苯丙胺

維基百科,自由的百科全書
前往: 導覽搜尋
安非他命(Amfetamine) (INN)
An image of the amphetamine compound
A 3d image of the D-amphetamine compound
系統(IUPAC)命名名稱
(RS)-1-phenylpropan-2-amine
臨床數據
讀音 聆聽i/æmˈfɛtəmn/
Drugs.com amphetamine
醫療法規
妊娠分級
  • US: C (不排除有風險的可能)
依賴性 生理依賴: 無
心理依賴: 中等
成癮性 中等
給藥途徑 醫用: 口服給藥, 鼻腔給藥, 靜脈注射[1]
非醫療用(Recreational): 口服給藥, 鼻腔給藥, Insufflation (medicine)英語Insufflation (medicine), 栓劑, 靜脈注射
合法狀態
合法狀態
藥代動力學數據
生物利用度 口服 75–100%[2]
蛋白結合度 15–40%[3]
代謝 Amphetamine only:
CYP2D6,[4] Dopamine β-hydroxylase,[5][6][7] Flavin-containing monooxygenase英語Flavin-containing monooxygenase[5][8][9]
代謝產物 4-hydroxyamphetamine英語4-hydroxyamphetamine, 4-hydroxynorephedrine英語4-hydroxynorephedrine, 4-hydroxyphenylacetone英語4-hydroxyphenylacetone, 苯甲酸, 馬尿酸, 苯丙醇胺, 苯基丙酮[4][10][11]
起效

IR dosing: 30–60 minutes[12]
XR dosing: 1.5–2 hours[13]

[14]
生物半衰期 D-amph:9–11 hours[4][15]
L-amph:11–14 hours[4][15]
PH值-dependent: 8–31 hours[16]
作用時間

IR dosing: 3–7 hours[13][17]
XR dosing: 12 hours[13] [14]

[17]
排泄 Primarily ;
PH值-dependent range: 1–75%[4]
識別信息
CAS註冊號 300-62-9 ✓
ATC代碼 N06BA01
PubChem CID 3007
IUPHAR/BPS英語IUPHAR/BPS 4804
DrugBank DB00182 ✓
ChemSpider 13852819 ✓
UNII CK833KGX7E ✓
KEGG D07445 ✓
ChEBI CHEBI:2679 ✓
ChEMBL英語ChEMBL CHEMBL405 ✓
NIAID ChemDB英語NIAID ChemDB 018564
其他名稱 α-methylphenethylamine
PDB配體ID FRD (PDBe, RCSB PDB)
化學信息
化學式 C9H13N
摩爾質量 135.20622 g/mol[18]
物理性質
密度 0.9±0.1 g/cm3
熔點 11.3 °C(52.3 °F) (predicted)[19]
沸點 203 °C(397 °F) at 760 毫米汞柱[20]
  (verify)

安非他命(英文名稱:Amphetamine[note 1]為一種中樞神經興奮劑,用來治療注意力不足過動症嗜睡症、和肥胖症。「Amphetamine」一名擷取自 alphamethylphenethylamine

安非他命於西元1887年被發現,以兩種對映異構體的形式存在[note 2] ,分別是左旋安非他命右旋安非他命

準確來說,安非他命指的是特定的化學物質-外消旋純胺類型態英語free base[24][25],這個物質等同於安非他命的的兩個對映異構體:左旋安非他命右旋安非他命的等比化合物之純胺類型態。 然而,實際上安非他命一詞已被廣泛的用來表示任何由安非他命對映異構體構成的物質或安非他命對映異構體本身。[21][26][25]

安非他命是一種中樞神經興奮劑,適度適量地使用能提升整體抑制控制能力[27][28]。在醫療用的劑量範圍內,安非他命能帶來情緒以及執行功能的變化,例如:欣快感的增強、性慾的改變、清醒度的提升、大腦執行功能的進化。安非他命所改變的生理反應包含:減少反應時間、降低疲勞、以及肌耐力的增強。然而,若攝取劑量遠超過醫療用的劑量範圍,將會導致大腦執行功能受損以及橫紋肌溶解症。 攝取過份超越醫療用劑量範圍的安非他命可引發嚴重的藥物成癮。然而長期攝取醫療劑量範圍的安非他命並不會產生上癮的風險。

此外,服用遠超醫療用劑量範圍的安非他命會引起精神疾病(例如:妄想[參 1]、偏執[參 2])。然而長期攝取醫療劑量範圍的安非他命並不會引起上述疾病。

那些為享樂而攝入的安非他命通常會遠超過醫療用劑量範圍,且伴隨著非常嚴重甚至致命的副作用。 [sources 1]

歷史上,安非他命也曾被用來治療鼻塞nasal congestion)和抑鬱

安非他命也被用來提升表現英語performance-enhancing substance促進大腦的認知功能及在助興時(非醫療用途情況下)被作為增強性慾[a]、和欣快感促進劑

安非他命在許多國家為合法的處方藥[參 3]。然而,私自散布和囤積安非他命被視為非法行為,因為安非他命被用於非醫療用途的助興可能性極高。[sources 2]

首個藥用安非他命的藥品名稱為Benzedrine。當今藥用安非他命英語#Pharmaceutical products[參 4]以下列幾種形式存在:外消旋安非他命[參 5]Adderall英語Adderall [note 3]。 、dextroamphetamine、或對人體無藥效的前驅藥物體[參 6]lisdexamfetamine

安非他命藉著自身作用於兒茶酚胺神經傳導元素:正腎上腺素多巴胺的特點來活化trace amine receptor英語TAAR1 ,進而增加單胺類神經遞質神經遞質(excitatory neurotransmitter)在腦內的活動。[sources 3]

安非他命屬於替代性苯乙胺英語substituted phenethylamine類的物質。由安非他命衍伸出的物質被歸納在替代性苯乙胺英語substituted phenethylamine[參 7]的分類中[note 4],比如說:安非他酮[參 8]cathinone英語cathinoneMDMA、 和 甲基苯丙胺[參 9]。安非他命也與人體內可自然生成的兩個屬於痕量胺的神經傳導物質--特別是 苯乙胺(phenethylamine) 和 N-Methylphenethylamine英語N-Methylphenethylamine--有關。 Phenethylamine 是安非他命的原始化合物,而N-methylphenethylamine則是安非他命的位置異構體(只有在甲基族中才會區分出此位置異構體)。[sources 4]

用途[編輯]

醫療[編輯]

安非他命是用來治療注意力不足過動症(ADHD)、嗜睡症(一種睡眠疾病)、和肥胖症。有時候安非他命會以仿單標示外使用英語off-label use的方式處方來治療頑固性憂鬱症英語treatment-resistant depression頑固性強迫症[1][15] [43] [50]。 在動物試驗中,已知非常高劑量的安非他命會造成某些動物的多巴胺系統英語dopamine receptor和神經系統的受損。[51][52] 但是,在人體試驗中,注意力不足過動症患者在接受安非他命的治療後,則發現安非他命可促進大腦的發育及神經的成長。[53][54][55]

回顧許多核磁共振照影(MRI)的研究後發現,長期以安非他命治療注意力不足過動症患者能顯著降低患者大腦結構及大腦執行功能上的異常。並且優化大腦中數個部位,例如:基底神經節的右尾狀核[53][54][55]


眾多臨床研究的系統性及統合性回顧已確立長期使用安非他命治療注意力不足過動症的療效及安全。[56][57][58][59]

持續長達兩年的隨機對照試驗[參 10][b]結果顯示:長期使用安非他命治療注意力不足過動症,是有效且安全的。[56][59]

兩個系統性/統合性回顧的結果顯示長期且持續地使用中樞神經興奮劑治療注意力不足過動症能有效地減少注意力不足過動症的核心症狀(核心症狀即為:過動、衝動和分心/無法專心)、增進生活品質、提升學業成就、廣泛地強化大腦的執行功能。[note 5] 這些執行功能分別與下列項目有關:學業、反社會行為、駕駛習慣、藥物濫用、肥胖、職業、日常活動、自尊心、服務使用(例如:學習、職業、健康、財金、和法律等)、社交功能。[57][59]

一篇系統性/統合性回顧標誌了一個重要發現:一個為期九個月的隨機雙盲試驗中,持續以安非他命治療的ADHD患者,其智力商數平均增加4.5單位[註 1],且在專注力、衝動、過動的改善皆呈現持續進步的態勢。[56] 另一篇系統性/統合性回顧則指出:根據迄今為止為時最長的數個臨床追蹤研究英語prospective cohort study[參 11],可以得到一個結論:即便從兒童時期開始以中樞神經興奮劑治療直到老年,中樞神經興奮劑都能持續有效地控制ADHD的症狀並且減少物質濫用的風險。[59] 研究表明,ADHD與大腦的執行功能受損有關。而這些受損的執行功能分別與大腦中部分的神經傳導系統英語neurostransmitter systems有關[參 12][60] ;又此部分受損的神經傳導系統和中腦皮質激素英語mesocorticolimbic projection-多巴胺[參 13]的傳導及藍斑核[參 14]前額葉[參 15]中的正腎上腺素[參 16]的傳導相關。[60]

中樞神經興奮劑,例如:methylphenidate和安非他命對於治療ADHD都是有效的,因為中樞神經興奮劑刺激了上述神經系統中的神經傳導物質活動。[29][60] [61]

至少超過80%的ADHD患者在使用中樞神經興奮劑治療後,其ADHD的症狀可以獲得改善。[62]

使用中樞神經興奮劑治療的ADHD患者相較之下,普遍與同儕及家庭成員的關係較佳並且在學校擁有較好的表現。興奮劑能使ADHD患者較不易分心、衝動、且擁有較長的專注力時間和範圍。[63] [64]

根據考科藍協作組織[參 17]所提供的文獻回顧結果[note 6]指出:使用中樞神經興奮劑治療的ADHD患者即便其症狀改善,相較於使用非中樞神經興奮劑,仍因副作用而有較高的停藥率。[66] [67]

回顧結果也發現,中樞神經興奮劑並不會惡化抽動綜合症的症狀,例如:妥瑞氏症,除非服用dextroamphetamine[c]的劑量過高才有可能在部分妥瑞氏症合併注意力不足過動症患者身上觀察到抽動綜合症的症狀惡化。[68]

中樞神經興奮劑只要依照醫師指示用藥,都是相當安全的。[69][70][70][71] 中樞神經興奮劑,例如:利他能與專思達,可能導致:心悸、頭痛、胃痛、喪失食慾、失眠、因相對專注而變得冷淡(面無表情)等副作用,因此6歲以下的兒童不適宜服用。(副作用產生與否因人而異) [72]

隨著時間推進與各方的努力,中樞神經興奮劑的相關副作用已可藉由包括但不限於劑量調整、服藥時間、飯前飯後服用、服藥頻率等服藥模式之改變以及改變藥物組合等方式獲得相當程度的減少。[73] [74] [75] [70] [76]

提昇表現[編輯]

認知方面(Cognitive)

西元2015年中,一篇系統性回顧[參 18]和一篇元分析/整合分析[參 19]回顧了數篇優秀的臨床試驗[參 20]報告後發現, 低劑量(醫療用劑量)的安非他命能適度但不強烈地促進一個人的認知功能,包含工作記憶(working memory)、長期的情節記憶(episodic memory)、抑制控制以及在一些方面的注意力(attention)。 [27] [28] 安非他命強化認知功能的效果已知是部分透過間接活化英語indirect agonist在大腦前額葉(prefrontal cortex)的dopamine receptor D1英語dopamine receptor D1adrenoceptor α2英語Alpha-2 adrenergic receptor[29] [27] 一篇2014年的系統性回顧發現低劑量(醫療用劑量)的安非他命能促進memory consolidation英語memory consolidation,進而提升一個人的recall of information[77] 低劑量(醫療用劑量)的安非他命也可增加大腦皮層(質)區的效率,這能讓一個人的工作記憶(working memory)獲得進步。 [29] [78] 安非他命和其他用於治療ADHD的中樞神經刺激劑能透過提升task saliency英語Incentive salience來增加一個人去做事情的動機、並強化一個人的警覺心(清醒度),因而能刺激一個人開始做「以目標為導向」的行為。 [29] [79] [80] 中樞神經興奮劑(例如:安非他命)能提升一個人在困難且枯燥的任務中的表現。 [29] [80] [81] 超過醫療用劑量範圍(包含其誤差範圍及容許最大上限)的安非他命劑量將不利於工作記憶(working memory)和其他的認知功能。 [29][80]

生理(physical)

雖然安非他命可以提升速度、耐力(延遲疲勞的發生)、肌耐力、身體素質和警覺心並減少心理反應時間[30][34] [30] [82] [83] 然而,「非因醫療需求使用安非他命」在各種運動場合都是被嚴格禁止的。[84] [85]

安非他命藉由抑制多巴胺在中樞神經系統中的回收及外流來促進耐力和反應時間的提升。 [82][83] [86] 安非他命和其他作用於多巴胺系統的藥物一樣,都能增加在固定施力(levels of perceived exertion英語rating of perceived exertion)下的動力(能)輸出。這是因為安非他命能奪取(override)體溫的「安全開關」的控制權並將身體核心溫度(core temperature limit)的上限提高以取得在體溫安全上限提高前被身體保留的能量。 [83] [87] [88] 於醫療用劑量範圍(包含其誤差範圍),安非他命的副作用不至於影響運動員的運動表現; [30][82] 然而,當攝取的劑量過多時,安非他命可能會引起嚴重的後果,例如:橫紋肌溶解症體溫過高[31][33] [82]

醫療上的禁忌[編輯]

根據International Programme on Chemical Safety (IPCS)和美國食品藥物管理局 (USFDA), [note 7]

安非他命不建議處方給有藥物濫用心血管疾病、對於各種刺激嚴重反應過度、和嚴重焦慮歷史的人。 [note 8][90][91]

安非他命也不被建議處方給正經歷動脈血管硬化(血管硬化)、中度到重度高血壓青光眼(眼壓過高)、或甲狀腺機能亢進(身體在體內製造出過量的甲狀腺 賀爾蒙/激素)的人。 [90][91][92]

曾對中樞神經刺激劑藥物過敏的人以及正在服用單胺氧化酶抑制劑 (MAOI)或單胺氧化酶抑制劑類藥物 (MAOIs),可能不適合使用安非他命。即便曾有合併使用安非他命和單胺氧化酶抑制劑後仍一切平安的案例。 [90][91] [93][94] IPCS和美國食品藥物管理局也同意患有神經性厭食症(anorexia nervosa)、雙極性情感疾患(bipolar disorder)、憂鬱高血壓mania思覺失調症Raynaud's phenomenon英語Raynaud's phenomenon心臟病發(seizures)、抽動綜合症(tics)、妥瑞氏症(Tourette's disease)、和有甲狀腺問題、問題的人在使用安非他命時應密切追蹤上述疾病的變化。 [90][91]

人體試驗證明,醫療用劑量下的安非他命並不會導致胎兒或新生兒畸形(i.e., it is not a human teratogen)。然而超越醫療用劑量甚多的安非他命確實會增加胎兒或新生兒畸形的機會。 [91]

研究觀察發現,安非他命會進入母親的母乳中,因此建議母親不要在使用安非他命藥物的期間內授乳。 [90][91]

由於安非他命可能影響食慾繼而導致可反轉的身高及體重的成長遲緩, [note 9] ,因此建議兒童或青少年在用藥期間定期測量自己的身高及體重。 [90]

副作用[編輯]

生理[編輯]

心理[編輯]

嚴重過量[編輯]

安非他命過量使用會引起許多症狀,然而在適當的醫療照護下,不至於死亡。 [91][96]

藥物過量症狀的嚴重度與劑量成正比;與身體對安非他命的藥物耐受性成反比。 [34][91] 已知每天攝取達到5公克的安非他命(每天最大攝取量的五十倍)會導致身體對安非他命產生藥物耐受性。 [91] 嚴重過量的安非他命攝取所致的症狀列於下方;安非他命中毒一旦到達出現全身抽蓄(convulsion)和昏厥(coma)則必須立刻急救以避免死亡。 [31][34] 在2013年,安非他命、甲基安非他命和其他列於ICD-10 第五章:精神和行為障礙§使用化學藥物、物質或酒精引起的精神和行為障礙中的安非他命相關物質的過量使用在世界上共導致3788人死亡。(3,425–4,145 人死亡、  95% 信賴區間)。 [note 10][97]

被過度活化達到病態程度的mesolimbic pathway英語mesolimbic pathway(一個連接腹側被蓋區(ventral tegmental area)和伏隔核(nucleus accumbens)的多巴胺通道英語dopamine pathway),在安非他命的成癮中扮演著主要的腳色。 [98] [99]

當一個人經常服用嚴重過量的安非他命,將伴隨安非他命成癮的高度風險, 因為持續過量的安非他命會逐漸增加伏隔核ΔFosB英語ΔFosB(「成癮」與否的分子開關和主控蛋白 原文:a "molecular switch" and "master control protein" for addiction.)的檔次。 [100][101][102] 一旦伏隔核的ΔFosB破表(over-expressed),這個人的「成癮性行為」[註 2](例如:出現試圖取得安非他命的衝動行為)將開始隨之增加。 [100][103] 雖然目前沒有治療安非他命成癮的有效藥物,但規律的且每次都有持續一定時間的有氧運動能降低安非他命的成癮風險也是治療安非他命成癮的天然療法。 [104][105] [sources 5] 運動能提升臨床治療英語clinical therapy預後,且可能與認知行為治療(目前已知最有效的安非他命成癮的臨床治療法)相搭配為combination therapy英語combination therapy[104][106][107]

嚴重過量的安非他命劑量所致的症狀(依照體內生物系統分類)Overdose symptoms by system
生物系統 輕度、中度過量[31][34][91] 重度過量[sources 6]
心臟血管系統
中樞神經系統
肌肉骨骼系統
呼吸系統
  • 呼吸過速
生殖泌尿系統英語Urogenital system
(Urogenital system)
其他(Other)

成癮[編輯]

「成癮及生理、心理依賴」的相關術語詞彙表[109][101][110][111]
成癮(addiction):腦部失調英語brain disorder的情形,特徵是會強迫性的接觸犒賞刺激英語Stimulus (psychology),不去考慮其帶來的負面結果。
成癮行為英語addictive behavior(addictive behavior):具有犒賞性及正向增強效應的行為
成癮藥物(addictive drug):具有犒賞性及正向增強效應的藥物
依賴性(dependence):之前曾頻繁接觸刺激源(例如藥物攝取),中斷接觸後出現戒斷症狀的情形
藥物敏化(drug sensitization)或逆耐藥性(reverse tolerance):在固定藥物劑量的情形下重複給藥,而相同劑量的藥物效果增強的情形
藥物戒斷(drug withdrawal):在重複藥物使用後停藥,出現的症狀
生理依賴(physical dependence):出現持續生理戒斷症狀(例如疲勞及震顫性譫妄)的依賴性
精神依賴(psychological dependence):出現情緒或是精神戒斷症狀(例如煩躁失樂)的依賴性
增強刺激(reinforcing stimuli):特定類型的刺激,接觸後會增加再接觸此刺激的可能性
犒賞刺激(rewarding stimuli):特定類型的刺激,大腦會認為此刺激是正向的,會想再進行的
敏化作用(sensitization):重複接受某一刺激後產生的刺激增強性反應
物質使用疾患 (substance use disorder):使用特定物質,而且造成臨床上或是功能上的損傷或是困境的情形
藥物耐受性(drug tolerance):重複接受某一藥物後產生的藥物降低性反應
 ·  ·  ·
造成安非他命成癮的位於伏隔核中的訊息傳遞
·
發生於伏隔核導致興奮劑成癮的訊息傳導 (The signaling cascade involved in psychostimulant addiction)
Note: colored text contains article links.
AMPAR英語AMPA receptor
Gs英語Gs alpha subunit
Gi/o英語Gi alpha subunit
ΔFosB英語ΔFosB
JunD英語JunD
c-Fos英語c-Fos
SIRT1英語Sirtuin 1
本圖表描繪(depicts)在Mesolimbic pathway英語Mesolimbic pathway中由於「長期攝取超高劑量的中樞神經刺激劑(例如:安非他命甲基苯丙胺、和苯乙胺.)使得多巴胺的神經突觸的濃度增加」的微觀示意圖。[d] Following presynaptic dopamine and glutamate co-release英語cotransmission by such psychostimulants,[112][113] postsynaptic receptors英語Neurotransmitter receptor for these neurotransmitters trigger internal signaling events through a cAMP-dependent pathway英語cAMP-dependent pathway and a calcium-dependent pathway英語Calcium signaling that ultimately result in increased CREB phosphorylation.[112][114][115] Phosphorylated CREB increases levels of ΔFosB, which in turn represses the c-Fos gene with the help of corepressor英語corepressors;[112][116][117] c-Fos repression英語gene repression acts as a molecular switch that enables the accumulation of ΔFosB in the neuron.[118] A highly stable (phosphorylated) form of ΔFosB, one that persists in neurons for one or two months, slowly accumulates following repeated high-dose exposure to stimulants through this process.[116][117] ΔFosB functions as "one of the master control proteins" that produces addiction-related structural changes in the brain, and upon sufficient accumulation, with the help of its downstream targets (e.g., nuclear factor kappa B), it induces an addictive state.[116][117] Desc-20.png

長期服用遠超醫療用劑量範圍的安非他命會導致安非他命成癮(Addiction)。然而長期攝取醫療劑量範圍的安非他命並不會引起上述問題。 [37][38][39] 安非他命濫用(例如:長期攝取嚴重過量的安非他命)會導致大腦對於該劑量產生藥物耐受性。漸漸地,濫用者必須服用更大量的安非他命以換取同樣的效果。 [119][120]

分子生物機轉(Biomolecular mechanisms)[編輯]

當前關於「長期安非他命濫用所致的成癮」的模型(model)中,已知會改變一些腦部的結構(特別是伏隔核[121][122][123]。 造成腦部結構改變的最重要的轉錄因子(transcription factor)為:ΔFosB英語ΔFosBcAMP response element binding protein (CREB英語cAMP response element binding protein)、和 nuclear factor kappa B (NF-κB)。 [note 11] [122] ΔFosB 在藥物成癮的發展過程中扮演著至關重要的角色,主要的原因在於其在伏隔核中D1-type英語D1-type medium spiny neuron英語medium spiny neuron的破表(over-expression),為「成癮」及「成癮衍生的行為」及「神經元為了適應新常態所做的調適」的充分且必要條件[note 12] [100][101][122]

一旦ΔFosB充分破表(sufficiently overexpressed),將誘發越來越嚴重的成癮狀態並伴隨ΔFosB值的持續創新高。 [100][101] ΔFosB已被證明與酒精成癮大麻成癮古柯鹼成癮、派醋甲酯成癮、尼古丁成癮、鴉片成癮、phencyclidine英語phencyclidine成癮、異丙酚、和安非他命的替代性物質英語substituted amphetamines成癮、及其他成癮有關。 [sources 7] ΔJunD英語ΔJunD為一個轉錄因子;而G9a英語EHMT2組織蛋白甲基轉移酶的一種。ΔJunD英語ΔJunDG9a英語EHMT2直接與伏隔核中的ΔFosB值的升高成反比。 [101][122][127]

利用載體讓伏隔核中的ΔJunD充分破表,可以使由長期藥物濫用所致的漸進式神經元和行為改變完全停止。(比如說:ΔFosB所致的改變)。 [122] ΔFosB也在人們於天然酬賞英語natural reward(natural reward)中的行為反應調節上扮演重要的腳色。天然酬賞(natural rewards)包含:美味的食物(palatable food)、性愛(sex)、運動(exercise)、......。 [103][122][128] 因為天然酬賞以及成癮性藥物皆會激發英語inducible geneΔFosB(這些酬賞讓大腦刺激ΔFosB的增加。原文:i.e., they cause the brain to produce more of it),長期過度地從事上述行為將可能導致類似的成癮之病理生理(pathological)。 [103][122]

ΔFosB是導致「安非他命成癮」、「安非他命引起的性成癮」中最關鍵的致癮因素。「安非他命引起的性成癮」為「安非他命使用」加上「過度的性活動」所引發的「衝動之下的性行為」。 [註 5][103][129][130] 這類的性成癮與多巴胺失調症候群英語dopamine dysregulation syndrome相關,有時此症會出現在正在服用作用於多巴胺的藥物英語dopaminergic#Supplements and drugs的人身上。 [註 6][103][128]

安非他命調節基因(gene regulation)的效果端視劑量與路徑(dose- and route-dependent)而定。 [123] 絕大多數主題為「基因調節(gene regulation)」和「成癮(addiction)」的研究都是透過動物試驗以及利用靜脈注射的方式對實驗動物注射超高劑量的安非他命來進行。 [123] 少數幾個透過人體試驗(依照體重來決定醫療用劑量)來進行的研究表明,口服醫療用劑量的安非他命並不會影響基因調節,即便有,也是極為輕微的。這表示安非他命用作醫療用途是十分安全的。 [123][123]

藥物治療(Pharmacological treatments)[編輯]

截至2014年5月 (2014-05)並沒有能夠有效治療安非他命成癮的藥理療法 [131][132][133] 。 2015年到2016年間的論文回顧結果指出:選擇性TAAR1英語TAAR1促進劑有非常大的可能在將來被用來治療中樞神經興奮劑的成癮; [46][134] 然而,截至2016年2月 (2016-02),已知可作為選擇性TAAR1英語TAAR1促進劑的物質都屬於試驗性藥物英語experimental drug[46][134] 安非他命成癮與伏隔核中的多巴胺接收器英語dopamine receptor們以及位置相同(co-localized)的NMDA 接受器們的活化高度相關; [note 13] [99] 鎂離子藉由封鎖一個接受器-鈣離子通道,來阻斷 NMDA接受器們。 [99][135] 一篇論文回顧做成結論:根據動物試驗,因成癮而使用中樞神經刺激劑的人,可以發現過量的中樞神經興奮劑顯著降低腦細胞內部的鎂離子活動。 [註 7][99] 利用元素補充劑,能降低安非他命使用者自我服用英語self-administration[e]的機會。然而這不被認為是有效治療安非他命成癮的單一療法英語monotherapy(mono-therapy)。 [note 14][99]

行為治療(Behavioral treatments)[編輯]

認知行為治療是當前治療中樞神經刺激劑成癮的療法。 [107] 除此之外,運動在生物神經元產生的效果英語neurobiological effects of physical exercise的研究中表明維持每天從事有氧運動(例如:跑步等)的習慣,能避免藥物成癮纏身;本身也是一個對於治療安非他命成癮的有效附加療法英語adjunct theraot[sources 5] 運動能讓所有疾病的預後都更加樂觀,特別是對於中樞神經刺激劑成癮。 [104][106][136] 值得一提的是,有氧運動能降低擅自服用中樞神經興奮劑的慾望[f],降低再次擅自服用中樞神經興奮劑的機率英語reinstatment(reinstatment)(i.e., relapse)、降低「試圖取得藥物所做出的舉動(drug-seeking behavior)」、降低多巴胺接收器 D2紋狀體英語striatum中的密度。 [103][136] 它在病生理學中的腳色是相對於「興奮劑的使用」和「興奮劑的效果」,它會引起紋狀體中DRD2密度的減少。 [103] 一篇論文回顧提到,藉由改變紋狀體(striatum)中的ΔFosB、c-Fos英語c-Fos immunoreactivity英語immunoreactivity或部份的腦內回饋系統(reward system)來避免藥物成癮在一個人身上的發展。 [105] Template:FOSB addiction table

依賴和戒斷症狀 Dependence and withdrawal[編輯]

根據另一篇由考科藍協作組織所做的一篇論文回顧指出當一個長期嚴重攝取安非他命或甲基安非他命的藥物成癮者某天突然停止攝取安非他命或甲基安非他命,那麼根據許多成癮個案的報告顯示,具有時效性(time-limited)的戒斷症狀將在他們上一次攝取安非他命後的24小時內出現。 在成癮患者停用安非他命後,安非他命的戒斷症狀的出現率接近九成。這九成都出現至少六個定義在「《精神疾病診斷與統計手冊》安非他命戒斷症狀」中的症狀。年紀與劑量和戒斷症狀的嚴重度呈正相關。安非他命的戒斷症狀共有兩個階段且總共可能歷時三周或更多。第一階段(撞牆期 marked "crush" phase)約持續一周。 [137] [137] 安非他命的戒斷症狀可能包含:對於各種刺激極度敏感、躁動不安(irritability)焦慮對於安非他命有難以抑制的渴求英語Craving (withdrawal)煩躁疲倦食慾放大英語herperphagia、過動或行動遲緩英語decreased movement、缺乏動機、嗜睡、和清醒夢(lucid dreams)。 [138] [137]

這些特徵及症狀必須非由其他疾病(包含心理疾病)引起,且無法歸因於其他物質的濫用。滿足上述條件,才符合「安非他命戒斷症狀」症候群的診斷標準。 [139] [137]

通過美國食品藥物管理局嚴格審核的安非他命藥品說明書上並未提到任何安非他命在醫療用劑量下突然停用會導致任何安非他命戒斷症狀的出現。 [92][140][141][142]

DSM中,安非他命中毒及戒斷症狀之標準(DSM criteria for intoxication and withdrawal)[編輯]

DSM-5中關於興奮劑中毒的標準如下:

A.最近曾經服用過安非他命類的物質、古柯鹼或其他興奮劑

B. 在服用興奮劑時(或者服用後很快表現出)臨床表現出顯著問題行為或心理變化(如:欣快症或感情遲鈍;群性、社交性的改變;過於警覺;人際交往敏感;焦慮、緊張或者惱怒;刻板行為;判斷力受損)。

C.在服用興奮劑時或服用後即刻表現出以下任意兩種(或以上)症狀:

  • 心動過速或心動過緩
  • 瞳孔擴散
  • 血壓升高或降低
  • 出汗或發冷
  • 感到噁心或嘔吐
  • 體重降低
  • 精神運動性焦躁或精神運動性遲滯
  • 肌肉無力、呼吸抑制、胸口疼痛或心律失常
  • 精神錯亂、癲癇、運動困難、肌張力障礙或昏迷

包括其他物質中毒的情況在內,其他身體情況不可能出現該發病跡象、症狀,並且也無法理解為其他的精神問題。

DSM-5中關於興奮劑戒斷症狀的標準如下:

A. 停止服用(或減少服用)長期的安非他命類物質、古柯鹼或其他興奮劑。

B. 在A的情況發生後的幾小時至幾天內,出現煩躁的情緒並伴有以下任意兩種(或以上)的心理變化:

  • 疲勞
  • 生動而不愉快的夢
  • 失眠或嗜睡
  • 食慾增大
  • 精神運動性焦躁或精神運動性遲滯

B中的症狀或跡象導致了臨床顯著的壓力,或者在社會、工作等重要方面功能出現受損。

安非他命戒斷症狀的頻率列表(Table of symptoms of amphetamine withdrawal by frequency)[編輯]

停止服用硫酸安非他命後,個人報告的戒斷症狀的百分比
症狀 頻率
無症狀 14%
易怒 78%
疼痛和痛苦 58%
感到沮喪 50%
社交能力受損 46%
發抖、出冷汗 36%
難以入睡 32%
虛脫 22%
噁心、嘔吐 16%
頭痛 14%
難以保持清醒 12%
食慾增大 12%
便秘 10%
食慾縮小 8%
腹瀉 6%

[143]

個人嘗試戒毒和接受醫學指導戒毒的原因與百分比
原因 個人嘗試戒毒 醫學指導戒毒
對生活整體現狀(犯罪、無聊、金錢)不滿 42(89%) 6(37%)
對心理健康感到擔憂(偏執、憂慮、依賴) 25(53%) 3(19%)
家庭原因(父母或配偶的壓力,子女出生) 24(51%) 5(31%)
身體健康(動脈注射、血管萎陷、感染) 17(36%) 4(25%)
避免入獄 0 2 (12%)
其他原因 2(4%) 0

[143]

用來協助戒毒的方法(Methods used to assist detoxication)
- 自我嘗試戒毒(Self detoxication) 被迫戒毒(Enforced detoxication)
服用更多其他藥物(Increased consumption of other drugs ) - -
大麻(Cannabis) 22 (27%) 10 (59%)
Temazepam 21 (26%) -
酒精(Alcohol) 17 (21%) 2 (12%)
鴉片類物質(Opiates) 12 (15%) 1 (6%)
Diazepam 4 (5%) -
巴比妥類藥物(Barbiturates) 3 (4%) 1 (6%)
心理學技巧(Psychosocial techniques) - -
轉移注意力(例如:工作、看電視)〔Keeping occupied with other things (working, watching television)〕 35 (21%) 1 (6%)
不再與藥物成癮的朋友來往(Cutting off contact with drug-using friends) 31 (19%) -
獲得人們的支持(家庭、社會中的支持團體)Gaining support from others (friends giving up, family, support groups) 11 (7%) -
把藥物及針頭丟掉(Throwing away drugs and needles) 5 (3%) -

[143]

中毒與致病(Toxicity and psychosis)[編輯]

中毒[編輯]

在囓齒動物(rodents)和靈長類動物(primates)的藥物試驗發現到,夠高的安非他命劑量會導致多巴胺神經中毒英語neurotoxicity甚或致使多巴胺末梢神經英語axon terminal受損退化並降低轉運體接收器的功能。 [144][145] 目前並無證據顯示安非他命會直接荼毒人類的神經。[註 8] [146][147] 然而,超高劑量(large doses)的安非他命攝取量可能會產生體溫過高的現象並間接導致:多巴胺的神經性中毒(dopaminergic neurotoxicity)、過多的活性氧類(reactive oxygen species)生成、自然氧化(autoxidation)增加。 [sources 8] 從高劑量的安非他命攝取量引起的神經中毒的生物模式中發現,人體核心體溫高於40 °C是「高劑量的安非他命攝取量」是否引起神經中毒的「必要條件」。 [145] 在動物試驗中,若動物的腦溫長期超過40 °C,容易因過多的活性氧類(reactive oxygen species)生成、受干擾的細胞蛋白功能和短暫的血腦屏障(blood–brain barrier)標準放寬而促使安非他命性的神經中毒發生。 [145]

致病[編輯]

嚴重的安非他命過量可能造成「中樞神經刺激劑過量所引發的精神異常(stimulant psychosis)」,症狀包含但不限於幻覺(delusion)和被害妄想、疑神疑鬼、妄想、偏執 (paranoia)等。 [35] 一篇由考科藍協作組織所做的論文回顧及統整發現在所有因攝取嚴重過量的「安非他命、dextro-安非他命、及甲基安非他命」而導致精神異常的患者中,有5%-15%的患者即便經過治療,仍無法完全康復。 [35][150]

根據同一篇由考科藍協作組織所做的論文回顧及統整,至少一個實驗(trial)顯示抗精神病藥物(antipsychotic)能有效解決因嚴重過量的安非他命所致的急性精神異常症狀。 [35]

「攝取醫療劑量的安非他命所致的急性精神異常」是非常罕見的(very rare)。
(非常罕見 very rare: < 1/1000 ;罕見 rare:1/101~1/1000) [36][90]

交互作用(Interactions)[編輯]

目前已知許多種物質都會和安非他命發生藥物相互作用,導致安非他命或參與作用的另一物質的藥效英語drug action分解過程英語Drug metabolism發生改變。[4][151]用於分解安非他命的酶的抑制劑(如CYP2D6FMO3英語Flavin-containing monooxygenase 3#Ligands)都會延長其半衰期,這意味著藥效會更持久。[8][151] Amphetamine also interacts with MAOIs, particularly monoamine oxidase A英語monoamine oxidase A inhibitors, since both MAOIs and amphetamine increase plasma catecholamines (i.e., norepinephrine and dopamine);[151] therefore, concurrent use of both is dangerous.[151] Amphetamine modulates the activity of most psychoactive drugs. In particular, amphetamine may decrease the effects of sedatives and depressant英語depressants and increase the effects of stimulants and antidepressants.[151] Amphetamine may also decrease the effects of antihypertensives and antipsychotics due to its effects on blood pressure and dopamine respectively.[151] Zinc supplementation may reduce the minimum effective dose英語Effective dose (pharmacology) of amphetamine when it is used for the treatment of ADHD.[note 15][155]

In general, there is no significant interaction when consuming amphetamine with food, but the pH of gastrointestinal content and urine affects the absorption and excretion of amphetamine, respectively.[151] Acidic substances reduce the absorption of amphetamine and increase urinary excretion, and alkaline substances do the opposite.[151] Due to the effect pH has on absorption, amphetamine also interacts with gastric acid reducers such as proton pump inhibitors and H2 antihistamines, which increase gastrointestinal pH (i.e., make it less acidic).[151]

藥學(Pharmacology)[編輯]

藥效動力學(Pharmacodynamics)[編輯]

苯丙胺在多巴胺能神經元的藥物效應動力學
·
A pharmacodynamic model of amphetamine and TAAR1
via AADC
Amphetamine enters the presynaptic neuron across the neuronal membrane or through DAT. Once inside, it binds to TAAR1 or enters synaptic vesicles through VMAT2. When amphetamine enters the synaptic vesicles through VMAT2, dopamine is released into the cytosol (yellow-orange area). When amphetamine binds to TAAR1, it reduces postsynaptic neuron firing rate via potassium channels英語G protein-coupled inwardly-rectifying potassium channel and triggers protein kinase A (PKA) and protein kinase C (PKC) signaling, resulting in DAT phosphorylation. PKA-phosphorylation causes DAT to withdraw into the presynaptic neuron (internalize) and cease transport. PKC-phosphorylated DAT may either operate in reverse or, like PKA-phosphorylated DAT, internalize and cease transport. Amphetamine is also known to increase intracellular calcium, an effect which is associated with DAT phosphorylation through a CAMKIIα英語CAMKIIα-dependent pathway, in turn producing dopamine efflux.

Amphetamine exerts its behavioral effects by altering the use of monoamines as neuronal signals in the brain, primarily in catecholamine neurons in the reward and executive function pathways of the brain.[45][61] The concentrations of the main neurotransmitters involved in reward circuitry and executive functioning, dopamine and norepinephrine, increase dramatically in a dose-dependent manner by amphetamine due to its effects on monoamine transporter英語monoamine transporters.[45][61][156] The reinforcing and motivational salience英語motivational salience-promoting effects of amphetamine are mostly due to enhanced dopaminergic activity in the mesolimbic pathway英語mesolimbic pathway.[29] The euphoric and locomotor-stimulating effects of amphetamine are dependent upon the magnitude and speed by which it increases synaptic dopamine and norepinephrine concentrations in the striatum英語striatum.[1]

Amphetamine has been identified as a potent full agonist of trace amine-associated receptor 1英語TAAR1 (TAAR1), a Gs-coupled英語Gs alpha subunit and Gq-coupled英語Gq alpha subunit G protein-coupled receptor (GPCR) discovered in 2001, which is important for regulation of brain monoamines.[45][157] Activation of TAAR1 increases cAMP production via adenylyl cyclase activation and inhibits monoamine transporter英語monoamine transporter function.[45][158] Monoamine autoreceptors英語autoreceptors (e.g., D2 short, presynaptic α2英語Alpha-2 adrenergic receptor, and presynaptic 5-HT1A英語5-HT1A#Autoreceptors) have the opposite effect of TAAR1, and together these receptors provide a regulatory system for monoamines.[45][46] Notably, amphetamine and trace amines bind to TAAR1, but not monoamine autoreceptors.[45][46] Imaging studies indicate that monoamine reuptake inhibition by amphetamine and trace amines is site specific and depends upon the presence of TAAR1 co-localization in the associated monoamine neurons.[45] 截至2010年 (2010-Missing required parameter 1=month!) co-localization of TAAR1 and the dopamine transporter (DAT) has been visualized in rhesus monkeys, but co-localization of TAAR1 with the norepinephrine transporter (NET) and the serotonin transporter (SERT) has only been evidenced by messenger RNA (mRNA) expression.[45]

In addition to the neuronal monoamine transporters, amphetamine also inhibits both vesicular monoamine transporter英語vesicular monoamine transporters, VMAT1英語VMAT1 and VMAT2英語VMAT2, as well as SLC1A1英語SLC1A1, SLC22A3英語SLC22A3, and SLC22A5英語SLC22A5.[sources 9] SLC1A1 is excitatory amino acid transporter 3英語excitatory amino acid transporter 3 (EAAT3), a glutamate transporter located in neurons, SLC22A3 is an extraneuronal monoamine transporter that is present in astrocytes, and SLC22A5 is a high-affinity carnitine transporter.[sources 9] Amphetamine is known to strongly induce cocaine- and amphetamine-regulated transcript英語cocaine- and amphetamine-regulated transcript (CART) gene expression,[165][166] a neuropeptide英語neuropeptide involved in feeding behavior, stress, and reward, which induces observable increases in neuronal development and survival in vitro.[166][167][168] The CART receptor has yet to be identified, but there is significant evidence that CART binds to a unique Gi/Go-coupled英語Gi alpha subunit GPCR.[168][169] Amphetamine also inhibits monoamine oxidase at very high doses, resulting in less dopamine and phenethylamine metabolism and consequently higher concentrations of synaptic monoamines.[18][170] In humans, the only post-synaptic receptor at which amphetamine is known to bind is the 5-HT1A receptor英語5-HT1A receptor, where it acts as an agonist with micromolar affinity.[171][172]

The full profile of amphetamine's short-term drug effects in humans is mostly derived through increased cellular communication or neurotransmission英語neurotransmission of dopamine,[45] serotonin,[45] norepinephrine,[45] epinephrine,[156] histamine,[156] CART peptides英語cocaine and amphetamine regulated transcript,[165][166] endogenous opioid英語endogenous opioids,[173][174][175] adrenocorticotropic hormone,[176][177] corticosteroids,[176][177] and glutamate,[159][161] which it effects through interactions with CART, 5-HT1A, EAAT3, TAAR1, VMAT1, VMAT2, and possibly other biological target英語biological targets.[sources 10]

Dextroamphetamine is a more potent agonist of TAAR1 than levoamphetamine.[178] Consequently, dextroamphetamine produces greater CNS stimulation than levoamphetamine, roughly three to four times more, but levoamphetamine has slightly stronger cardiovascular and peripheral effects.[34][178]

多巴胺[編輯]

In certain brain regions, amphetamine increases the concentration of dopamine in the synaptic cleft英語synaptic cleft.[45] Amphetamine can enter the presynaptic neuron英語presynaptic neuron either through DAT or by diffusing across the neuronal membrane directly.[45] As a consequence of DAT uptake, amphetamine produces competitive reuptake inhibition at the transporter.[45] Upon entering the presynaptic neuron, amphetamine activates TAAR1 which, through protein kinase A (PKA) and protein kinase C (PKC) signaling, causes DAT phosphorylation.[45] Phosphorylation by either protein kinase can result in DAT internalization (non-competitive reuptake inhibition), but PKC-mediated phosphorylation alone induces the reversal of dopamine transport英語reverse transport through DAT (i.e., dopamine efflux).[45][179] Amphetamine is also known to increase intracellular calcium, an effect which is associated with DAT phosphorylation through an unidentified Ca2+/calmodulin-dependent protein kinase英語Ca2+/calmodulin-dependent protein kinase (CAMK)-dependent pathway, in turn producing dopamine efflux.[157][159][180] Through direct activation of G protein-coupled inwardly-rectifying potassium channel英語G protein-coupled inwardly-rectifying potassium channels, TAAR1 reduces the firing rate of dopamine neurons, preventing a hyper-dopaminergic state.[181][182][183]

Amphetamine is also a substrate for the presynaptic vesicular monoamine transporter英語vesicular monoamine transporter, VMAT2.[156][184] Following amphetamine uptake at VMAT2, amphetamine induces the collapse of the vesicular pH gradient, which results in the release of dopamine molecules from synaptic vesicle英語synaptic vesicles into the cytosol via dopamine efflux through VMAT2.[156][184] Subsequently, the cytosolic dopamine molecules are released from the presynaptic neuron into the synaptic cleft via reverse transport at DAT.[45][156][184]

去甲腎上腺素[編輯]

Similar to dopamine, amphetamine dose-dependently increases the level of synaptic norepinephrine, the direct precursor of epinephrine.[47][61] Based upon neuronal TAAR1 mRNA expression, amphetamine is thought to affect norepinephrine analogously to dopamine.[45][156][179] In other words, amphetamine induces TAAR1-mediated efflux and non-competitive reuptake inhibition at phosphorylated NET, competitive NET reuptake inhibition, and norepinephrine release from VMAT2.[45][156]

血清素[編輯]

Amphetamine exerts analogous, yet less pronounced, effects on serotonin as on dopamine and norepinephrine.[45][61] Amphetamine affects serotonin via VMAT2 and, like norepinephrine, is thought to phosphorylate SERT via TAAR1.[45][156] Like dopamine, amphetamine has low, micromolar affinity at the human 5-HT1A receptor英語5-HT1A receptor.[171][172]

其他的中樞神經遞質、肽、和激素 Other neurotransmitters, peptides, and hormones[編輯]

Acute amphetamine administration in humans increases endogenous opioid英語endogenous opioid release in several brain structures in the reward system.[173][174][175] Extracellular levels of glutamate英語Glutamate (neurotransmitter), the primary excitatory neurotransmitter in the brain, have been shown to increase in the striatum following exposure to amphetamine.[159] This increase in extracellular glutamate presumably occurs via the amphetamine-induced internalization of EAAT3英語EAAT3, a glutamate reuptake transporter, in dopamine neurons.[159][161] Amphetamine also induces the selective release of histamine from mast cells and efflux from histaminergic neurons英語Tuberomammillary nucleus through VMAT2.[156] Acute amphetamine administration can also increase adrenocorticotropic hormone and corticosteroid levels in blood plasma by stimulating the hypothalamic–pituitary–adrenal axis.[43][176][177]

藥物代謝動力學[編輯]

安非他命的口服生物體可利用率[參 21]與腸胃的pH值連動; [151] 安非他命非常容易在腸道被吸收,dextroampetamine的生體可利用率在多數的情況下高於75%。 [2] 安非他命呈弱鹼性,其pKa值介於9–10之間;[4] 因此,當pH值呈鹼性時,多數的安非他命會以其易溶於脂類純胺類型態英語free base形式存在。在此情況下,身體會通過腸道上皮組織富含脂類的細胞膜[參 22]來吸收安非他命。 [4] [151] 相反地,酸性的pH值表示安非他命主要以易溶於水的離子[參 23](鹽)形式存在,因此較少能被吸收。 [4] 大約15–40%循環於血管中的安非他命與血漿蛋白[參 24]相連接。 [3] 安非他命的對映異構物的半衰期會隨著尿液的pH值而有所不同。 [4] 當尿液的酸鹼值落在正常範圍中,dextroamphetamine和levoamphetamine的半衰期分別為9–11 小時及 11–14 小時。 [4] 酸性飲食會導致安非他命的對映異構物的半衰期降低至8–11 小時;鹼性飲食則會使安非他命的對映異構物的半衰期增加到16–31 小時。 [10][16]

成分為安非他命或其衍生物的短效藥品大約在口服後三小時在體內達到最高血漿濃度英語plasma concentration;而成分為安非他命或其衍生物的長效藥品則在口服後大約七小時在體內達到最高血漿濃度。 [4]

安非他命主要透過腎臟來代謝,大約30–40%的藥物以藥物本身原始的型態從酸鹼度正常的尿液中排出。 [4] 當尿液是鹼性時,安非他命傾向以其純胺類型態存在,因此較少被排泄。 [4]

當尿液的pH值失常時,各種安非他命的分解物在尿液中重新結合的程度將從最低1%到最高75%。該程度的高低大多取決於於尿液的酸鹼值,尿液越酸,結合率越高;尿液愈鹼,結合率越低。 [4] 安非他命通常於口服後兩天內自體內完全代謝完畢。 [10] 安非他命確切的半衰期及藥效作用期隨著(小於兩天的)重複服用導致的血漿內安非他命濃度(plasma concentration of amphetamine)的增加而延長。[185]

對人體無藥效的前驅藥物體(prodrug):lisdexamfetamine並不若安非他命一樣容易受腸胃道環境的pH值影響; [186] lisdexamfetamine在腸道被吸收進入血管的血液後很快就會透過水解(hydrolysis)的方式轉化為dextroamphetamine。而參與這水解反應的酶(enzymes)與紅血球有關。 [186]

Lisdexamfetamine的半衰期通常小於一個小時。 [186]

細胞色素 P450 2D6(Cytochrome P450 2D6、或CYP2D6)、多巴胺β羥化酶(Dopamine β-hydroxylase、或DBH)、flavin-containing monooxygenase 3英語flavin-containing monooxygenase 3butyrate-CoA ligase英語butyrate-CoA ligase、和 glycine N-acyltransferase英語glycine N-acyltransferase為已知在人體中參與[註 9]「安非他命」及「安非他命代謝後之產物」的代謝反應的(enzyme)。 [sources 11]

「安非他命代謝後之產物」包含:4-hydroxyamphetamine英語4-hydroxyamphetamine4-hydroxynorephedrine英語4-hydroxynorephedrine4-hydroxyphenylacetone英語4-hydroxyphenylacetone苯甲酸(benzoic acid)、馬尿酸(hippuric acid)、苯丙醇胺(norephedrine)、苯基丙酮(phenylacetone)[註 10] [4] [10] [11]

在這些「安非他命代謝後之產物」之中,有實際藥效的產物(sympathomimetics)為:4‑hydroxyamphetamine[189]4‑hydroxynorephedrine[190]、和norephedrine[191]

安非他命的主要代謝途徑包含:aromatic para-hydroxylation、aliphatic alpha- 、beta-hydroxylation、N-oxidation、N-dealkylation、和 deamination。 [4][10]

下圖為已知的「安非他命」代謝途徑和「安非他命代謝後之產物」: [4][8][11]

苯丙胺的代謝途徑
Graphic of several routes of amphetamine metabolism
Para-
Hydroxylation
Para-
Hydroxylation
Para-
Hydroxylation
Beta-
Hydroxylation
Beta-
Hydroxylation
Oxidative
Deamination
Oxidation
Glycine
Conjugation
在這些「安非他命代謝後之產物」之中,主要的且有實際藥效的產物為:4-hydroxyamphetamine去甲麻黃鹼(norephedrine)[11]

從酸鹼度正常的尿液中可發現,大約30–40%的「安非他命」以本身原始的型態排出;大約50%的安非他命以不具藥效的「安非他命代謝後之產物」(即為圖片中最下列的產物)的型態排出。 [4]

剩下的10–20%則為「安非他命代謝後之產物」之中,有實際藥效的產物。 [4]

苯甲酸(Benzoic acid)被butyrate-CoA連接酶(butyrate-CoA ligase)代謝後成為一個中介物質/中間產物(intermediate product):benzoyl-CoA英語benzoyl-CoA [187]

隨後透過glycine N-acyltransferase代謝並轉化為馬尿酸(hippuric acid)。[188]

相關的內部生成化合物/混和物(endogenous compound)[編輯]

歷史、社會與文化[編輯]

合法狀態與條件[編輯]

藥品[編輯]

備註A[編輯]

  1. ^ 別名有:1-phenylpropan-2-amine (IUPAC name), α-methylbenzeneethanamine, α-methylphenethylamine, amfetamine (International Nonproprietary Name [INN]), β-phenylisopropylamine, desoxynorephedrine, and speed.[18][21][22]
  2. ^ 對映異構體指的是兩個形狀相同但方向相反的兩個分子,他們又稱為彼此的鏡中影像。[23] Levoamphetamine 和 dextroamphetamine 分別被簡稱為 L-amph 或 levamfetamine (INN) 和 D-amph 或 dexamfetamine (INN) [18]
  3. ^ "Adderall"是一個品牌名稱。因為以下幾個安非他命的異構物的英文名稱太長了:("dextroamphetamine sulfate, dextroamphetamine saccharate, amphetamine sulfate, and amphetamine aspartate"),因此本文單獨以此名稱來表示此安非他命的此種混合物。
    原文對照:"Adderall" is a brand name as opposed to a nonproprietary name; because the latter ("dextroamphetamine sulfate, dextroamphetamine saccharate, amphetamine sulfate, and amphetamine aspartate" [44]) is excessively long, this article exclusively refers to this amphetamine mixture by the brand name.
  4. ^ 「安非他命」一詞也意指一個化學分類,但與「替代性安非他命」這個化學分類不同的是,「安非他命」類在學術上並無標準的定義。 [5][25] 有一個「安非他命」類的定義嚴格限定分類中僅有:安非他命的racemate and enantiomers 和 甲基安非他命methamphetamine的racemate and enantiomers。 [25] 大多數「安非他命」類的定義為那些在藥理學上以及結構上與安非他命相關的化合物。 [25]
    為避免讓amphetamine 和 amphetamines 把讀者給弄糊塗了,本條目中僅會使用amphetamine、amphetamines來表示racemic amphetamine, levoamphetamine, and dextroamphetamine;『替代性安非他命(substituted amphetamines)』來表示安非他命的結構分類。
    原文對照: Due to confusion that may arise from use of the plural form, this article will only use the terms "amphetamine" and "amphetamines" to refer to racemic amphetamine, levoamphetamine, and dextroamphetamine and reserve the term "substituted amphetamines" for its structural class.
  5. ^ 研究證實,長期以中樞神經興奮劑治療ADHD能在下列這些方面產生大幅的進步:學業、駕駛、降低藥物濫用、降低肥胖、自尊、和社交功能等。 [57]

    在上述領域中,最為突出的領域為: 學業(例如:GPA分數 grade point average、成果測驗分數 achievement test scores、受教育的時間長度 length of education、和教育程度 education level) 、自尊(例如:自尊心測驗分數 self-esteem questionnaire assessments、嘗試自殺的次數、自殺率等) 和社交功能(例如:peer nomination scores、社交技巧、家庭關係 quality of family、同儕關係 quality of peer、和浪漫關係/情侶關係 romantic relationships) [57]

    長期以「藥物治療合併行為治療」的模式來治療ADHD,能夠比單獨以藥物治療,產生更全面且更長足的進步。 [57]
  6. ^ 考科藍協作組織對於歷年眾多的「隨機對照試驗」的系統性回顧數據統整分析後所得出的總結,基本上都是非常有水準且深具參考價值的。 [65]
  7. ^ 美國食品藥物管理局核准的藥品使用指引及醫療上的禁忌(放在藥盒中的仿單/說明書)並非為了限制醫師的決策而是為了避免藥商恣意宣稱藥物的作用。醫師可以此為參考,並依照每位病人的實際情況做出獨立的判斷。 [89]
  8. ^ 然而根據一篇回顧性論文,安非他命可以處方給曾有藥物濫用歷史的人,不過需要有對患者適度的藥品控管,例如:每天由醫護人員配給處方劑量。[1]
  9. ^ 曾受此副作用的用藥者,身高及體重在在短暫停藥後恢復至應有水準是可以被預期的。[56][59][95] 根據追蹤,持續三年過程不停歇的安非他命治療(沒有合併任何積極減少安非他命副作用的療法的情況下)平均會減少 2公分的最終身高。 [95]
  10. ^ 「95% 信賴區間」指的是:有95%的機率,真實的死亡人數介於3,425 和 4,145 之間。
  11. ^ 轉錄因子是一種可以增加或降低一個特定基因的基因表現的蛋白。
    原文:Transcription factors are proteins that increase or decrease the expression of specific genes.[124]
  12. ^ 簡單來說,這裡的「充分且必要(necessary and sufficient)」關係指的是「ΔFosB在伏隔核中的破表(over-expression)」與「成癮衍生的行為」及「神經元為了適應新常態所做的調適」永遠都是一起發生。
  13. ^ NMDA接受器們為與電壓相關的ligand-gated ion channels英語ligand-gated ion channelsligand-gated ion channels英語ligand-gated ion channels這個通道需要glutamate 以及一個共同促進劑(co-agonist ):(D-serine大豆屬glycine)的同時連接才能被開啟。
    原文: NMDA receptors are voltage-dependent ligand-gated ion channels英語ligand-gated ion channels that requires simultaneous binding of glutamate and a co-agonist (D-serine or glycine) to open the ion channel.[135]
  14. ^ 該篇回顧表示magnesium L-aspartate英語magnesium aspartate氯化鎂(magnesium chloride)能大幅改善成癮行為。
    原文: The review indicated that magnesium L-aspartate英語magnesium aspartate and magnesium chloride produce significant changes in addictive behavior;[99] other forms of magnesium were not mentioned.
  15. ^ The human dopamine transporter contains a high affinity extracellular zinc binding site英語binding site which, upon zinc binding, inhibits dopamine reuptake英語reuptake and amplifies amphetamine-induced dopamine efflux英語neurotransmitter efflux in vitro.[152][153][154] The human serotonin transporter and norepinephrine transporter do not contain zinc binding sites.[154]

備註B[編輯]

  1. ^ 智力測驗結果與專注力有關,詳見注意力不足過動症#智力
  2. ^ 因成癮所致的行為
  3. ^ 妄想的英文名稱為:delusion
  4. ^ 偏執的英文名稱為:paranoia
  5. ^ 原文:Consequently, ΔFosB is the most significant factor involved in both amphetamine addiction and amphetamine-induced sex addictions, which are compulsive sexual behaviors that result from excessive sexual activity and amphetamine use.
  6. ^ 原文:These sex addictions are associated with a 多巴胺失調症候群英語dopamine dysregulation syndrome which occurs in some patients taking 作用於多巴胺的藥物英語dopaminergic#Supplements and drugs.
  7. ^ 原文:One review suggested that, based upon animal testing, pathological (addiction-inducing) psychostimulant use significantly reduces the level of intracellular magnesium throughout the brain.
  8. ^ Original texts: There is no evidence that amphetamine is directly neurotoxic in humans.
  9. ^ 酶做為反應的催化劑catalyst,並不實際參與反應。
  10. ^ 不是苯丙酮

備註C[編輯]

  1. ^
      (Text color) 轉錄因子

注釋[編輯]

  1. ^ 安非他命是一種春藥
  2. ^ 又稱為「隨機分配且包含控制組的臨床試驗」,是臨床試驗的一種
  3. ^ 中樞神經興奮劑的一種
  4. ^ 原文: This diagram depicts the signaling events in the Mesolimbic pathway英語Mesolimbic pathway that are induced by chronic high-dose exposure to psychostimulants that increase the concentration of synaptic dopamine, like 安非他命, 甲基苯丙胺, and 苯乙胺.
  5. ^ (self-administration,i.e., doses given to oneself)
  6. ^ 原文:aerobic exercise decreases psychostimulant self-administration

英文名稱對照[編輯]

  1. ^ 英文名稱為:delusions
  2. ^ 英文名稱為:paranoia
  3. ^ 英文名稱為:Prescription drug
  4. ^ 英文名稱為:Pharmaceutical amphetamine
  5. ^ 英文名稱為:racemic amphetamine
  6. ^ 英文名稱為:Prodrug
  7. ^ 英文名稱為:substituted amphetamine
  8. ^ 英文名稱為:Bupropion
  9. ^ 英文名稱為:meth-amphetamine
  10. ^ 英文名稱為:Randomized controlled trials
  11. ^ 英文名稱為:follow-up studies
  12. ^ 英文名稱為:neurotransmitter systems
  13. ^ 英文名稱為:dopamine
  14. ^ 英文名稱為:locus coeruleus
  15. ^ 英文名稱為:prefrontal cortex
  16. ^ 英文名稱為:nor-epinephrine或nor-adrenaline
  17. ^ 英文名稱為:Cochrane Collaboration
  18. ^ 英文名稱為:systematic review
  19. ^ 英文名稱為:meta-analysis
  20. ^ 英文名稱為:臨床試驗
  21. ^ 英文名稱為:bioavailability
  22. ^ 英文名稱為:cell membrane
  23. ^ 英文名稱為:cation
  24. ^ 英文名稱為:plasma protein

引用[編輯]

來源[編輯]

  1. ^ 1.0 1.1 1.2 1.3 1.4 1.5 引用錯誤:沒有為名為Amph_Uses的參考文獻提供內容
  2. ^ 2.0 2.1 Pharmacology. Dextroamphetamine. DrugBank. University of Alberta. 2013-02-08 [2013-11-05]. 
  3. ^ 3.0 3.1 Pharmacology. Amphetamine. DrugBank. University of Alberta. 2013-02-08 [2013-11-05]. 
  4. ^ 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 Adderall XR Prescribing Information (PDF). United States Food and Drug Administration. Shire US Inc: 12–13. December 2013 [2013-12-30]. 
  5. ^ 5.0 5.1 5.2 5.3 Glennon RA. Phenylisopropylamine stimulants: amphetamine-related agents. (編) Lemke TL, Williams DA, Roche VF, Zito W. Foye's principles of medicinal chemistry 7th. Philadelphia, USA: Wolters Kluwer Health/Lippincott Williams & Wilkins. 2013: 646–648 [2015-09-11]. ISBN 9781609133450. The phase 1 metabolism of amphetamine analogs is catalyzed by two systems: cytochrome P450 and flavin monooxygenase. ... Amphetamine can also undergo aromatic hydroxylation to p-hydroxyamphetamine.  ... Subsequent oxidation at the benzylic position by DA β-hydroxylase affords p-hydroxynorephedrine. Alternatively, direct oxidation of amphetamine by DA β-hydroxylase can afford norephedrine. 
  6. ^ 6.0 6.1 Taylor KB. Dopamine-beta-hydroxylase. Stereochemical course of the reaction (PDF). J. Biol. Chem. January 1974, 249 (2): 454–458 [2014-11-06]. PMID 4809526. Dopamine-β-hydroxylase catalyzed the removal of the pro-R hydrogen atom and the production of 1-norephedrine, (2S,1R)-2-amino-1-hydroxyl-1-phenylpropane, from d-amphetamine. 
  7. ^ 7.0 7.1 Horwitz D, Alexander RW, Lovenberg W, Keiser HR. Human serum dopamine-β-hydroxylase. Relationship to hypertension and sympathetic activity. Circ. Res. May 1973, 32 (5): 594–599. doi:10.1161/01.RES.32.5.594. PMID 4713201. Subjects with exceptionally low levels of serum dopamine-β-hydroxylase activity showed normal cardiovascular function and normal β-hydroxylation of an administered synthetic substrate, hydroxyamphetamine. 
  8. ^ 8.0 8.1 8.2 8.3 Krueger SK, Williams DE. Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol. Ther. June 2005, 106 (3): 357–387. doi:10.1016/j.pharmthera.2005.01.001. PMC 1828602. PMID 15922018. 
    "Table 5: N-containing drugs and xenobiotics oxygenated by FMO"
  9. ^ 9.0 9.1 Cashman JR, Xiong YN, Xu L, Janowsky A. N-oxygenation of amphetamine and methamphetamine by the human flavin-containing monooxygenase (form 3): role in bioactivation and detoxication. J. Pharmacol. Exp. Ther. March 1999, 288 (3): 1251–1260. PMID 10027866. 
  10. ^ 10.0 10.1 10.2 10.3 10.4 Pharmacology and Biochemistry. Amphetamine. Pubchem Compound. National Center for Biotechnology Information. [2013-10-12]. 
  11. ^ 11.0 11.1 11.2 11.3 Santagati NA, Ferrara G, Marrazzo A, Ronsisvalle G. Simultaneous determination of amphetamine and one of its metabolites by HPLC with electrochemical detection. J. Pharm. Biomed. Anal. September 2002, 30 (2): 247–255. doi:10.1016/S0731-7085(02)00330-8. PMID 12191709. 
  12. ^ Pharmacology. amphetamine/dextroamphetamine. Medscape. WebMD. [2016-01-21]. Onset of action: 30–60 min 
  13. ^ 13.0 13.1 13.2 Millichap JG. Chapter 9: Medications for ADHD. (編) Millichap JG. Attention Deficit Hyperactivity Disorder Handbook: A Physician's Guide to ADHD 2nd. New York, USA: Springer. 2010: 112. ISBN 9781441913968.
    Table 9.2 Dextroamphetamine formulations of stimulant medication
    Dexedrine [Peak:2–3 h] [Duration:5–6 h] ...
    Adderall [Peak:2–3 h] [Duration:5–7 h]
    Dexedrine spansules [Peak:7–8 h] [Duration:12 h] ...
    Adderall XR [Peak:7–8 h] [Duration:12 h]
    Vyvanse [Peak:3–4 h] [Duration:12 h]
     
  14. ^ 14.0 14.1 Brams M, Mao AR, Doyle RL. Onset of efficacy of long-acting psychostimulants in pediatric attention-deficit/hyperactivity disorder. Postgrad. Med. September 2008, 120 (3): 69–88. doi:10.3810/pgm.2008.09.1909. PMID 18824827. 
  15. ^ 15.0 15.1 15.2 15.3 15.4 Adderall IR Prescribing Information (PDF). United States Food and Drug Administration. Teva Pharmaceuticals USA, Inc.: 1–6. October 2015 [2016-05-18]. 
  16. ^ 16.0 16.1 Biological Half-Life. AMPHETAMINE. United States National Library of Medicine – Toxnet. Hazardous Substances Data Bank. [2014-01-05]. Concentrations of (14)C-amphetamine declined less rapidly in the plasma of human subjects maintained on an alkaline diet (urinary pH > 7.5) than those on an acid diet (urinary pH < 6). Plasma half-lives of amphetamine ranged between 16-31 hr & 8-11 hr, respectively, & the excretion of (14)C in 24 hr urine was 45 & 70%. 
  17. ^ 17.0 17.1 Mignot EJ. A practical guide to the therapy of narcolepsy and hypersomnia syndromes. Neurotherapeutics. October 2012, 9 (4): 739–752. doi:10.1007/s13311-012-0150-9. PMC 3480574. PMID 23065655. 
  18. ^ 18.0 18.1 18.2 18.3 Compound Summary. Amphetamine. PubChem Compound. United States National Library of Medicine – National Center for Biotechnology Information. 2015-04-11 [2015-04-17]. 
  19. ^ Properties: Predicted – EP|Suite. Amphetamine. Chemspider. [2013-11-06]. 
  20. ^ 引用錯誤:沒有為名為Properties的參考文獻提供內容
  21. ^ 21.0 21.1 引用錯誤:沒有為名為DrugBank1的參考文獻提供內容
  22. ^ 22.0 22.1 Greene SL, Kerr F, Braitberg G. Review article: amphetamines and related drugs of abuse. Emerg. Med. Australas. October 2008, 20 (5): 391–402. doi:10.1111/j.1742-6723.2008.01114.x. PMID 18973636. 
  23. ^ Enantiomer. IUPAC Goldbook. International Union of Pure and Applied Chemistry. [2014-03-14]. doi:10.1351/goldbook.E02069. (原始內容存檔於2013-03-17). One of a pair of molecular entities which are mirror images of each other and non-superposable. 
  24. ^ 24.0 24.1 Guidelines on the Use of International Nonproprietary Names (INNS) for Pharmaceutical Substances. World Health Organization. 1997 [2014-12-01]. In principle, INNs are selected only for the active part of the molecule which is usually the base, acid or alcohol. In some cases, however, the active molecules need to be expanded for various reasons, such as formulation purposes, bioavailability or absorption rate. In 1975 the experts designated for the selection of INN decided to adopt a new policy for naming such molecules. In future, names for different salts or esters of the same active substance should differ only with regard to the inactive moiety of the molecule. ... The latter are called modified INNs (INNMs). 
  25. ^ 25.0 25.1 25.2 25.3 25.4 25.5 Yoshida T. Chapter 1: Use and Misuse of Amphetamines: An International Overview. (編) Klee H. Amphetamine Misuse: International Perspectives on Current Trends. Amsterdam, Netherlands: Harwood Academic Publishers. 1997: 2 [2014-12-01]. ISBN 9789057020810. Amphetamine, in the singular form, properly applies to the racemate of 2-amino-1-phenylpropane. ... In its broadest context, however, the term [amphetamines] can even embrace a large number of structurally and pharmacologically related substances. 
  26. ^ 26.0 26.1 Amphetamine. Medical Subject Headings. United States National Library of Medicine. [2013-12-16]. 
  27. ^ 27.0 27.1 27.2 Spencer RC, Devilbiss DM, Berridge CW. The Cognition-Enhancing Effects of Psychostimulants Involve Direct Action in the Prefrontal Cortex. Biol. Psychiatry. June 2015, 77 (11): 940–950. doi:10.1016/j.biopsych.2014.09.013. PMID 25499957. The procognitive actions of psychostimulants are only associated with low doses. Surprisingly, despite nearly 80 years of clinical use, the neurobiology of the procognitive actions of psychostimulants has only recently been systematically investigated. Findings from this research unambiguously demonstrate that the cognition-enhancing effects of psychostimulants involve the preferential elevation of catecholamines in the PFC and the subsequent activation of norepinephrine α2 and dopamine D1 receptors. ... This differential modulation of PFC-dependent processes across dose appears to be associated with the differential involvement of noradrenergic α2 versus α1 receptors. Collectively, this evidence indicates that at low, clinically relevant doses, psychostimulants are devoid of the behavioral and neurochemical actions that define this class of drugs and instead act largely as cognitive enhancers (improving PFC-dependent function). This information has potentially important clinical implications as well as relevance for public health policy regarding the widespread clinical use of psychostimulants and for the development of novel pharmacologic treatments for attention-deficit/hyperactivity disorder and other conditions associated with PFC dysregulation. ... In particular, in both animals and humans, lower doses maximally improve performance in tests of working memory and response inhibition, whereas maximal suppression of overt behavior and facilitation of attentional processes occurs at higher doses.  引用錯誤:帶有name屬性「Unambiguous_PFC_D1_A2」的<ref>標籤用不同內容定義了多次
  28. ^ 28.0 28.1 Ilieva IP, Hook CJ, Farah MJ. Prescription Stimulants' Effects on Healthy Inhibitory Control, Working Memory, and Episodic Memory: A Meta-analysis. J. Cogn. Neurosci. January 2015: 1–21. doi:10.1162/jocn_a_00776. PMID 25591060. Specifically, in a set of experiments limited to high-quality designs, we found significant enhancement of several cognitive abilities. ... The results of this meta-analysis ... do confirm the reality of cognitive enhancing effects for normal healthy adults in general, while also indicating that these effects are modest in size.  引用錯誤:帶有name屬性「Cognitive_and_motivational_effects」的<ref>標籤用不同內容定義了多次
  29. ^ 29.0 29.1 29.2 29.3 29.4 29.5 29.6 29.7 29.8 29.9 Malenka RC, Nestler EJ, Hyman SE. Chapter 13: Higher Cognitive Function and Behavioral Control. (編) Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience 2nd. New York, USA: McGraw-Hill Medical. 2009: 318, 321. ISBN 9780071481274. Therapeutic (relatively low) doses of psychostimulants, such as methylphenidate and amphetamine, improve performance on working memory tasks both in normal subjects and those with ADHD. ... stimulants act not only on working memory function, but also on general levels of arousal and, within the nucleus accumbens, improve the saliency of tasks. Thus, stimulants improve performance on effortful but tedious tasks ... through indirect stimulation of dopamine and norepinephrine receptors. ...
    Beyond these general permissive effects, dopamine (acting via D1 receptors) and norepinephrine (acting at several receptors) can, at optimal levels, enhance working memory and aspects of attention.
     
  30. ^ 30.0 30.1 30.2 30.3 30.4 Liddle DG, Connor DJ. Nutritional supplements and ergogenic AIDS. Prim. Care. June 2013, 40 (2): 487–505. doi:10.1016/j.pop.2013.02.009. PMID 23668655. Amphetamines and caffeine are stimulants that increase alertness, improve focus, decrease reaction time, and delay fatigue, allowing for an increased intensity and duration of training ...
    Physiologic and performance effects
     · Amphetamines increase dopamine/norepinephrine release and inhibit their reuptake, leading to central nervous system (CNS) stimulation
     · Amphetamines seem to enhance athletic performance in anaerobic conditions 39 40
     · Improved reaction time
     · Increased muscle strength and delayed muscle fatigue
     · Increased acceleration
     · Increased alertness and attention to task
     
  31. ^ 31.0 31.1 31.2 31.3 31.4 31.5 引用錯誤:沒有為名為FDA_Abuse_.26_OD的參考文獻提供內容
  32. ^ 32.0 32.1 引用錯誤:沒有為名為Libido的參考文獻提供內容
  33. ^ 33.0 33.1 引用錯誤:沒有為名為FDA_Effects的參考文獻提供內容
  34. ^ 34.0 34.1 34.2 34.3 34.4 34.5 34.6 引用錯誤:沒有為名為Westfall的參考文獻提供內容
  35. ^ 35.0 35.1 35.2 35.3 Shoptaw SJ, Kao U, Ling W. Shoptaw SJ, Ali R, 編. Treatment for amphetamine psychosis. Cochrane Database Syst. Rev. January 2009, (1): CD003026. doi:10.1002/14651858.CD003026.pub3. PMID 19160215. A minority of individuals who use amphetamines develop full-blown psychosis requiring care at emergency departments or psychiatric hospitals. In such cases, symptoms of amphetamine psychosis commonly include paranoid and persecutory delusions as well as auditory and visual hallucinations in the presence of extreme agitation. More common (about 18%) is for frequent amphetamine users to report psychotic symptoms that are sub-clinical and that do not require high-intensity intervention ...
    About 5–15% of the users who develop an amphetamine psychosis fail to recover completely (Hofmann 1983) ...
    Findings from one trial indicate use of antipsychotic medications effectively resolves symptoms of acute amphetamine psychosis.
     
  36. ^ 36.0 36.1 引用錯誤:沒有為名為Stimulant_Misuse的參考文獻提供內容
  37. ^ 37.0 37.1 Malenka RC, Nestler EJ, Hyman SE. Chapter 15: Reinforcement and Addictive Disorders. (編) Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience 2nd. New York: McGraw-Hill Medical. 2009: 368. ISBN 9780071481274. Such agents also have important therapeutic uses; cocaine, for example, is used as a local anesthetic (Chapter 2), and amphetamines and methylphenidate are used in low doses to treat attention deficit hyperactivity disorder and in higher doses to treat narcolepsy (Chapter 12). Despite their clinical uses, these drugs are strongly reinforcing, and their long-term use at high doses is linked with potential addiction, especially when they are rapidly administered or when high-potency forms are given. 
  38. ^ 38.0 38.1 Kollins SH. A qualitative review of issues arising in the use of psycho-stimulant medications in patients with ADHD and co-morbid substance use disorders. Curr. Med. Res. Opin. May 2008, 24 (5): 1345–1357. doi:10.1185/030079908X280707. PMID 18384709. When oral formulations of psychostimulants are used at recommended doses and frequencies, they are unlikely to yield effects consistent with abuse potential in patients with ADHD. 
  39. ^ 39.0 39.1 Stolerman IP. Stolerman IP, 編. Encyclopedia of Psychopharmacology. Berlin, Germany; London, England: Springer. 2010: 78. ISBN 9783540686989. 
  40. ^ 40.0 40.1 引用錯誤:沒有為名為Benzedrine的參考文獻提供內容
  41. ^ 引用錯誤:沒有為名為UN_Convention的參考文獻提供內容
  42. ^ 引用錯誤:沒有為名為Nonmedical的參考文獻提供內容
  43. ^ 43.0 43.1 43.2 43.3 引用錯誤:沒有為名為Evekeo的參考文獻提供內容
  44. ^ National Drug Code Amphetamine Search Results. National Drug Code Directory. United States Food and Drug Administration. [2013-12-16]. (原始內容存檔於2013-12-16). 
  45. ^ 45.00 45.01 45.02 45.03 45.04 45.05 45.06 45.07 45.08 45.09 45.10 45.11 45.12 45.13 45.14 45.15 45.16 45.17 45.18 45.19 45.20 45.21 45.22 Miller GM. The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J. Neurochem. January 2011, 116 (2): 164–176. doi:10.1111/j.1471-4159.2010.07109.x. PMC 3005101. PMID 21073468. 
  46. ^ 46.0 46.1 46.2 46.3 46.4 Grandy DK, Miller GM, Li JX. "TAARgeting Addiction"-The Alamo Bears Witness to Another Revolution: An Overview of the Plenary Symposium of the 2015 Behavior, Biology and Chemistry Conference. Drug Alcohol Depend. February 2016, 159: 9–16. doi:10.1016/j.drugalcdep.2015.11.014. PMID 26644139. When considered together with the rapidly growing literature in the field a compelling case emerges in support of developing TAAR1-selective agonists as medications for preventing relapse to psychostimulant abuse. 
  47. ^ 47.0 47.1 引用錯誤:沒有為名為Trace_Amines的參考文獻提供內容
  48. ^ Amphetamine. European Monitoring Centre for Drugs and Drug Addiction. [2013-10-19]. 
  49. ^ 引用錯誤:沒有為名為Amphetamine_-_a_substituted_amphetamine的參考文獻提供內容
  50. ^ Obsessive compulsive disorder (OCD). NHS Choice. 2016-09-28 [2017-04-04]. 
  51. ^ 51.0 51.1 Carvalho M, Carmo H, Costa VM, Capela JP, Pontes H, Remião F, Carvalho F, Bastos Mde L. Toxicity of amphetamines: an update. Arch. Toxicol. August 2012, 86 (8): 1167–1231. doi:10.1007/s00204-012-0815-5. PMID 22392347. 
  52. ^ Berman S, O'Neill J, Fears S, Bartzokis G, London ED. Abuse of amphetamines and structural abnormalities in the brain. Ann. N. Y. Acad. Sci. October 2008, 1141: 195–220. doi:10.1196/annals.1441.031. PMC 2769923. PMID 18991959. 
  53. ^ 53.0 53.1 Hart H, Radua J, Nakao T, Mataix-Cols D, Rubia K. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry. February 2013, 70 (2): 185–198. doi:10.1001/jamapsychiatry.2013.277. PMID 23247506. 
  54. ^ 54.0 54.1 Spencer TJ, Brown A, Seidman LJ, Valera EM, Makris N, Lomedico A, Faraone SV, Biederman J. Effect of psychostimulants on brain structure and function in ADHD: a qualitative literature review of magnetic resonance imaging-based neuroimaging studies. J. Clin. Psychiatry. September 2013, 74 (9): 902–917. doi:10.4088/JCP.12r08287. PMC 3801446. PMID 24107764. 
  55. ^ 55.0 55.1 Frodl T, Skokauskas N. Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects.. Acta psychiatrica Scand. February 2012, 125 (2): 114–126. doi:10.1111/j.1600-0447.2011.01786.x. PMID 22118249. Basal ganglia regions like the right globus pallidus, the right putamen, and the nucleus caudatus are structurally affected in children with ADHD. These changes and alterations in limbic regions like ACC and amygdala are more pronounced in non-treated populations and seem to diminish over time from child to adulthood. Treatment seems to have positive effects on brain structure. 
  56. ^ 56.0 56.1 56.2 56.3 Millichap JG. Chapter 9: Medications for ADHD. (編) Millichap JG. Attention Deficit Hyperactivity Disorder Handbook: A Physician's Guide to ADHD 2nd. New York, USA: Springer. 2010: 121–123, 125–127. ISBN 9781441913968. Ongoing research has provided answers to many of the parents』 concerns, and has confirmed the effectiveness and safety of the long-term use of medication. 
  57. ^ 57.0 57.1 57.2 57.3 57.4 Arnold LE, Hodgkins P, Caci H, Kahle J, Young S. Effect of treatment modality on long-term outcomes in attention-deficit/hyperactivity disorder: a systematic review. PLoS ONE. February 2015, 10 (2): e0116407. doi:10.1371/journal.pone.0116407. PMC 4340791. PMID 25714373. The highest proportion of improved outcomes was reported with combination treatment (83% of outcomes). Among significantly improved outcomes, the largest effect sizes were found for combination treatment. The greatest improvements were associated with academic, self-esteem, or social function outcomes. 
    Figure 3: Treatment benefit by treatment type and outcome group
  58. ^ Arnold, L. Eugene; Hodgkins, Paul; Caci, Hervé; Kahle, Jennifer; Young, Susan. Effect of Treatment Modality on Long-Term Outcomes in Attention-Deficit/Hyperactivity Disorder: A Systematic Review. PLoS ONE. [2017-05-15]. doi:10.1371/journal.pone.0116407. PMID 25714373. 
  59. ^ 59.0 59.1 59.2 59.3 59.4 Huang YS, Tsai MH. Long-term outcomes with medications for attention-deficit hyperactivity disorder: current status of knowledge. CNS Drugs. July 2011, 25 (7): 539–554. doi:10.2165/11589380-000000000-00000. PMID 21699268. Recent studies have demonstrated that stimulants, along with the non-stimulants atomoxetine and extended-release guanfacine, are continuously effective for more than 2-year treatment periods with few and tolerable adverse effects. The effectiveness of long-term therapy includes not only the core symptoms of ADHD, but also improved quality of life and academic achievements. The most concerning short-term adverse effects of stimulants, such as elevated blood pressure and heart rate, waned in long-term follow-up studies. ... In the longest follow-up study (of more than 10 years), lifetime stimulant treatment for ADHD was effective and protective against the development of adverse psychiatric disorders. 
  60. ^ 60.0 60.1 60.2 Malenka RC, Nestler EJ, Hyman SE. Chapter 6: Widely Projecting Systems: Monoamines, Acetylcholine, and Orexin. (編) Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience 2nd. New York, USA: McGraw-Hill Medical. 2009: 154–157. ISBN 9780071481274. 
  61. ^ 61.0 61.1 61.2 61.3 61.4 Bidwell LC, McClernon FJ, Kollins SH. Cognitive enhancers for the treatment of ADHD. Pharmacol. Biochem. Behav. August 2011, 99 (2): 262–274. doi:10.1016/j.pbb.2011.05.002. PMC 3353150. PMID 21596055. 
  62. ^ Parker J, Wales G, Chalhoub N, Harpin V. The long-term outcomes of interventions for the management of attention-deficit hyperactivity disorder in children and adolescents: a systematic review of randomized controlled trials. Psychol. Res. Behav. Manag. (systematic review (secondary source)). September 2013, 6: 87–99. doi:10.2147/PRBM.S49114. PMC 3785407. PMID 24082796. Only one paper53 examining outcomes beyond 36 months met the review criteria. ... There is high level evidence suggesting that pharmacological treatment can have a major beneficial effect on the core symptoms of ADHD (hyperactivity, inattention, and impulsivity) in approximately 80% of cases compared with placebo controls, in the short term. 
  63. ^ Millichap JG. Chapter 9: Medications for ADHD. (編) Millichap JG. Attention Deficit Hyperactivity Disorder Handbook: A Physician's Guide to ADHD 2nd. New York, USA: Springer. 2010: 111–113. ISBN 9781441913968. 
  64. ^ Stimulants for Attention Deficit Hyperactivity Disorder. WebMD. Healthwise. 2010-04-12 [2013-11-12]. 
  65. ^ Scholten RJ, Clarke M, Hetherington J. The Cochrane Collaboration. Eur. J. Clin. Nutr. August 2005,. 59 Suppl 1: S147–S149; discussion S195–S196. doi:10.1038/sj.ejcn.1602188. PMID 16052183. 
  66. ^ Castells X, Ramos-Quiroga JA, Bosch R, Nogueira M, Casas M. Castells X, 編. Amphetamines for Attention Deficit Hyperactivity Disorder (ADHD) in adults. Cochrane Database Syst. Rev. June 2011, (6): CD007813. doi:10.1002/14651858.CD007813.pub2. PMID 21678370. 
  67. ^ Punja S, Shamseer L, Hartling L, Urichuk L, Vandermeer B, Nikles J, Vohra S. Amphetamines for attention deficit hyperactivity disorder (ADHD) in children and adolescents. Cochrane Database Syst. Rev. February 2016, 2: CD009996. doi:10.1002/14651858.CD009996.pub2. PMID 26844979. 
  68. ^ Pringsheim T, Steeves T. Pringsheim T, 編. Pharmacological treatment for Attention Deficit Hyperactivity Disorder (ADHD) in children with comorbid tic disorders. Cochrane Database Syst. Rev. April 2011, (4): CD007990. doi:10.1002/14651858.CD007990.pub2. PMID 21491404. 
  69. ^ 引用錯誤:沒有為名為medlineplus1的參考文獻提供內容
  70. ^ 70.0 70.1 70.2 Abuse, National Institute on Drug. Stimulant ADHD Medications: Methylphenidate and Amphetamines. 
  71. ^ Choices, N. H. S. What is a controlled medicine (drug)? - Health questions - NHS Choices. 2016-12-12. 
  72. ^ Methylphenidate. Home of MedlinePlus → Drugs, Herbs and Supplements → Methylphenidate Methylphenidate pronounced as (meth il fen i date). 2016-02-15 [February twenty seventh, 2017]. 
  73. ^ Combining medications could offer better results for ADHD patients. Science News. Elsevier. 2016-08-01 [January 2017]. (原始內容存檔於August 2016). "Three studies to be published in the August 2016 issue of the Journal of the American Academy of Child and Adolescent Psychiatry (JAACAP) report that combining two standard medications could lead to greater clinical improvements for children with attention-deficit/hyperactivity disorder (ADHD) than either ADHD therapy alone.", August, 2016 
  74. ^ Adults with ADHD. MedlinePlus the Magazine 9. 8600 Rockville Pike • Bethesda, MD 20894, United States of America: NATIONAL LIBRARY OF MEDICINE at the NATIONAL INSTITUTES OF HEALTH. Spring 2014: 19. ISSN 1937-4712 (American English). 
  75. ^ Attention deficit hyperactivity disorder. Home → Medical Encyclopedia → Attention deficit hyperactivity disorder. NATIONAL LIBRARY OF MEDICINE at the NATIONAL INSTITUTES OF HEALTH. 2016-05-25 [February twenty seventh, 2017.]. 
  76. ^ All Disorders. National Institute of Neurological Disorders and Stroke. [February twenty seventh, 2017]. 
  77. ^ Bagot KS, Kaminer Y. Efficacy of stimulants for cognitive enhancement in non-attention deficit hyperactivity disorder youth: a systematic review. Addiction. April 2014, 109 (4): 547–557. doi:10.1111/add.12460. PMC 4471173. PMID 24749160. Amphetamine has been shown to improve consolidation of information (0.02 ≥ P ≤ 0.05), leading to improved recall. 
  78. ^ Devous MD, Trivedi MH, Rush AJ. Regional cerebral blood flow response to oral amphetamine challenge in healthy volunteers. J. Nucl. Med. April 2001, 42 (4): 535–542. PMID 11337538. 
  79. ^ Malenka RC, Nestler EJ, Hyman SE. Chapter 10: Neural and Neuroendocrine Control of the Internal Milieu. (編) Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience 2nd. New York, USA: McGraw-Hill Medical. 2009: 266. ISBN 9780071481274. Dopamine acts in the nucleus accumbens to attach motivational significance to stimuli associated with reward. 
  80. ^ 80.0 80.1 80.2 Wood S, Sage JR, Shuman T, Anagnostaras SG. Psychostimulants and cognition: a continuum of behavioral and cognitive activation. Pharmacol. Rev. January 2014, 66 (1): 193–221. doi:10.1124/pr.112.007054. PMID 24344115. 
  81. ^ Twohey M. Pills become an addictive study aid. JS Online. 2006-03-26 [2007-12-02]. (原始內容存檔於2007-08-15). 
  82. ^ 82.0 82.1 82.2 82.3 Parr JW. Attention-deficit hyperactivity disorder and the athlete: new advances and understanding. Clin. Sports Med. July 2011, 30 (3): 591–610. doi:10.1016/j.csm.2011.03.007. PMID 21658550. In 1980, Chandler and Blair47 showed significant increases in knee extension strength, acceleration, anaerobic capacity, time to exhaustion during exercise, pre-exercise and maximum heart rates, and time to exhaustion during maximal oxygen consumption (VO2 max) testing after administration of 15 mg of dextroamphetamine versus placebo. Most of the information to answer this question has been obtained in the past decade through studies of fatigue rather than an attempt to systematically investigate the effect of ADHD drugs on exercise. 
  83. ^ 83.0 83.1 83.2 Roelands B, de Koning J, Foster C, Hettinga F, Meeusen R. Neurophysiological determinants of theoretical concepts and mechanisms involved in pacing. Sports Med. May 2013, 43 (5): 301–311. doi:10.1007/s40279-013-0030-4. PMID 23456493. In high-ambient temperatures, dopaminergic manipulations clearly improve performance. The distribution of the power output reveals that after dopamine reuptake inhibition, subjects are able to maintain a higher power output compared with placebo. ... Dopaminergic drugs appear to override a safety switch and allow athletes to use a reserve capacity that is 『off-limits』 in a normal (placebo) situation. 
  84. ^ Bracken NM. National Study of Substance Use Trends Among NCAA College Student-Athletes (PDF). NCAA Publications. National Collegiate Athletic Association. January 2012 [2013-10-08]. 
  85. ^ Docherty JR. Pharmacology of stimulants prohibited by the World Anti-Doping Agency (WADA). Br. J. Pharmacol. June 2008, 154 (3): 606–622. doi:10.1038/bjp.2008.124. PMC 2439527. PMID 18500382. 
  86. ^ Parker KL, Lamichhane D, Caetano MS, Narayanan NS. Executive dysfunction in Parkinson's disease and timing deficits. Front. Integr. Neurosci. October 2013, 7: 75. doi:10.3389/fnint.2013.00075. PMC 3813949. PMID 24198770. Manipulations of dopaminergic signaling profoundly influence interval timing, leading to the hypothesis that dopamine influences internal pacemaker, or 「clock,」 activity. For instance, amphetamine, which increases concentrations of dopamine at the synaptic cleft advances the start of responding during interval timing, whereas antagonists of D2 type dopamine receptors typically slow timing;... Depletion of dopamine in healthy volunteers impairs timing, while amphetamine releases synaptic dopamine and speeds up timing. 
  87. ^ Rattray B, Argus C, Martin K, Northey J, Driller M. Is it time to turn our attention toward central mechanisms for post-exertional recovery strategies and performance?. Front. Physiol. March 2015, 6: 79. doi:10.3389/fphys.2015.00079. PMC 4362407. PMID 25852568. Aside from accounting for the reduced performance of mentally fatigued participants, this model rationalizes the reduced RPE and hence improved cycling time trial performance of athletes using a glucose mouthwash (Chambers et al., 2009) and the greater power output during a RPE matched cycling time trial following amphetamine ingestion (Swart, 2009). ... Dopamine stimulating drugs are known to enhance aspects of exercise performance (Roelands et al., 2008) 
  88. ^ Roelands B, De Pauw K, Meeusen R. Neurophysiological effects of exercise in the heat. Scand. J. Med. Sci. Sports. June 2015,. 25 Suppl 1: 65–78. doi:10.1111/sms.12350. PMID 25943657. This indicates that subjects did not feel they were producing more power and consequently more heat. The authors concluded that the 「safety switch」 or the mechanisms existing in the body to prevent harmful effects are overridden by the drug administration (Roelands et al., 2008b). Taken together, these data indicate strong ergogenic effects of an increased DA concentration in the brain, without any change in the perception of effort. 
  89. ^ Kessler S. Drug therapy in attention-deficit hyperactivity disorder. South. Med. J. January 1996, 89 (1): 33–38. doi:10.1097/00007611-199601000-00005. PMID 8545689. statements on package inserts are not intended to limit medical practice. Rather they are intended to limit claims by pharmaceutical companies. ... the FDA asserts explicitly, and the courts have upheld that clinical decisions are to be made by physicians and patients in individual situations. 
  90. ^ 90.0 90.1 90.2 90.3 90.4 90.5 90.6 Adderall XR Prescribing Information (PDF). United States Food and Drug Administration. Shire US Inc: 4–6. December 2013 [2013-12-30]. 
  91. ^ 91.0 91.1 91.2 91.3 91.4 91.5 91.6 91.7 91.8 91.9 Heedes G, Ailakis J. Amphetamine (PIM 934). INCHEM. International Programme on Chemical Safety. [2014-06-24]. 
  92. ^ 92.0 92.1 Dexedrine Prescribing Information (PDF). United States Food and Drug Administration. Amedra Pharmaceuticals LLC. October 2013 [2013-11-04]. 
  93. ^ Feinberg SS. Combining stimulants with monoamine oxidase inhibitors: a review of uses and one possible additional indication. J. Clin. Psychiatry. November 2004, 65 (11): 1520–1524. doi:10.4088/jcp.v65n1113. \ PMID 15554766 \ 請檢查|pmid=值 (幫助). 
  94. ^ Stewart JW, Deliyannides DA, McGrath PJ. How treatable is refractory depression?. J. Affect. Disord. June 2014, 167: 148–152. doi:10.1016/j.jad.2014.05.047. PMID 24972362. 
  95. ^ 95.0 95.1 引用錯誤:沒有為名為pmid18295156的參考文獻提供內容
  96. ^ 96.0 96.1 Spiller HA, Hays HL, Aleguas A. Overdose of drugs for attention-deficit hyperactivity disorder: clinical presentation, mechanisms of toxicity, and management. CNS Drugs. June 2013, 27 (7): 531–543. doi:10.1007/s40263-013-0084-8. PMID 23757186. Amphetamine, dextroamphetamine, and methylphenidate act as substrates for the cellular monoamine transporter, especially the dopamine transporter (DAT) and less so the norepinephrine (NET) and serotonin transporter. The mechanism of toxicity is primarily related to excessive extracellular dopamine, norepinephrine, and serotonin. 
  97. ^ Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013 (PDF). Lancet. 2015, 385 (9963): 117–171 [2015-03-03]. doi:10.1016/S0140-6736(14)61682-2. PMC 4340604. PMID 25530442. Amphetamine use disorders ... 3,788 (3,425–4,145) 
  98. ^ Kanehisa Laboratories. Amphetamine – Homo sapiens (human). KEGG Pathway. 2014-10-10 [2014-10-31]. 
  99. ^ 99.0 99.1 99.2 99.3 99.4 99.5 Nechifor M. Magnesium in drug dependences. Magnes. Res. March 2008, 21 (1): 5–15. PMID 18557129. 
  100. ^ 100.0 100.1 100.2 100.3 100.4 Ruffle JK. Molecular neurobiology of addiction: what's all the (Δ)FosB about?. Am. J. Drug Alcohol Abuse. November 2014, 40 (6): 428–437. doi:10.3109/00952990.2014.933840. PMID 25083822. ΔFosB is an essential transcription factor implicated in the molecular and behavioral pathways of addiction following repeated drug exposure. 
  101. ^ 101.0 101.1 101.2 101.3 101.4 Nestler EJ. Cellular basis of memory for addiction. Dialogues Clin. Neurosci. December 2013, 15 (4): 431–443. PMC 3898681. PMID 24459410. 
  102. ^ Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat. Rev. Neurosci. November 2011, 12 (11): 623–637. doi:10.1038/nrn3111. PMC 3272277. PMID 21989194. ΔFosB serves as one of the master control proteins governing this structural plasticity. 
  103. ^ 103.0 103.1 103.2 103.3 103.4 103.5 103.6 103.7 103.8 Olsen CM. Natural rewards, neuroplasticity, and non-drug addictions. Neuropharmacology. December 2011, 61 (7): 1109–1122. doi:10.1016/j.neuropharm.2011.03.010. PMC 3139704. PMID 21459101. Similar to environmental enrichment, studies have found that exercise reduces self-administration and relapse to drugs of abuse (Cosgrove et al., 2002; Zlebnik et al., 2010). There is also some evidence that these preclinical findings translate to human populations, as exercise reduces withdrawal symptoms and relapse in abstinent smokers (Daniel et al., 2006; Prochaska et al., 2008), and one drug recovery program has seen success in participants that train for and compete in a marathon as part of the program (Butler, 2005). ... In humans, the role of dopamine signaling in incentive-sensitization processes has recently been highlighted by the observation of a dopamine dysregulation syndrome in some patients taking dopaminergic drugs. This syndrome is characterized by a medication-induced increase in (or compulsive) engagement in non-drug rewards such as gambling, shopping, or sex (Evans et al., 2006; Aiken, 2007; Lader, 2008). 
  104. ^ 104.0 104.1 104.2 104.3 Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA. Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis. Neurosci. Biobehav. Rev. September 2013, 37 (8): 1622–1644. doi:10.1016/j.neubiorev.2013.06.011. PMC 3788047. PMID 23806439. These findings suggest that exercise may 「magnitude」-dependently prevent the development of an addicted phenotype possibly by blocking/reversing behavioral and neuroadaptive changes that develop during and following extended access to the drug. ... Exercise has been proposed as a treatment for drug addiction that may reduce drug craving and risk of relapse. Although few clinical studies have investigated the efficacy of exercise for preventing relapse, the few studies that have been conducted generally report a reduction in drug craving and better treatment outcomes ... Taken together, these data suggest that the potential benefits of exercise during relapse, particularly for relapse to psychostimulants, may be mediated via chromatin remodeling and possibly lead to greater treatment outcomes. 
  105. ^ 105.0 105.1 105.2 Zhou Y, Zhao M, Zhou C, Li R. Sex differences in drug addiction and response to exercise intervention: From human to animal studies. Front. Neuroendocrinol. July 2015, 40: 24–41. doi:10.1016/j.yfrne.2015.07.001. PMID 26182835. Collectively, these findings demonstrate that exercise may serve as a substitute or competition for drug abuse by changing ΔFosB or cFos immunoreactivity in the reward system to protect against later or previous drug use. ... The postulate that exercise serves as an ideal intervention for drug addiction has been widely recognized and used in human and animal rehabilitation. 
  106. ^ 106.0 106.1 106.2 Linke SE, Ussher M. Exercise-based treatments for substance use disorders: evidence, theory, and practicality. Am. J. Drug Alcohol Abuse. January 2015, 41 (1): 7–15. doi:10.3109/00952990.2014.976708. PMC 4831948. PMID 25397661. The limited research conducted suggests that exercise may be an effective adjunctive treatment for SUDs. In contrast to the scarce intervention trials to date, a relative abundance of literature on the theoretical and practical reasons supporting the investigation of this topic has been published. ... numerous theoretical and practical reasons support exercise-based treatments for SUDs, including psychological, behavioral, neurobiological, nearly universal safety profile, and overall positive health effects. 
  107. ^ 107.0 107.1 Malenka RC, Nestler EJ, Hyman SE. Chapter 15: Reinforcement and Addictive Disorders. (編) Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience 2nd. New York, USA: McGraw-Hill Medical. 2009: 386. ISBN 9780071481274. Currently, cognitive–behavioral therapies are the most successful treatment available for preventing the relapse of psychostimulant use. 
  108. ^ Albertson TE. Amphetamines. (編) Olson KR, Anderson IB, Benowitz NL, Blanc PD, Kearney TE, Kim-Katz SY, Wu AH. Poisoning & Drug Overdose 6th. New York: McGraw-Hill Medical. 2011: 77–79. ISBN 9780071668330. 
  109. ^ Malenka RC, Nestler EJ, Hyman SE. Chapter 15: Reinforcement and Addictive Disorders. (編) Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience 2nd. New York: McGraw-Hill Medical. 2009: 364–375. ISBN 9780071481274. 
  110. ^ Glossary of Terms. Mount Sinai School of Medicine. Department of Neuroscience. [9 February 2015]. 
  111. ^ Volkow ND, Koob GF, McLellan AT. Neurobiologic Advances from the Brain Disease Model of Addiction. N. Engl. J. Med. January 2016, 374 (4): 363–371. doi:10.1056/NEJMra1511480. PMID 26816013. 
  112. ^ 112.0 112.1 112.2 Renthal W, Nestler EJ. Chromatin regulation in drug addiction and depression. Dialogues Clin. Neurosci. September 2009, 11 (3): 257–268. PMC 2834246. PMID 19877494. [Psychostimulants] increase cAMP levels in striatum, which activates protein kinase A (PKA) and leads to phosphorylation of its targets. This includes the cAMP response element binding protein (CREB), the phosphorylation of which induces its association with the histone acetyltransferase, CREB binding protein (CBP) to acetylate histones and facilitate gene activation. This is known to occur on many genes including fosB and c-fos in response to psychostimulant exposure. ΔFosB is also upregulated by chronic psychostimulant treatments, and is known to activate certain genes (eg, cdk5) and repress others (eg, c-fos) where it recruits HDAC1 as a corepressor. ... Chronic exposure to psychostimulants increases glutamatergic [signaling] from the prefrontal cortex to the NAc. Glutamatergic signaling elevates Ca2+ levels in NAc postsynaptic elements where it activates CaMK (calcium/calmodulin protein kinases) signaling, which, in addition to phosphorylating CREB, also phosphorylates HDAC5. 
    Figure 2: Psychostimulant-induced signaling events
  113. ^ Broussard JI. Co-transmission of dopamine and glutamate. J. Gen. Physiol. January 2012, 139 (1): 93–96. doi:10.1085/jgp.201110659. PMC 3250102. PMID 22200950. 
  114. ^ Kanehisa Laboratories. Amphetamine – Homo sapiens (human). KEGG Pathway. 10 October 2014 [31 October 2014]. Most addictive drugs increase extracellular concentrations of dopamine (DA) in nucleus accumbens (NAc) and medial prefrontal cortex (mPFC), projection areas of mesocorticolimbic DA neurons and key components of the "brain reward circuit". Amphetamine achieves this elevation in extracellular levels of DA by promoting efflux from synaptic terminals. ... Chronic exposure to amphetamine induces a unique transcription factor delta FosB, which plays an essential role in long-term adaptive changes in the brain. 
  115. ^ Cadet JL, Brannock C, Jayanthi S, Krasnova IN. Transcriptional and epigenetic substrates of methamphetamine addiction and withdrawal: evidence from a long-access self-administration model in the rat. Mol. Neurobiol. 2015, 51 (2): 696–717. doi:10.1007/s12035-014-8776-8. PMC 4359351. PMID 24939695. Figure 1 
  116. ^ 116.0 116.1 116.2 Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat. Rev. Neurosci. November 2011, 12 (11): 623–637. doi:10.1038/nrn3111. PMC 3272277. PMID 21989194. ΔFosB serves as one of the master control proteins governing this structural plasticity. ... ΔFosB also represses G9a expression, leading to reduced repressive histone methylation at the cdk5 gene. The net result is gene activation and increased CDK5 expression. ... In contrast, ΔFosB binds to the c-fos gene and recruits several co-repressors, including HDAC1 (histone deacetylase 1) and SIRT 1 (sirtuin 1). ... The net result is c-fos gene repression. 
    Figure 4: Epigenetic basis of drug regulation of gene expression
  117. ^ 117.0 117.1 117.2 Nestler EJ. Transcriptional mechanisms of drug addiction. Clin. Psychopharmacol. Neurosci. December 2012, 10 (3): 136–143. doi:10.9758/cpn.2012.10.3.136. PMC 3569166. PMID 23430970. The 35-37 kD ΔFosB isoforms accumulate with chronic drug exposure due to their extraordinarily long half-lives. ... As a result of its stability, the ΔFosB protein persists in neurons for at least several weeks after cessation of drug exposure. ... ΔFosB overexpression in nucleus accumbens induces NFκB ... In contrast, the ability of ΔFosB to repress the c-Fos gene occurs in concert with the recruitment of a histone deacetylase and presumably several other repressive proteins such as a repressive histone methyltransferase 
  118. ^ Nestler EJ. Review. Transcriptional mechanisms of addiction: role of DeltaFosB. Philos. Trans. R. Soc. Lond., B, Biol. Sci. October 2008, 363 (1507): 3245–3255. doi:10.1098/rstb.2008.0067. PMC 2607320. PMID 18640924. Recent evidence has shown that ΔFosB also represses the c-fos gene that helps create the molecular switch—from the induction of several short-lived Fos family proteins after acute drug exposure to the predominant accumulation of ΔFosB after chronic drug exposure 
  119. ^ Amphetamines: Drug Use and Abuse. Merck Manual Home Edition. Merck. February 2003 [2007-02-28]. (原始內容存檔於2007-02-17). 
  120. ^ Perez-Mana C, Castells X, Torrens M, Capella D, Farre M. Pérez-Mañá C, 編. Efficacy of psychostimulant drugs for amphetamine abuse or dependence. Cochrane Database Syst. Rev. September 2013, 9: CD009695. doi:10.1002/14651858.CD009695.pub2. PMID 23996457. 
  121. ^ Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu. Rev. Neurosci. July 2006, 29: 565–598. doi:10.1146/annurev.neuro.29.051605.113009. PMID 16776597. 
  122. ^ 122.0 122.1 122.2 122.3 122.4 122.5 122.6 122.7 Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat. Rev. Neurosci. November 2011, 12 (11): 623–637. doi:10.1038/nrn3111. PMC 3272277. PMID 21989194. 
  123. ^ 123.0 123.1 123.2 123.3 123.4 Steiner H, Van Waes V. Addiction-related gene regulation: risks of exposure to cognitive enhancers vs. other psychostimulants. Prog. Neurobiol. January 2013, 100: 60–80. doi:10.1016/j.pneurobio.2012.10.001. PMC 3525776. PMID 23085425. 
  124. ^ Malenka RC, Nestler EJ, Hyman SE. Chapter 4: Signal Transduction in the Brain. (編) Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience 2nd. New York, USA: McGraw-Hill Medical. 2009: 94. ISBN 9780071481274. 
  125. ^ Kanehisa Laboratories. Alcoholism – Homo sapiens (human). KEGG Pathway. 2014-10-29 [2014-10-31]. 
  126. ^ Kim Y, Teylan MA, Baron M, Sands A, Nairn AC, Greengard P. Methylphenidate-induced dendritic spine formation and DeltaFosB expression in nucleus accumbens. Proc. Natl. Acad. Sci. U.S.A. February 2009, 106 (8): 2915–2920. doi:10.1073/pnas.0813179106. PMC 2650365. PMID 19202072. 
  127. ^ Nestler EJ. Epigenetic mechanisms of drug addiction. Neuropharmacology. January 2014,. 76 Pt B: 259–268. doi:10.1016/j.neuropharm.2013.04.004. PMC 3766384. PMID 23643695. 
  128. ^ 128.0 128.1 Blum K, Werner T, Carnes S, Carnes P, Bowirrat A, Giordano J, Oscar-Berman M, Gold M. Sex, drugs, and rock 'n' roll: hypothesizing common mesolimbic activation as a function of reward gene polymorphisms. J. Psychoactive Drugs. March 2012, 44 (1): 38–55. doi:10.1080/02791072.2012.662112. PMC 4040958. PMID 22641964. 
  129. ^ Pitchers KK, Vialou V, Nestler EJ, Laviolette SR, Lehman MN, Coolen LM. Natural and drug rewards act on common neural plasticity mechanisms with ΔFosB as a key mediator. J. Neurosci. February 2013, 33 (8): 3434–3442. doi:10.1523/JNEUROSCI.4881-12.2013. PMC 3865508. PMID 23426671. 
  130. ^ Beloate LN, Weems PW, Casey GR, Webb IC, Coolen LM. Nucleus accumbens NMDA receptor activation regulates amphetamine cross-sensitization and deltaFosB expression following sexual experience in male rats. Neuropharmacology. February 2016, 101: 154–164. doi:10.1016/j.neuropharm.2015.09.023. PMID 26391065. 
  131. ^ Stoops WW, Rush CR. Combination pharmacotherapies for stimulant use disorder: a review of clinical findings and recommendations for future research. Expert Rev Clin Pharmacol. May 2014, 7 (3): 363–374. doi:10.1586/17512433.2014.909283. PMC 4017926. PMID 24716825. Despite concerted efforts to identify a pharmacotherapy for managing stimulant use disorders, no widely effective medications have been approved. 
  132. ^ Perez-Mana C, Castells X, Torrens M, Capella D, Farre M. Efficacy of psychostimulant drugs for amphetamine abuse or dependence. Cochrane Database Syst. Rev. September 2013, 9: CD009695. doi:10.1002/14651858.CD009695.pub2. PMID 23996457. To date, no pharmacological treatment has been approved for [addiction], and psychotherapy remains the mainstay of treatment. ... Results of this review do not support the use of psychostimulant medications at the tested doses as a replacement therapy 
  133. ^ Forray A, Sofuoglu M. Future pharmacological treatments for substance use disorders. Br. J. Clin. Pharmacol. February 2014, 77 (2): 382–400. doi:10.1111/j.1365-2125.2012.04474.x. PMC 4014020. PMID 23039267. 
  134. ^ 134.0 134.1 Jing L, Li JX. Trace amine-associated receptor 1: A promising target for the treatment of psychostimulant addiction. Eur. J. Pharmacol. August 2015, 761: 345–352. doi:10.1016/j.ejphar.2015.06.019. PMC 4532615. PMID 26092759. Existing data provided robust preclinical evidence supporting the development of TAAR1 agonists as potential treatment for psychostimulant abuse and addiction. 
  135. ^ 135.0 135.1 Malenka RC, Nestler EJ, Hyman SE. Chapter 5: Excitatory and Inhibitory Amino Acids. (編) Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience 2nd. New York, USA: McGraw-Hill Medical. 2009: 124–125. ISBN 9780071481274. 
  136. ^ 136.0 136.1 136.2 Carroll ME, Smethells JR. Sex Differences in Behavioral Dyscontrol: Role in Drug Addiction and Novel Treatments. Front. Psychiatry. February 2016, 6: 175. doi:10.3389/fpsyt.2015.00175. PMC 4745113. PMID 26903885. Physical Exercise
    There is accelerating evidence that physical exercise is a useful treatment for preventing and reducing drug addiction ... In some individuals, exercise has its own rewarding effects, and a behavioral economic interaction may occur, such that physical and social rewards of exercise can substitute for the rewarding effects of drug abuse. ... The value of this form of treatment for drug addiction in laboratory animals and humans is that exercise, if it can substitute for the rewarding effects of drugs, could be self-maintained over an extended period of time. Work to date in [laboratory animals and humans] regarding exercise as a treatment for drug addiction supports this hypothesis. ... Animal and human research on physical exercise as a treatment for stimulant addiction indicates that this is one of the most promising treatments on the horizon.
     
  137. ^ 137.0 137.1 137.2 137.3 Shoptaw SJ, Kao U, Heinzerling K, Ling W. Shoptaw SJ, 編. Treatment for amphetamine withdrawal. Cochrane Database Syst. Rev. April 2009, (2): CD003021. doi:10.1002/14651858.CD003021.pub2. PMID 19370579. The prevalence of this withdrawal syndrome is extremely common (Cantwell 1998; Gossop 1982) with 87.6% of 647 individuals with amphetamine dependence reporting six or more signs of amphetamine withdrawal listed in the DSM when the drug is not available (Schuckit 1999) ... The severity of withdrawal symptoms is greater in amphetamine dependent individuals who are older and who have more extensive amphetamine use disorders (McGregor 2005). Withdrawal symptoms typically present within 24 hours of the last use of amphetamine, with a withdrawal syndrome involving two general phases that can last 3 weeks or more. The first phase of this syndrome is the initial "crash" that resolves within about a week (Gossop 1982;McGregor 2005) ... 
  138. ^ Cantwell, Bernadette; McBride, Andrew J. Self detoxication by amphetamine dependent patients: a pilot study. Drug and Alcohol Dependence (Elsevier BV). 1998, 49 (2): 157–163 [2017-05-09]. doi:10.1016/s0376-8716(97)00160-9. 
  139. ^ Amphetamine-Related Psychiatric Disorders Clinical Presentation: History, Physical, Causes. Medscape Reference. 2015-12-03 [2017-05-09]. 
  140. ^ Adderall IR Prescribing Information (PDF). United States Food and Drug Administration. Teva Pharmaceuticals USA, Inc. October 2015 [2016-05-18]. 
  141. ^ Adderall XR Prescribing Information (PDF). United States Food and Drug Administration. Shire US Inc. December 2013 [2013-12-30]. 
  142. ^ The amphetamine withdrawal syndrome. Department of Health. [2017-05-09]. 
  143. ^ 143.0 143.1 143.2 Self detoxication by amphetamine dependent patients: a pilot study. ScienceDirect.com. 2016-01-01 [2017-05-09]. 
  144. ^ Advokat C. Update on amphetamine neurotoxicity and its relevance to the treatment of ADHD. J. Atten. Disord. July 2007, 11 (1): 8–16. doi:10.1177/1087054706295605. PMID 17606768. 
  145. ^ 145.0 145.1 145.2 145.3 Bowyer JF, Hanig JP. Amphetamine- and methamphetamine-induced hyperthermia: Implications of the effects produced in brain vasculature and peripheral organs to forebrain neurotoxicity. Temperature (Austin). November 2014, 1 (3): 172–182. doi:10.4161/23328940.2014.982049. PMC 5008711 請檢查|pmc=值 (幫助). PMID 27626044. Hyperthermia alone does not produce amphetamine-like neurotoxicity but AMPH and METH exposures that do not produce hyperthermia (≥40°C) are minimally neurotoxic. Hyperthermia likely enhances AMPH and METH neurotoxicity directly through disruption of protein function, ion channels and enhanced ROS production. ... The hyperthermia and the hypertension produced by high doses amphetamines are a primary cause of transient breakdowns in the blood-brain barrier (BBB) resulting in concomitant regional neurodegeneration and neuroinflammation in laboratory animals. ... In animal models that evaluate the neurotoxicity of AMPH and METH, it is quite clear that hyperthermia is one of the essential components necessary for the production of histological signs of dopamine terminal damage and neurodegeneration in cortex, striatum, thalamus and hippocampus. 
  146. ^ Amphetamine. Hazardous Substances Data Bank. United States National Library of Medicine – Toxicology Data Network. [2014-02-26]. Direct toxic damage to vessels seems unlikely because of the dilution that occurs before the drug reaches the cerebral circulation. 
  147. ^ Malenka RC, Nestler EJ, Hyman SE. Chapter 15: Reinforcement and addictive disorders. (編) Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience 2nd. New York, USA: McGraw-Hill Medical. 2009: 370. ISBN 9780071481274. Unlike cocaine and amphetamine, methamphetamine is directly toxic to midbrain dopamine neurons. 
  148. ^ Sulzer D, Zecca L. Intraneuronal dopamine-quinone synthesis: a review. Neurotox. Res. February 2000, 1 (3): 181–195. doi:10.1007/BF03033289. PMID 12835101. 
  149. ^ Miyazaki I, Asanuma M. Dopaminergic neuron-specific oxidative stress caused by dopamine itself (PDF). Acta Med. Okayama. June 2008, 62 (3): 141–150. PMID 18596830. 
  150. ^ Hofmann FG. A Handbook on Drug and Alcohol Abuse: The Biomedical Aspects 2nd. New York, USA: Oxford University Press. 1983: 329. ISBN 9780195030570. 
  151. ^ 151.00 151.01 151.02 151.03 151.04 151.05 151.06 151.07 151.08 151.09 151.10 Adderall XR Prescribing Information (PDF). United States Food and Drug Administration. Shire US Inc: 8–10. December 2013 [2013-12-30]. 
  152. ^ Krause J. SPECT and PET of the dopamine transporter in attention-deficit/hyperactivity disorder. Expert Rev. Neurother. April 2008, 8 (4): 611–625. doi:10.1586/14737175.8.4.611. PMID 18416663. Zinc binds at ... extracellular sites of the DAT [103], serving as a DAT inhibitor. In this context, controlled double-blind studies in children are of interest, which showed positive effects of zinc [supplementation] on symptoms of ADHD [105,106]. It should be stated that at this time [supplementation] with zinc is not integrated in any ADHD treatment algorithm. 
  153. ^ Sulzer D. How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron. February 2011, 69 (4): 628–649. doi:10.1016/j.neuron.2011.02.010. PMC 3065181. PMID 21338876. They did not confirm the predicted straightforward relationship between uptake and release, but rather that some compounds including AMPH were better releasers than substrates for uptake. Zinc, moreover, stimulates efflux of intracellular [3H]DA despite its concomitant inhibition of uptake (Scholze et al., 2002). 
  154. ^ 154.0 154.1 Scholze P, Nørregaard L, Singer EA, Freissmuth M, Gether U, Sitte HH. The role of zinc ions in reverse transport mediated by monoamine transporters. J. Biol. Chem. June 2002, 277 (24): 21505–21513. doi:10.1074/jbc.M112265200. PMID 11940571. The human dopamine transporter (hDAT) contains an endogenous high affinity Zn2+ binding site with three coordinating residues on its extracellular face (His193, His375, and Glu396). ... Although Zn2+ inhibited uptake, Zn2+ facilitated [3H]MPP+ release induced by amphetamine, MPP+, or K+-induced depolarization specifically at hDAT but not at the human serotonin and the norepinephrine transporter (hNET). 
  155. ^ Scassellati C, Bonvicini C, Faraone SV, Gennarelli M. Biomarkers and attention-deficit/hyperactivity disorder: a systematic review and meta-analyses. J. Am. Acad. Child Adolesc. Psychiatry. October 2012, 51 (10): 1003–1019.e20. doi:10.1016/j.jaac.2012.08.015. PMID 23021477. With regard to zinc supplementation, a placebo controlled trial reported that doses up to 30 mg/day of zinc were safe for at least 8 weeks, but the clinical effect was equivocal except for the finding of a 37% reduction in amphetamine optimal dose with 30 mg per day of zinc.110 
  156. ^ 156.00 156.01 156.02 156.03 156.04 156.05 156.06 156.07 156.08 156.09 156.10 156.11 Eiden LE, Weihe E. VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Ann. N. Y. Acad. Sci. January 2011, 1216: 86–98. doi:10.1111/j.1749-6632.2010.05906.x. PMC 4183197. PMID 21272013. VMAT2 is the CNS vesicular transporter for not only the biogenic amines DA, NE, EPI, 5-HT, and HIS, but likely also for the trace amines TYR, PEA, and thyronamine (THYR) ... [Trace aminergic] neurons in mammalian CNS would be identifiable as neurons expressing VMAT2 for storage, and the biosynthetic enzyme aromatic amino acid decarboxylase (AADC). ... AMPH release of DA from synapses requires both an action at VMAT2 to release DA to the cytoplasm and a concerted release of DA from the cytoplasm via "reverse transport" through DAT. 
  157. ^ 157.0 157.1 Maguire JJ, Davenport AP. TA1 receptor. IUPHAR database. International Union of Basic and Clinical Pharmacology. 2014-12-02 [2014-12-08]. 
  158. ^ Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A. July 2001, 98 (16): 8966–8971. doi:10.1073/pnas.151105198. PMC 55357. PMID 11459929. 
  159. ^ 159.0 159.1 159.2 159.3 159.4 Underhill SM, Wheeler DS, Li M, Watts SD, Ingram SL, Amara SG. Amphetamine modulates excitatory neurotransmission through endocytosis of the glutamate transporter EAAT3 in dopamine neurons. Neuron. July 2014, 83 (2): 404–416. doi:10.1016/j.neuron.2014.05.043. PMC 4159050. PMID 25033183. AMPH also increases intracellular calcium (Gnegy et al., 2004) that is associated with calmodulin/CamKII activation (Wei et al., 2007) and modulation and trafficking of the DAT (Fog et al., 2006; Sakrikar et al., 2012). ... For example, AMPH increases extracellular glutamate in various brain regions including the striatum, VTA and NAc (Del Arco et al., 1999; Kim et al., 1981; Mora and Porras, 1993; Xue et al., 1996), but it has not been established whether this change can be explained by increased synaptic release or by reduced clearance of glutamate. ... DHK-sensitive, EAAT2 uptake was not altered by AMPH (Figure 1A). The remaining glutamate transport in these midbrain cultures is likely mediated by EAAT3 and this component was significantly decreased by AMPH 
  160. ^ 160.0 160.1 SLC18 family of vesicular amine transporters. IUPHAR database. International Union of Basic and Clinical Pharmacology. [2015-11-13]. 
  161. ^ 161.0 161.1 161.2 161.3 SLC1A1 solute carrier family 1 (neuronal/epithelial high affinity glutamate transporter, system Xag), member 1 [ Homo sapiens (human) ]. NCBI Gene. United States National Library of Medicine – National Center for Biotechnology Information. [2014-11-11]. Amphetamine modulates excitatory neurotransmission through endocytosis of the glutamate transporter EAAT3 in dopamine neurons. ... internalization of EAAT3 triggered by amphetamine increases glutamatergic signaling and thus contributes to the effects of amphetamine on neurotransmission. 
  162. ^ Zhu HJ, Appel DI, Gründemann D, Markowitz JS. Interaction of organic cation transporter 3 (SLC22A3) and amphetamine. J. Neurochem. July 2010, 114 (1): 142–149. doi:10.1111/j.1471-4159.2010.06738.x. PMC 3775896. PMID 20402963. 
  163. ^ Rytting E, Audus KL. Novel organic cation transporter 2-mediated carnitine uptake in placental choriocarcinoma (BeWo) cells. J. Pharmacol. Exp. Ther. January 2005, 312 (1): 192–198. doi:10.1124/jpet.104.072363. PMID 15316089. 
  164. ^ Inazu M, Takeda H, Matsumiya T. [The role of glial monoamine transporters in the central nervous system]. Nihon Shinkei Seishin Yakurigaku Zasshi. August 2003, 23 (4): 171–178. PMID 13677912 (Japanese). 
  165. ^ 165.0 165.1 165.2 Vicentic A, Jones DC. The CART (cocaine- and amphetamine-regulated transcript) system in appetite and drug addiction. J. Pharmacol. Exp. Ther. February 2007, 320 (2): 499–506. doi:10.1124/jpet.105.091512. PMID 16840648. The physiological importance of CART was further substantiated in numerous human studies demonstrating a role of CART in both feeding and psychostimulant addiction. ... Colocalization studies also support a role for CART in the actions of psychostimulants. ... CART and DA receptor transcripts colocalize (Beaudry et al., 2004). Second, dopaminergic nerve terminals in the NAc synapse on CART-containing neurons (Koylu et al., 1999), hence providing the proximity required for neurotransmitter signaling. These studies suggest that DA plays a role in regulating CART gene expression possibly via the activation of CREB. 
  166. ^ 166.0 166.1 166.2 Biomolecular Interactions and Pathways. Amphetamine. PubChem Compound. United States National Library of Medicine – National Center for Biotechnology Information. [2013-10-13]. 
  167. ^ Zhang M, Han L, Xu Y. Roles of cocaine- and amphetamine-regulated transcript in the central nervous system. Clin. Exp. Pharmacol. Physiol. June 2012, 39 (6): 586–592. doi:10.1111/j.1440-1681.2011.05642.x. PMID 22077697. Recently, it was demonstrated that CART, as a neurotrophic peptide, had a cerebroprotective against focal ischaemic stroke and inhibited the neurotoxicity of β-amyloid protein, which focused attention on the role of CART in the central nervous system (CNS) and neurological diseases. ... The literature indicates that there are many factors, such as regulation of the immunological system and protection against energy failure, that may be involved in the cerebroprotection afforded by CART 
  168. ^ 168.0 168.1 Rogge G, Jones D, Hubert GW, Lin Y, Kuhar MJ. CART peptides: regulators of body weight, reward and other functions. Nat. Rev. Neurosci. October 2008, 9 (10): 747–758. doi:10.1038/nrn2493. PMC 4418456. PMID 18802445. Several studies on CART (cocaine- and amphetamine-regulated transcript)-peptide-induced cell signalling have demonstrated that CART peptides activate at least three signalling mechanisms. First, CART 55–102 inhibited voltage-gated L-type Ca2+ channels ... 
  169. ^ Lin Y, Hall RA, Kuhar MJ. CART peptide stimulation of G protein-mediated signaling in differentiated PC12 cells: identification of PACAP 6–38 as a CART receptor antagonist. Neuropeptides. October 2011, 45 (5): 351–358. doi:10.1016/j.npep.2011.07.006. PMC 3170513. PMID 21855138. 
  170. ^ Monoamine oxidase (Homo sapiens). BRENDA. Technische Universität Braunschweig. 2014-01-01 [2014-05-04]. 
  171. ^ 171.0 171.1 171.2 Targets. Amphetamine. T3DB. University of Alberta. [2015-02-24]. 
  172. ^ 172.0 172.1 Toll L, Berzetei-Gurske IP, Polgar WE, Brandt SR, Adapa ID, Rodriguez L, Schwartz RW, Haggart D, O'Brien A, White A, Kennedy JM, Craymer K, Farrington L, Auh JS. Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications. NIDA Res. Monogr. March 1998, 178: 440–466. PMID 9686407. 
  173. ^ 173.0 173.1 Finnema SJ, Scheinin M, Shahid M, Lehto J, Borroni E, Bang-Andersen B, Sallinen J, Wong E, Farde L, Halldin C, Grimwood S. Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology (Berl.). November 2015, 232 (21–22): 4129–4157. doi:10.1007/s00213-015-3938-6. PMC 4600473. PMID 25921033. More recently, Colasanti and colleagues reported that a pharmacologically induced elevation in endogenous opioid release reduced [11C]carfentanil binding in several regions of the human brain, including the basal ganglia, frontal cortex, and thalamus (Colasanti et al. 2012). Oral administration of d-amphetamine, 0.5 mg/kg, 3 h before [11C]carfentanil injection, reduced BPND values by 2–10 %. The results were confirmed in another group of subjects (Mick et al. 2014). However, Guterstam and colleagues observed no change in [11C]carfentanil binding when d-amphetamine, 0.3 mg/kg, was administered intravenously directly before injection of [11C]carfentanil (Guterstam et al. 2013). It has been hypothesized that this discrepancy may be related to delayed increases in extracellular opioid peptide concentrations following amphetamine-evoked monoamine release (Colasanti et al. 2012; Mick et al. 2014). 
  174. ^ 174.0 174.1 Loseth GE, Ellingsen DM, Leknes S. State-dependent μ-opioid modulation of social motivation. Front. Behav. Neurosci. December 2014, 8: 1–15. doi:10.3389/fnbeh.2014.00430. PMC 4264475. PMID 25565999. Similar MOR activation patterns were reported during positive mood induced by an amusing video clip (Koepp et al., 2009) and following amphetamine administration in humans (Colasanti et al., 2012). 
  175. ^ 175.0 175.1 Colasanti A, Searle GE, Long CJ, Hill SP, Reiley RR, Quelch D, Erritzoe D, Tziortzi AC, Reed LJ, Lingford-Hughes AR, Waldman AD, Schruers KR, Matthews PM, Gunn RN, Nutt DJ, Rabiner EA. Endogenous opioid release in the human brain reward system induced by acute amphetamine administration. Biol. Psychiatry. September 2012, 72 (5): 371–377. doi:10.1016/j.biopsych.2012.01.027. PMID 22386378. 
  176. ^ 176.0 176.1 176.2 Gunne LM. Effects of Amphetamines in Humans. Drug Addiction II: Amphetamine, Psychotogen, and Marihuana Dependence. Berlin, Germany; Heidelberg, Germany: Springer. 2013: 247–260 [2015-12-04]. ISBN 9783642667091. 
  177. ^ 177.0 177.1 177.2 Oswald LM, Wong DF, McCaul M, Zhou Y, Kuwabara H, Choi L, Brasic J, Wand GS. Relationships among ventral striatal dopamine release, cortisol secretion, and subjective responses to amphetamine. Neuropsychopharmacology. April 2005, 30 (4): 821–832. doi:10.1038/sj.npp.1300667. PMID 15702139. Findings from several prior investigations have shown that plasma levels of glucocorticoids and ACTH are increased by acute administration of AMPH in both rodents and humans 
  178. ^ 178.0 178.1 Lewin AH, Miller GM, Gilmour B. Trace amine-associated receptor 1 is a stereoselective binding site for compounds in the amphetamine class. Bioorg. Med. Chem. December 2011, 19 (23): 7044–7048. doi:10.1016/j.bmc.2011.10.007. PMC 3236098. PMID 22037049. 
  179. ^ 179.0 179.1 Maguire JJ, Parker WA, Foord SM, Bonner TI, Neubig RR, Davenport AP. International Union of Pharmacology. LXXII. Recommendations for trace amine receptor nomenclature. Pharmacol. Rev. March 2009, 61 (1): 1–8. doi:10.1124/pr.109.001107. PMC 2830119. PMID 19325074. 
  180. ^ Vaughan RA, Foster JD. Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol. Sci. September 2013, 34 (9): 489–496. doi:10.1016/j.tips.2013.07.005. PMC 3831354. PMID 23968642. 
  181. ^ Ledonne A, Berretta N, Davoli A, Rizzo GR, Bernardi G, Mercuri NB. Electrophysiological effects of trace amines on mesencephalic dopaminergic neurons. Front. Syst. Neurosci. July 2011, 5: 56. doi:10.3389/fnsys.2011.00056. PMC 3131148. PMID 21772817. 
  182. ^ mct. TAAR1. GenAtlas. University of Paris. 2012-01-28 [2014-05-29].
     · tonically activates inwardly rectifying K(+) channels, which reduces the basal firing frequency of dopamine (DA) neurons of the ventral tegmental area (VTA)
     
  183. ^ Revel FG, Moreau JL, Gainetdinov RR, Bradaia A, Sotnikova TD, Mory R, Durkin S, Zbinden KG, Norcross R, Meyer CA, Metzler V, Chaboz S, Ozmen L, Trube G, Pouzet B, Bettler B, Caron MG, Wettstein JG, Hoener MC. TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc. Natl. Acad. Sci. U.S.A. May 2011, 108 (20): 8485–8490. doi:10.1073/pnas.1103029108. PMC 3101002. PMID 21525407. 
  184. ^ 184.0 184.1 184.2 Sulzer D, Cragg SJ, Rice ME. Striatal dopamine neurotransmission: regulation of release and uptake. Basal Ganglia. August 2016, 6 (3): 123–148. doi:10.1016/j.baga.2016.02.001. PMC 4850498. PMID 27141430. Despite the challenges in determining synaptic vesicle pH, the proton gradient across the vesicle membrane is of fundamental importance for its function. Exposure of isolated catecholamine vesicles to protonophores collapses the pH gradient and rapidly redistributes transmitter from inside to outside the vesicle. ... Amphetamine and its derivatives like methamphetamine are weak base compounds that are the only widely used class of drugs known to elicit transmitter release by a non-exocytic mechanism. As substrates for both DAT and VMAT, amphetamines can be taken up to the cytosol and then sequestered in vesicles, where they act to collapse the vesicular pH gradient. 
  185. ^ Richard RA. Route of Administration. Chapter 5—Medical Aspects of Stimulant Use Disorders. National Center for Biotechnology Information Bookshelf. Treatment Improvement Protocol 33. Substance Abuse and Mental Health Services Administration. 1999. 
  186. ^ 186.0 186.1 186.2 Vyvanse Prescribing Information (PDF). United States Food and Drug Administration. Shire US Inc: 12–16. January 2015 [2015-02-24]. 
  187. ^ 187.0 187.1 Substrate/Product. butyrate-CoA ligase. BRENDA. Technische Universität Braunschweig. [2014-05-07]. 
  188. ^ 188.0 188.1 Substrate/Product. glycine N-acyltransferase. BRENDA. Technische Universität Braunschweig. [2014-05-07]. 
  189. ^ 引用錯誤:沒有為名為sympathomimetics的參考文獻提供內容
  190. ^ 引用錯誤:沒有為名為metabolites的參考文獻提供內容
  191. ^ 引用錯誤:沒有為名為norephedrine的參考文獻提供內容

參見[編輯]

外部連結[編輯]