算术

维基百科,自由的百科全书
跳转至: 导航搜索

算術(arithmatics)数学最古老且最簡單的一個分支,幾乎被每個人使用著,從日常上簡單的算數到高深的科学工商业計算都會用到。一般而言,算術這一詞指的是記錄數字某些運算基本性質的数学分支。常用的运算有加法減法乘法除法,有时候,更复杂的运算如指数平方根,也包括在算术运算的范畴内。算术运算要按照特定规则来进行。

自然数整数有理数(以分數的形式)和实数(以十进制指数的形式)的运算主要是在小学和中学的时候学习。用百分比形式进行运算也主要是在这个时候学习。然而,在成人中,很多人使用计算器计算机或者算盘来进行数学计算。

專業数学家有時會使用高等算術來指数论,但這不應該和初等算術相搞混。另外,算術也是初等代數的重要部份之一。

歷史[编辑]

算術的史前史只有極小部份能有加法與減法等明確概念的人造物,最著名的一件是在非洲發现的伊珊郭骨頭,距今約有兩萬年的時間。

比較清楚的是,巴比倫尼亞在西元前1850年已有關於各方面初等算術的堅實知識,但歷史學家也只能依其算術成果來推斷其使用的方式(看巴比倫楔形泥版322 (Plimpton322))。同樣地,乘法和單位分數的運用的可靠演算法也在古埃及的賴因德數學古本中被發現,其約在西元前1650年的時期。

西元前六世紀中葉,畢達哥拉斯學派的時代,算術已被視為四種計量或數學科學中的其中一種了。

十进制计数法[编辑]

在基数(前十个非负整数0,1,2,……,9)的基础上构建所有实数。一个十进制数由一个基数序列组成,每一位数字的命名取决于其相对于小数点的位置。例如:517.36表示5个100(102),加1个10(101),加7个最小整数单位1(100),加3个0.1(10-1),加6个0.01(10-2)。该计数法的一个要点(也是其实现的难点)是对0与其它基数一视同仁。

算術運算[编辑]

算術運算指加法減法乘法除法,但有時也包括較高級的運算(例如百分比平方根取冪對數)。算術按運算次序進行,無何集合可以進行加減乘除四則運算除以零除外),而四則運算合乎基本公理,都可稱之為一個(Field)。

加法 (+)[编辑]

加法是基本算術運算。簡單來說,加法將兩個數字結合,成為一個數字,稱之為「」。把多于两个数相加,可以视为重复的加法;这个过程称为求和,包括在级数中把无穷多个数相加。1的重复加法是计数的最基本的形式。

加法满足交换律结合律。加法的单位元是0,也就是说,把任何数加上0都得到相同的数。另外,加法的逆元素就是相反数,也就是说,把任何数加上它的相反数都得出单位元0。例如,7的相反数是(-7),所以7 + (-7) = 0。

減法 (−)[编辑]

減法是加法的相反。减法是求出两个数(被减数和减数)的差。如果被减数大于减数,那么差为正数;如果被减数小于减数,那么差为负数;如果它们相等,那么差为0。

减法既不满足交换律又不满足结合律。由于这个原因,把减法视为被减数和减数的相反数的加法通常是很有帮助的,也就是说,a − b = a + (−b)。当写成加法时,所有加法的性质都成立。

乘法 (× 或 ·)[编辑]

乘法本质上是一组相同数字的重复累加或总和。乘法运算可得出乘数被乘数(有时被通称为因数)的乘积

乘法运算(由于其本质是重复累加)具有交换性和结合性;进而,它对加法和减法运算具有分配性乘法单位为1,即,用1乘以任意数的结果仍为该数。并且,任意数字的乘法逆元素是其倒数,即,用一个数的倒数乘以该数,其结果为乘法单位:1。

除法 (÷ 或 /)[编辑]

除法是乘法的逆运算。除法运算得到两个数的被除数除以除数。任何被除数被零除是没有定义的。对于正数,如果被除数大于除数,其商大于1,否则商小于1(对于负数和-1有类似的规则)。商乘以除数其结果总是被除数。

除法运算不具有交换性和结合性。正如可以将减法视为加法,除法亦可被视作被除数和除数的倒数之间的乘法运算,即,a ÷ b = a × 1b 。当被写为乘积形式,运算遵循乘法的所有特性。

例子[编辑]

加法表[编辑]

+ 1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 11
2 3 4 5 6 7 8 9 10 11 12
3 4 5 6 7 8 9 10 11 12 13
4 5 6 7 8 9 10 11 12 13 14
5 6 7 8 9 10 11 12 13 14 15
6 7 8 9 10 11 12 13 14 15 16
7 8 9 10 11 12 13 14 15 16 17
8 9 10 11 12 13 14 15 16 17 18
9 10 11 12 13 14 15 16 17 18 19
10 11 12 13 14 15 16 17 18 19 20

乘法表[编辑]

× 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90
10 10 20 30 40 50 60 70 80 90 100

数论[编辑]

算術教育[编辑]

小学時的數學通常專注在自然數整數有理數分數實數(使用十進位法)等算術的演算法。此一學習有時被稱為 algorism

這種演算法的困難性及無目的性的樣貌已讓教育學家們很長時間地去思考其課程內容,主張早期應該教導較中心且直覺的數學概念。在此一方向上的著名進展為1960年代至1970年代的「新數學運動」,它試圖以集合论中公理化(高等数学的主流)的精神來教導算術。

當能比人腦更有效地執行運算的電子計算機被發明後,有影響力的學校的教育家們開始聲稱標準算術演化法的機械化熟練已不再是必須的了。在他們的觀點,一年級的數學可以花更多在了解更高等的概念上,如數字被使用來哪裡和數字、數量和度量之間的關係等。但無論如何,許多的數學家依然認為手算的熟練會是學習代数電腦科學的必要基礎。這一爭論主要集中在加州1990年代國小課程上頭,並且延續至今日。

台灣,有段時間算術教育對是要採「建構式數學」,亦或採台灣傳統的「九九乘法表」也有一段爭議的時間。但是,因為政府沒有清楚說明何為建構式數學,老師們又沒多少人真正懂得建構式數學的精神。到現在,學校內幾乎沒有再聽到建構式數學的聲音了。

参考文献[编辑]

參見[编辑]