# 克莱因瓶

## 参数化

{\displaystyle {\begin{aligned}&x(u,v)=-{\frac {2}{15}}\cos u(3\cos {v}-30\sin {u}+90\cos ^{4}{u}\sin {u}-60\cos ^{6}{u}\sin {u}+5\cos {u}\cos {v}\sin {u})\\&y(u,v)=-{\frac {1}{15}}\sin u(3\cos {v}-3\cos ^{2}{u}\cos {v}-48\cos ^{4}{u}\cos {v}+48\cos ^{6}{u}\cos {v}-60\sin {u}+5\cos {u}\cos {v}\sin {u}\\&\quad \quad \quad \quad -5\cos ^{3}{u}\cos {v}\sin {u}-80\cos ^{5}{u}\cos {v}\sin {u}+80\cos ^{7}{u}\cos {v}\sin {u})\\&z(u,v)={\frac {2}{15}}(3+5\cos {u}\sin {u})\sin {v}\\&(0\leq u<\pi ,0\leq v<2\pi )\end{aligned}}}

{\displaystyle {\begin{aligned}&x(u,v)=\cos u(\cos {\frac {u}{2}}({\sqrt {2}}+\cos v)+\sin {\frac {u}{2}}\sin v\cos v)\\&y(u,v)=\sin u(\cos {\frac {u}{2}}({\sqrt {2}}+\cos v)+\sin {\frac {u}{2}}\sin v\cos v)\\&z(u,v)=-\sin {\frac {u}{2}}({\sqrt {2}}+\cos v)+\cos {\frac {u}{2}}\sin v\cos v\end{aligned}}}

## 参考资料

1. ^ Bonahon, Francis. Low-dimensional geometry: from Euclidean surfaces to hyperbolic knots. AMS Bookstore. 2009-08-05: 95 [2013-02-21]. ISBN 978-0-8218-4816-6. （原始内容存档于2017-04-18）., Extract of page 95页面存档备份，存于互联网档案馆