无理数
各种各样的数 |
基本 |
延伸 |
其他 |
无理数(irrational number)是指有理数以外的实数,当中的“理”字来自于拉丁语的rationalis,意思是“理解”,实际是拉丁文对于logos“说明”的翻译,是指无法用两整数之比来说明的无理数。
非有理数之实数不能写作两整数之比。若将它写成小数形式,小数点后有无限多位,并且不会循环,即无限不循环小数(任何有限或无限循环小数可表示成两整数的比)。常见无理数有大部分的平方根、π和e(后两者同时为超越数)等。无理数另一特征是无限的连分数表达式。
传说中,无理数最早由毕达哥拉斯学派弟子希伯斯发现,他以几何方法证明无法用整数及分数表示;而毕达哥拉斯深信任意数均可用整数及分数表示,不相信无理数存在,后来希伯斯触犯学派章程,将无理数透露给外人,因而被扔进海中处死,其罪名竟然等同于“渎神”。另见第一次数学危机。
无理数可以通过有理数的分划的概念来定义。
举例
[编辑]- =1.73205080…
- 3=0.47712125…
- e=2.71828182845904523536…
- sin 45°==0.70710678…
- π=3.141592653589793238462…
性质
[编辑]不知是否是无理数的数
[编辑]π+e、π-e等,事实上,对于任何非零整数及,不知道是否无理数。
无理数与无理数的四则运算的结果往往不知道是否无理数,只有π-π=0、等除外。
我们亦不知道、、、欧拉-马歇罗尼常数、卡塔兰常数和费根鲍姆常数是否无理数。
无理数集的特性
[编辑]无理数集是不可数集(有理数集是可数集而实数集是不可数集)。无理数集是不完备的拓扑空间,它与所有正数数列的集拓扑同构,当中的同构映射是无理数的连分数开展,因而贝尔纲定理可应用于无数间的拓扑空间。
无理化作连分数的表达式
[编辑]- ,
选取正实数使
- 。
经由递回处理
无理数之证
[编辑]证明是无理数
[编辑]假设是有理数,且,是最简分数。
两边平方,得。将此式改写为,可见为偶数。
因为平方运算保持奇偶性,所以只能为偶数。设,其中为整数。
代入可得。同理可得亦为偶数。
这与为最简分数的假设矛盾,所以是有理数的假设不成立。
证明是无理数
[编辑]假设是有理数,两边平方得
其中因为是有理数,所以也是有理数。
透过证明为无理数的方法,其中为一非完全平方数
可以证明是无理数
同样也推出是无理数
但这又和是有理数互相矛盾
所以是一无理数
证明是无理数
[编辑]证一
同样,假设是有理数,两边平方得
,
于是是有理数。两边再次平方,得:
,
于是
由于是有理数,所以
透过证明形如的数是无理数的方法,得出也是一无理数
但这结果明显和与皆为有理数出现矛盾,故为无理数
证二
同样假设是有理数,
,两边平方:
证明形式的数是无理数的方法,得出是无理数
也是矛盾的。
证明是无理数
[编辑]
,两边平方得
,得到为一有理数
,两边继续平方:
由于,皆为有理数
设,亦为有理数
证明形式的数是无理数的方法可知为无理数
这和是有理数冲突
所以得证为无理数
参见
[编辑]外部链接
[编辑]- 从毕氏学派到欧氏几何的诞生,蔡聪明 (页面存档备份,存于互联网档案馆),有毕氏弄石法的证明
- 是无理数的六个证明,香港大学数学系萧文强 (页面存档备份,存于互联网档案馆)(Mathematical Excalibur Vol.3 No.1 Page 2)
- 旧题新解—根号2是无理数,张海潮 张镇华[永久失效链接](数学传播 第30卷 第4期)