微分方程式
微分方程式 |
---|
範圍 |
分類 |
解 |
人物 |
微分方程式(英語:Differential equation,DE)是一種數學方程式,用來描述某一類函數與其導數之間的關係。微分方程式的解是一個符合方程式的函數。而在初等數學的代數方程式裡,其解是常數值。
微分方程式的應用十分廣泛,可以解決許多與導數有關的問題[1]:p.1。物理中許多涉及變力的運動學、動力學問題,如空氣的阻力為速度函數的落體運動等問題,很多可以用微分方程式求解。此外,微分方程式在化學、工程學、經濟學和人口統計等領域都有應用。
數學領域對微分方程式的研究著重在幾個不同的面向,但大多數都是關心微分方程式的解。只有少數簡單的微分方程式可以求得解析解。不過即使沒有找到其解析解,仍然可以確認其解的部份性質。在無法求得解析解時,可以利用數值分析的方式,利用電腦來找到其數值解。 動態系統理論強調對於微分方程式系統的量化分析,而許多數值方法可以計算微分方程式的數值解,且有一定的準確度。
分類
[編輯]微分方程式可分為以下幾類,而隨著微分方程式種類的不同,其相關研究的方式也會隨之不同。
常微分方程式及偏微分方程式
[編輯]- 常微分方程式(ODE)是指一微分方程式的未知數是單一自變數的函數[2]。最簡單的常微分方程式,未知數是一個實數或是複數的函數,但未知數也可能是一個向量函數或是矩陣函數,後者可對應一個由常微分方程組成的系統。微分方程式的表達通式是:
- 常微分方程式常依其階數分類,階數是指自變數導數的最高階數[1]:p.3,最常見的二種為一階微分方程式及二階微分方程式。例如以下的貝塞爾方程式:
- 偏微分方程式(PDE)是指一微分方程式的未知數是多個自變數的函數[2],且方程式中有未知數對自變數的偏微分。偏微分方程式的階數定義類似常微分方程式,但更細分為橢圓型、雙曲線型及拋物線型的偏微分方程式,尤其在二階偏微分方程式中上述的分類更是重要。有些偏微分方程式在整個自變數的值域中無法歸類在上述任何一種型式中,這種偏微分方程式則稱為混合型。像以下的方程式就是偏微分方程式:
線性及非線性
[編輯]常微分方程式及偏微分方程式都可以分為線性及非線性二類。
若微分方程式中沒有出現應變數及其微分項的乘積,此微分方程式為線性微分方程式,否則即為非線性微分方程式。
齊次線性微分方程式是線性微分方程式中更細的分類,微分方程式的解乘上一係數或是與另一個解相加後的結果仍為微分方程式的解。
若線性微分方程式的係數均為常數,則為常係數線性微分方程式。常係數線性微分方程式可以利用拉氏轉換轉換為代數方程式[1]:p.315-316,因此簡化求解的過程。
針對非線性的微分方程式,只有相當少數的方法可以求得微分方程式的解析解,而且這些方法需要微分方程式有特別的對稱性。長時間時非線性微分方程式可能會出現非常複雜的特性,也可能會有混沌現象。有關非線性微分方程式的一些基本問題,例如解的存在性、唯一性及初始值非線性微分方程式的適定性問題,以及邊界值非線性微分方程式都是相當難的問題,甚至針對特定非線性微分方程式的上述基本問題都被視為是數學理論的一大突破。例如2000年提出的7個千禧年大獎難題中,其中一個是納維-斯托克斯存在性與光滑性,都是探討納維-斯托克斯方程式其解的數學性質[3],截至2018年8月此問題仍尚未被證明。
線性微分方程式常常用來近似非線性微分方程式,不過只在特定的條件下才能近似。例如單擺的運動方程式為非線性的微分方程式,但在小角度時可以近似為線性的微分方程式。
舉例
[編輯]以下是常微分方程式的一些例子,其中為未知的函數,自變數為,及均為常數。
- 非齊次一階常係數線性微分方程式:
- 齊次二階線性微分方程式:
- 描述諧振子的齊次二階常係數線性微分方程式:
- 非齊次一階非線性微分方程式:
- 描述長度為的單擺的二階非線性微分方程式:
以下是偏微分方程式的一些例子,其中為未知的函數,自變數為及或者是及。
- 齊次一階線性偏微分方程式:
- 拉普拉斯方程式,是橢圓型的齊次二階常係數線性偏微分方程式:
- KdV方程式,是三階的非線性偏微分方程式:
性質
[編輯]普遍性的數學描述
[編輯]許多物理或是化學的基本定律都可以寫成微分方程式的形式。在生物學及經濟學中,微分方程式用來作為複雜系統的數學模型。微分方程式的數學理論最早是和方程式對應的科學領域一起出現,而微分方程式的解就可以用在該領域中。不過有時二個截然不同的科學領域會形成相同的微分方程式,此時微分方程式對應的數學理論可以看到不同現象後面一致的原則。
例如考慮光和聲音在空氣中的傳播,以及池塘水面上的波動,這些都可以用同一個二階的偏微分方程式來描述,此方程式即為波動方程式,因此可以將光和聲音視為一種波,和水面上的水波有些類似之處。約瑟夫·傅立葉所發展的熱傳導理論,其統御方程式是另一個二階偏微分方程式-熱傳導方程式,擴散作用看似和熱傳導不同,但也適用同一個統御方程式,而金融數學中的布萊克-休斯方程式也和熱傳導方程式有關。
微分方程式的解
[編輯]微分方程式的解通常是一個函數表達式(含一個或多個待定常數,由初始條件確定)。例如:
- ,
的解是
- ,
其中是待定常數;
例如,如果知道
- ,
則可推出
- ,
而可知 ,
簡易微分方程式的求解方法
[編輯]一階線性常微分方程式
[編輯]對於一階線性常微分方程式,常用的方法是常數變易法:
對於方程式:
可知其通解:
然後將這個通解代回到原式中,即可求出的值
二階常係數齊次常微分方程式
[編輯]對於二階常係數齊次常微分方程式,常用方法是求出其特徵方程式的解
對於方程式:
其特徵方程式:
根據其特徵方程式,判斷根的分布情況,然後得到方程式的齊解:
一般的齊解形式為
(在的情況下):
(在的情況下):
(在共軛複數根的情況下):
接者再解特解 ,可用微分算子計算出 最後,得
約束條件
[編輯]微分方程式的約束條件是指其解需符合的條件,依常微分方程式及偏微分方程式的不同,有不同的約束條件。
常微分方程式常見的約束條件是函數在特定點的值,若是高階的微分方程式,會加上其各階導數的值,有這類約束條件的常微分方程式稱為初值問題。
若是二階的常微分方程式,也可能會指定函數在二個特定點的值,此時的問題即為邊界值問題。若邊界條件指定二點數值,稱為狄利克雷邊界條件(第一類邊值條件),此外也有指定二個特定點上導數的邊界條件,稱為諾伊曼邊界條件(第二類邊值條件)等。
偏微分方程式常見的問題以邊界值問題為主,不過邊界條件則是指定一特定超曲面的值或導數需符定特定條件。
解的存在性及唯一性
[編輯]存在性是指給定一微分方程式及約束條件,判斷其解是否存在。唯一性是指在上述條件下,是否只存在一個解。
針對常微分方程式的初值問題,皮亞諾存在性定理可判別解的存在性,柯西-利普希茨定理則可以判別解的存在性及唯一性。
針對偏微分方程式,柯西-克瓦列夫斯基定理可以判別解的存在性及唯一性。 皮亞諾存在性定理可以判斷常微分方程式初值問題的解是否存在。
歷史
[編輯]微分方程式和微積分同時被發明出來。它們都是為了解決物理及天文學問題而產生。牛頓於1671年撰寫的《流數法》就已經包含有以下3種微分方程式。
惠更斯在1693年的《教師學報》中提到常微分方程式,雅各布·白努利在1691年建立懸鏈線的微分方程式,並求得其函數。微分方程式在十八世紀中期成為一個獨立的學科[4],而微分方程式也帶動許多當時的科學發展,例如海王星的發現就和微分方程式的分析有關[5]。
偏微分方程式是由傅立葉開始的,他在1822年發表《熱的解析理論》,提出熱傳導方程式的偏微分方程式,並且利用分離變數法求得級數解,並且開始有關傅立葉級數的研究。另外在十九世紀有關 拉普拉斯方程式的研究也是偏微分方程式的重要發展。拉普拉斯和卜瓦松都有許多的貢獻,後來喬治·格林提出了相關格林函數及格林公式等概念,並帶動斯托克斯、麥克斯韋及後來電磁學相關的研究。而流體力學的納維-斯托克斯方程式及彈性介質的柯西動量方程式也是在十九世紀提出的偏微分方程式。[5]。後來許多的理論都是以偏微分方程式的形式出現,量子力學的基礎方程式薛丁格方程式也是偏微分方程式,廣義相對論中的愛因斯坦重力場方程式也有類似偏微分的協變導數。
相關概念
[編輯]- 時滯微分方程式(DDE)是一個單一自變數的方程式,此變數一般稱為時間,未知數在某一時間的導數和特定函數在之前時間的值有關。
和差分方程式的關係
[編輯]微分方程式的理論和差分方程式的理論有密切的關係,後者的座標只允許離散值,許多計算微分方程式數值解的方法或是對於微分方程式性質的研究都需要將微分方程式的解近似為對應差分方程式的解。
著名的微分方程式
[編輯]物理及工程
[編輯]生物學
[編輯]經濟學
[編輯]參見
[編輯]參考資料
[編輯]- ^ 1.0 1.1 1.2 劉睦雄; 張任業. 微分方程. 華泰書局. 1988.
- ^ 2.0 2.1 翁秉仁. 微分方程. EpisteMath. 中央研究院數學所、台大數學系. [2014-01-15]. (原始內容存檔於2021-11-22) (中文).
- ^ Official statement of the problem 網際網路檔案館的存檔,存檔日期2012-04-18., Clay Mathematics Institute.
- ^ 常微分方程的发展史况. 高等數學. 北京航空航天大學現代遠程教育學院. [2014-01-18]. (原始內容存檔於2014-01-18) (中文).
- ^ 5.0 5.1 偏微分方程理论学习. 中國科學技術大學. [2014-01-18]. (原始內容存檔於2021-09-01) (中文).
參考文獻
[編輯]- D. Zwillinger, Handbook of Differential Equations (3rd edition), Academic Press, Boston, 1997.
- A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations (2nd edition), Chapman & Hall/CRC Press, Boca Raton, 2003. ISBN 978-1-58488-297-8.
- W. Johnson, A Treatise on Ordinary and Partial Differential Equations (頁面存檔備份,存於網際網路檔案館), John Wiley and Sons, 1913, in University of Michigan Historical Math Collection (頁面存檔備份,存於網際網路檔案館)
- E. L. Ince, Ordinary Differential Equations, Dover Publications, 1956
- E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, 1955
- P. Blanchard, R. L. Devaney, G. R. Hall, Differential Equations, Thompson, 2006
- P. Abbott and H. Neill, Teach Yourself Calculus, 2003 pages 266-277
- R. I. Porter, Further Elementary Analysis, 1978, chapter XIX Differential Equations