本頁使用了標題或全文手工轉換

隨機過程

維基百科,自由的百科全書
跳至導覽 跳至搜尋

機率論概念中,隨機過程隨機變數集合。若一隨機系統樣本點是隨機函數,則稱此函數為樣本函數,這一隨機系統全部樣本函數的集合是一個隨機過程。實際應用中,樣本函數的一般定義在時間域或者空間域。隨機過程的實例如股票匯率的波動、語音信號視頻信號體溫的變化,隨機運動如布朗運動隨機徘徊等等。

定義[編輯]

為一機率空間,另設集合為一指標集合。如果對於所有,均有一隨機變數定義於機率空間,則集合為一隨機過程。

通常,指標集合代表時間,以實數或整數表示。以實數形式表示時,隨機過程稱為連續隨機過程;以整數表示時,則為離散隨機過程。隨機過程中的參數只為分辨同類隨機過程中的不同實例,如在上文下中不構成誤會,通常略去。例如表達單次元布朗運動時,常以表達,但若考慮兩同時進行布朗運動的粒子,則會分別以(或作)表示。

歷史[編輯]

為了了解金融市場和研究布朗運動,在19世紀後期人們開始研究隨機過程。第一個用數學語言描述布朗運動的是數學家Thorvald N. Thiele。 他在1880年發表了第一篇關於布朗運動的文章。隨後,在1900年, Louis Bachelier的博士論文「投機理論」 提出了股票和期權市場的隨機分析。阿爾伯特·愛因斯坦(在他1905年的一篇論文中)和瑪麗安·一維Smoluchowski(1906年)從物理界的角度出發,把它作為了一種間接證明了原子和分子的存在。他們所描述的布朗運動方程式在1908年被讓·佩蘭核實。

從愛因斯坦的文章的摘錄描述了隨機模型的基本原理:

"它必須明確假定每個單個顆粒執行的運動是獨立於所有其他的粒子的運動;它也將被認為是1的動作和相同的顆粒在不同的時間間隔是獨立的過程,只要這些的時間間隔不是非常小"

"我們引入一時間間隔蛋白考慮,相對來說這是非常小的,但是我們可觀察到的時間間隔,仍然過大,在兩個連續時間間隔蛋白,由粒子所執行的動作可以被認為是作為彼此獨立的事件"。

架構[編輯]

在機率論的測量理論中,需要解決一個問題。如何構造一個Σ-代數的所有功能空間的衡量子集,然後把它有限化。為了解決這個問題,採用了 Kolmogorov擴展方法。

  • Kolmogorov擴展方法過程:

假定所有函數f的空間機率測度: 存在,那麼它可以被用來指定有限維隨機變數 .的聯合機率分布。現在從這個n維機率分布,我們可以推斷出第(n - 1)維邊際機率為。但是需要注意的是兼容性狀態,即這種邊際機率分布是在相同的類作為1從完全成熟的隨機過程衍生。例如,如果該隨機過程是一個Wiener過程(在這種情況下,邊際是指數類的所有高斯分布),但不是在一般對所有的隨機過程。這種方程式稱為查普曼-洛夫方程式。

科摩哥洛夫擴展定理保證了隨機過程的有限維機率分布滿足查普曼 - 科摩哥洛夫的兼容性條件的存在..

  • 分離性

回想一下,在洛夫公理化中存在對於機率問題有還是沒有的不確定性。科摩哥洛夫擴展首先聲明是可衡量的功能,其中有限多個坐標被限制在中可測量的子集所有集合。如果一個是/否有關的問題都可以通過觀察至多有限多個坐標的值回答,那麼它有一個機率的答案。

在測度理論,如果我們有一個可數無限集合測集,所有的人都那麼的聯合和交集是可測集。對於我們而言,這意味著是/否依賴於可數個坐標的問題有一個機率的答案。

過濾[編輯]

給定一個機率空間, 過濾是一個弱增長對 σ-代數, 集合一些全序集T,上界由決定。即對於 s,t  s < t, 有

自然過濾[編輯]

給定一個隨機過程 。在這個過程中,需要過濾這裡的 .這個通過 和時間s = t產生。舉個例子, 一個隨機過程總是適應其自然過濾。

相關條目[編輯]

參考文獻[編輯]

  1. Papoulis, Athanasios & Pillai, S. Unnikrishna. Probability, Random Variables and Stochastic Processes. McGraw-Hill Science/Engineering/Math. 2001. ISBN 0-07-281725-9. 
  2. Boris Tsirelson. Lecture notes in Advanced probability theory. (原始內容存檔於2008-11-28). 
  3. J. L. Doob. Stochastic Processes. Wiley. 1953. 
  4. An Exploration of Random Processes for Engineers. Free e-book. July 2006 [2010-06-28]. (原始內容存檔於2009-04-17). 

外部連結[編輯]