本页使用了标题或全文手工转换

比例

维基百科,自由的百科全书
跳到导航 跳到搜索
y 正比于 x。

数学中,比例是两个非零数量之间的比较关系,记为,在计算时则更常写为。若两个变量的关系符合其中一个量是另一个量乘以一个常数),或等价地表达为两变数之比率为一个常数(称为比值),则称两者是成比例的

如果可通约的,亦即它们之间存在一个公测量common measure使得就相等于两个整数的比:,那么就称为可通约比commensurable ratio),称为一个分数,其比值称为有理数;否则,如果不存在一个公测量,就称为不可通约比incommensurable ratio),其比值称为无理数,亦即无法表达为分数的数。

两个比例之间也可以互相比较。如果两个比例相等,亦即,它们的比值相同,这个相等关系称为一个等比关系,例如,是一个等比关系,其中。特别是,如果第二项等于第三项,例如,那么称为几何平均数geometric mean[1]

定义[编辑]

若存在一非零常数使

则称变量与变量成比例(有时也称为成正比)。当正比关系,表示当变为原来倍时,也会变为原来的倍。

  • 是因变量
  • 是自变量
  • 则是变分常数,而不等于。如,则不能成立正比关系。也就是说,两个变量线性函数关系。

该关系通常用U+221D)表示为:

并称该常数比率

比例常数或比例关系中的比例恒量

在日常生活中,正比这个词的使用并不严格局限于线性函数,一般来说,一个变量随着另一个变量的增大/缩小而相应地增大/缩小,近似地满足线性关系的时候,我们可以说这两个变量成正比。

用法与历史[编辑]

现代数学对于比例的用法并没有严格限制,例如,在一个班级里面,我们可以说:“男孩与女孩的比例是2比1”。然而,在古希腊数学中,由于比例是用来表示倍数关系,所以必须是相同种类的数量才能构成比例,例如,欧几里得在《几何原本》第五册中如此定义比例[2]

λόγος ἐστὶ δύο μεγεθῶν ὁμογενῶν ἡ κατὰ πηλικότητά ποια σχέσις.

A ratio is a sort of relation in respect of size between two magnitudes of the same kind.

比例是两个同类数量之间的大小关系。

阿基米德使用这个定义来叙述均匀运动(uniform motion)的等比关系[3]

在一个均匀运动中,两段距离的比例相等于它们所需时间的比例。

阿基米德所要描述的,就是匀速运动,但是古希腊数学并不接受距离时间的比例[4](亦即速率),因为它们是不一样的数量,所以他没有办法直接说:“均匀运动就是每一点上的速率皆相等”。当采用古希腊的比例论来叙述时,必须取两段距离以及所需时间,均匀运动(匀速运动)就是

例子[编辑]

  • 假设某人以匀运动,则其运动的距离是和运动的时间成正比的,所以速度就是当中的比例常数。
  • 周长与其直径成正比,当中的比例常数就是π
  • 在按比例尺绘制的地图上,地图上任意两点间的距离是和该两点所代表的实际地点之间的距离成比例的,当中的比例常数即是绘制该地图所使用的比例尺系数。
  • 物理学中,地球重力对在海平面上的某物体的作用力的数值与该物体的质量成正比,当中的比例常数是地球的重力加速度[1]

性质[编辑]

因为

等价于

因此可推出,若 之间存在正比关系,则 之间存在反比关系。

的正比关系也可以被解读为一条在二维直角坐标系穿过原点直线,其斜率为比例常数。

比例关系中,位于两端的两数之积等于位于中间的两数之积:

其他性质[编辑]

  • ,则

反比关系[编辑]

在上面定义中,我们说有时称两个成比例的变量成正比例,这是为了和反比例关系相对应。

如果两变量中,一个变量和另外一个变量的倒数成正比,或等价地,若这两变量的乘积是一个常数,则称这两个变量是成反比例(或相反地变化)的。从而可继续推出,若存在一非零常数使

则变量和变量成反比。

反比例关系的概念基本上说明的是这样一种关系,即当一个变量的值变大时,另一变量的值相应变小,而两者之积总是保持为一常数(即比例常数)。

举例来说,运动中的车辆走完一段路程所花费的时间是和这辆车运动的速度成反比的;在地上挖个坑所花的时间也(大致地)和雇来挖坑的人数成反比的。

在笛卡尔坐标平面上,两个具有反比例关系的变量的图形是一对双曲线。该图线上的每一点的 X 和 Y 坐标值之积总是等于比例常数。由于非零,所以图线不会与坐标轴相交

指数比例和对数比例[编辑]

若变量与变量指数函数成正比,即:若存在非零常数使

则称指数比例

类似地,若变量与变量对数函数成正比,即:若存在非零常数使

则称对数比例

确定比例关系的实验方法[编辑]

用实验方法确定两个物理量是否具有正比关系,可采用这样的办法,即进行多次测量并在笛卡尔坐标系中将这些测量结果用多个点来表示,而绘制出这些点的分布图形;如果所有点完全(或接近)地落在一条穿过原点的直线上,则这两个变量(很有可能)具有比例常数等于该直线斜率的正比关系。

参考文献[编辑]

参见[编辑]