9 (6): 486–93. PMID 18377789. doi:10.1007/s11883-007-0065-9. 

外部連結

入門
命名
数据库
  • LIPID MAPS - 脂質及其相關之基因/蛋白質資料 (英文)
  • LipidBank - 脂質與其相關性質、光譜數據及文獻 (日語)
  • LIPIDAT - 磷脂和相關熱力學資訊 (英文)

Template:Link FA Template:Link GA