跳至內容

賽局理論

本頁使用了標題或全文手工轉換
維基百科,自由的百科全書
(重新導向自博弈理论

賽局理論(英語:Game Theory),又譯為對策論博弈論,是經濟學的一個分支,1944年馮·諾伊曼奧斯卡·摩根斯特恩合著《賽局理論與經濟行為》,標誌著現代系統賽局理論的初步形成,因此他們被稱為「賽局理論之父」。賽局理論被認為是20世紀經濟學最偉大的成果之一。目前可以應用在生物學經濟學國際關係計算機科學政治學軍事戰略,研究遊戲或者賽局內的相互作用,是研究具有鬥爭或敵對性質現象的數學理論和方法。也是作業研究的一個重要學科。 現代的賽局理論的源頭是約翰·馮·諾伊曼對於雙人零和賽局的混合策略均衡點的發想和證明。

概述

[編輯]

賽局理論考慮遊戲中的個體的預測行為和實際行為,並研究它們的最佳化策略。表面上不同的相互作用可能表現出相似的激勵結構(incentive structure),所以它們是同一個遊戲的特例。其中一個有名有趣的應用例子是囚犯困境

具有競爭或對抗性質的行為稱為賽局行為。在這類行為中,參加鬥爭或競爭的各方各自具有不同的目標或利益。為了達到各自的目標和利益,各方必須考慮對手的各種可能的行動方案,並力圖選取對自己最為有利或最為合理的方案。比如日常生活中的下棋,打牌等。賽局理論就是研究賽局行為中鬥爭各方是否存在著最合理的行為方案,以及如何找到這個合理的行為方案的數學理論和方法。

生物學家使用賽局理論來理解和預測演化(論)的某些結果。例如,John Maynard Smith和George R. Price在1973年發表於《自然》雜誌上的論文中提出的「演化穩定對策」的這個概念就是使用了賽局理論。還可以參見演化賽局理論和行為生態學(behavioral ecology)。

賽局理論也應用於數學的其他分支,如機率統計線性規劃等。

數學定義

[編輯]

對於「賽局」有不少可以互換的定義。這裡給出簡短的介紹和相互關係的說明。

範式賽局

[編輯]

範式賽局又被譯為正則形式的賽局、策略型賽局或標準型賽局。

設定是一個「參與者」(players)的集合。對於每一個「參與者」都有一個給定的「策略」集合賽局(遊戲)是一個函數,定義為:

也就是說,如果我們知道了參與者的策略集合是什麼,那麼就可以有一個實數值與之對應。我們可以把上面的方程式拆成兩個方程式來進一步把它一般化。一個方程式是正則形式(Normal form game)的參與者方程式,描述策略規定結果的方式。另外一個方程式描寫參與者對於結果(outcome)集合的偏好(preference)。也就是:

這裡是遊戲(賽局)的結果集合(outcome set)。對於每一個參與者都有一個偏好函數preference function

展開形式的賽局

[編輯]

展開形式的賽局又可譯為擴展形式的賽局、擴展式賽局或擴展型賽局。

正則形式的定義為數學家們提供了「均衡」(equilibria)問題的研究一個容易使用的表達式。因為它避免了怎麼計算「策略」的問題,也就是說遊戲是怎麼進行的問題。

若要考慮遊戲是如何進行的,展開形式的賽局是一個比較方便的表達式。這個形式與組合賽局理論關係密切。這個定義通過一個的形式給定。在樹的每一個節點(vertex),不同的參與者選擇一個邊(edge)。

賽局理論簡史

[編輯]

對於賽局理論的研究開始於恩斯特·策梅洛(1913)、埃米爾·鮑萊耳(1921)及馮·諾伊曼(1928),後來由馮·諾伊曼奧斯卡·摩根斯坦(1944,1947)首次將其系統化和形式化(參照Myerson, 1991)。隨後約翰·富比士·納許(1950,1951)利用不動點定理證明了均衡點的存在,為賽局理論的一般化奠定了堅實的基礎。

約翰·富比士·納許約翰·海薩尼萊因哈德·澤爾騰因為他們對賽局理論的突出貢獻而獲得1994年的瑞典銀行經濟學獎羅伯特·約翰·奧曼肯·賓摩爾戴維·克瑞普斯英語David M. Kreps阿里爾·魯賓斯坦對於賽局理論也做出重大貢獻。

賽局分類

[編輯]

賽局的分類根據不同的基準也有不同的分類。一般認為,賽局主要可以分為合作賽局非合作賽局。它們的區別在於相互發生作用的當事人之間有沒有一個具有約束力的協議,如果有,就是合作賽局,如果沒有,就是非合作賽局。

從行為的時間序列性,賽局理論進一步分為兩類:靜態賽局是指在賽局中,參與人同時選擇或雖非同時選擇但後行動者並不知道先行動者採取了什麼具體行動;動態賽局是指在賽局中,參與人的行動有先後順序,且後行動者能夠觀察到先行動者所選擇的行動。通俗的理解:「囚犯困境」就是同時決策的,屬於靜態賽局;而棋牌類遊戲等決策或行動有先後次序的,屬於動態賽局。

按照參與人對其他參與人的了解程度分為完全訊息賽局和不完全訊息賽局。完全賽局是指在賽局過程中,每一位參與人對其他參與人的特徵、策略空間及收益函數有準確的資訊。如果參與人對其他參與人的特徵、策略空間及收益函數資訊了解的不夠準確、或者不是對所有參與人的特徵、策略空間及收益函數都有準確的資訊,在這種情況下進行的賽局就是不完全訊息賽局。

目前經濟學家們現在所談的賽局理論一般是指非合作賽局,由於合作賽局理論比非合作賽局理論複雜,在理論上的成熟度遠遠不如非合作賽局理論。非合作賽局又分為:完全訊息靜態賽局,完全訊息動態賽局,不完全訊息靜態賽局,不完全訊息動態賽局。與上述四種賽局相對應的均衡概念為:納許均衡子賽局精煉納許均衡英語subgame perfect Nash equilibrium貝氏納許均衡、精煉貝氏納許均衡(perfect Bayesian Nash equilibrium)。

賽局理論還有很多分類,比如:以賽局進行的次數或者持續長短可以分為有限賽局和無限賽局;以表現形式也可以分為一般型(戰略型)或者展開型,等等。

賽局理論相關概念

[編輯]

參考書目

[編輯]
  1. Harold W. K.(editor), 1997, Classics in Game theory, Princeton, NJ:Princeton University Press ISBN 0-691-01193-1
  2. Myerson, R., 1991, Game Theory: Analysis of Conflict. Cambridge and London: Harvard University Press.
  3. Osborne, M. and A. Rubinstein,1994,A Course in Game Theory, Cambridge and London: The MIT Press.
  4. 岡田章,1996,『ゲーム理論』東京:有斐閣 ISBN 4-641-06794-5
  5. 金子守 『ゲーム理論と蒟蒻問答』 日本評論社、2003年4月。 ISBN 4-535-55288-6
  6. 川西諭 『ゲーム理論の思考法』 中経出版、2009年9月。 ISBN 978-4-8061-3470-1
  7. Axelrod, Robert: The Evolution of Cooperation, 1985, ISBN 0-465-02121-2
  8. Axelrod, Robert: The Complexity of Cooperation - Agent-Based Models of Competition and Collaboration, 1997, ISBN 0-691-01567-8
  9. Dixit, Avinash K./ Skeath, Susan: Games of Strategy, 1999, ISBN 0-393-97421-9
  10. Eigen, Manfred / Winkler, Ruthild: Das Spiel, 1976, ISBN 3-492-02151-4
  11. Hargreaves Heap, Shaun P. / Varoufakis, Yanis: Game Theory - A Critical Text, 2004, ISBN 0-415-25095-1
  12. Kelly, Anthony: Decision Making Using Game Theory - An Introduction for Managers, 2003, ISBN 0-521-81462-6
  13. Schlee, Welter: Einführung in die Spieltheorie, 2004, ISBN 3-528-03214-6

外部連結

[編輯]