直言三段论

维基百科,自由的百科全书

直言三段论是所有前提都是直言命题演绎推理。前两个命题被分别称为大前提小前提[1]。如果这个三段论是有效的,这两个前提逻辑上蕴涵了最后的命题,它叫做结论。结论的真实性建立在前提的真实性和它们之间的联系之上:中项在前提中必须周延(distribute)至少一次,形成在结论中的主词和谓词之间的连接。例如:

所有生物都会死。
所有人都是生物。
所以,所有人都会死。

这里的中项“生物”在大前提中周延,小项“人”在小前提和结论中周延,大项“会死者”在前提和结论中都不周延。一些直言三段论不是有效的,例如:

所有鸟都有翅膀。
所有人都不是鸟。
所以,没有人有翅膀。

即使此例子的两个前提和结论都是正确的,中项“鸟”在大前提和小前提中周延,小项“人”在小前提和结论中周延,大项“有翅膀者”在结论中周延;此三段论却是一种大项不当谬误,比如将小项换为“昆虫”即显而易见;其原因是在结论中周延的词项,在前提中也必须周延。

语气和格式[编辑]

对立四边形图,揭示传统逻辑四种命题语气的关系,红色表示非空,黑色表示空。

三段论有如下典型形式:

大前提:所有M是P。
小前提:所有S是M。
结论:所有S是P。

其中S代表结论的主词Subject),P代表结论的谓词Predicate),M代表中词(Middle)。

三段论的命题可分为全称(universal)、特称(particular),及肯定、否定,组合起来有以下四类语气(Mood):

类型 代号 形式 范例
全称肯定型 A(SaP) 所有S是P 所有人是会死的
全称否定型 E(SeP) 没有S是P 没有人是完美的
特称肯定型 I(SiP) 有些S是P 有些人是健康的
特称否定型 O(SoP) 有些S不是P 有些人不是健康的

三段论中,结论中的谓词称作大词(P,或称大项),包含大词在内的前提称作大前提;结论中的主词称作小词(S,或称小项),包含小词在内的前提称作小前提;没有出现在结论,却在两个前提重复出现的称作中词(M,或称中项)。大词、中词、小词依不同排列方式,可分成四种(Figure):

第1格 第2格 第3格 第4格
大前提 M-P P-M M-P P-M
小前提 S-M S-M M-S M-S
结论 S-P S-P S-P S-P

将以上整合在一起,三段论的大前提、小前提、结论分别可为AEIO型命题之一,又可分为4格,故总共有256种三段论(若考虑大前提与小前提对调,便有512种,但逻辑上是相同的)。

三段论依语气与格的分类缩写,例如AAA-1(也可以写成1-AAA)代表“大前提为A型,小前提为A型,结论为A型,第1格”的三段论。

此外,三段论的四种格之间可相互转换:

  • 第1格:对换大前提的主词和谓词的位置就变成第2格,对换小前提的主词和谓词的位置就变成第3格。
  • 第2格:对换大前提的主词和谓词的位置就变成第1格,对换小前提的主词和谓词的位置就变成第4格。
  • 第3格:对换大前提的主词和谓词的位置就变成第4格,对换小前提的主词和谓词的位置就变成第1格。
  • 第4格:对换大前提的主词和谓词的位置就变成第3格,对换小前提的主词和谓词的位置就变成第2格。

EI命题对换主词和谓词的位置而保持同原命题等价。A命题和O命题不能对换主词和谓词的位置,但是可以采用直接推理中的“对置法”。A命题还可以在确实主词有元素存在的前提下,转换成弱于原命题的I命题后再对换主词和谓词的位置。

有效性[编辑]

考虑各种直言三段论的有效性将是非常冗长耗时的。前人想出了三个可供选择的方法来找出有效性。方法之一是记住下一章节中列出的所有论式。

还可以通过构造文氏图的方法得到有效形式。因为有三种项,文氏图需要三个交叠的圆圈来表示每一个类。首先,为小项构造一个圆圈。临近小项的圆圈的是同小项有着交叠的大项的圆圈。在这两个圆圈之上是中项的圆圈。它应当在三个位置有着交叠:大项,小项和大项与小项交叠的地方。一个三段论是有效的,其必然条件是通过图解两个前提得出结论的真实性。永不图解结论,因为结论必须从前提推导出来。总是首先图解全称命题。这是通过对一个类在另一个类中没有成员的区域加黑影来实现的。所以在前面例子的AAA-1形式中大前提“所有M是P”中,对M不与P交叠的所有区域加黑影,包括M与S交叠的部分。接着对小前提重复同样的过程。从这两个前提中可推导出在类S中所有成员也是类P的成员。但是,不能推出类P的所有成员都是类S的成员。

作为文氏图方法的另一个例子,考虑形式EIO-1的三段论。它的大前提是“没有M是P”,它的小前提是“有些S是M”,它的结论是“有些S不是P”。这个三段论的大项是P,它的小项是S,它的中项是M。大前提在图中通过对交集M ∩ P加阴影表示。小前提不能通过对任何区域加黑影表示。转而,我们可以在交集S ∩ M的非黑影部分使用x符号来表示“有些S是M”。(注意:黑影区域和存在量化区域是互斥的)。接着因为存在符号位于S内但在P外,所以结论“存在一些S不是P”是正确的。

本文最后一节列出了所有24个有效论式的文氏图。

最后一种方法是记住下面非形式表述的几条规则以避免谬论。尽管文氏图对于诠释目的是好工具,有人更喜欢用这些规则来检验有效性。

基本规则:

  1. 结论中周延的词必须在前提中周延(谬误:大词不当小词不当)。
  2. 中词必须周延至少一次(谬误:中词不周延)。
  3. 结论中否定命题的数目必须和前提中否定命题的数目相等:
    1. 二前提皆肯定,则结论必须为肯定(谬误:肯定前提推得否定结论)。
    2. 一前提是否定,则结论必须为否定(谬误:否定前提推得肯定结论)。
    3. 二前提皆否定,则三段论必无效(谬误:排它前提谬误)。
  4. 结论中特称命题的数目必须和前提中特称命题的数目相等:
    1. 二前提皆全称,则结论必须为全称。
    2. 一前提是特称,则结论必须为特称。
    3. 二前提皆特称,则三段论必无效。

若一个三段论式满足以上的所有规则,就必定有效。

其他检查:

  • 如果语境上不能假设所有提及的集合非,部分推论将会无效(谬误:存在谬误)。
  • 必须包含严格的三个词,不多不少。且须注意所有关键词和结构的语义是否一致(谬误:四词谬误歧义谬误)。

有效三段论式[编辑]

唯有第一格的所有有效三段论式的结论涵盖了AEIO全部四种命题,第二格的所有有效三段论式皆为否定结论(EO),第三格的所有有效三段论式皆为特称结论(IO),第四格的所有有效三段论式皆为否定结论或特称结论(EIO)。下面表格中加下划线者必须假设所有提及的集合非空才有效。

第1格 第2格 第3格 第4格
AAA AEE AAI AAI
EAE EAE EAO EAO
AII AOO AII AEE
EIO EIO EIO EIO
AAI AEO IAI IAI
EAO EAO OAO AEO

在全部256种三段论式中,有24种有效,但是如果不能确定所有提及的集合为非空,则只有15种有效。

常犯的无效三段论式[编辑]

1-AEE, 1-AEO, 1-EEA, 1-EEE, 1-EEI, 1-AIA, 1-IAA, 1-IAI, 1-III, 1-AOO, 1-OAO, 1-IEO
2-AAA, 2-AAI, 2-AII, 2-IAI, 2-OAO, 2-IEO, 2-EOI, 2-OEI, 2-IOO, 2-OIO
3-AAA, 3-AEE, 3-EAE, 3-AEO, 3-AOO, 3-AIA, 3-IAA, 3-III, 3-EOI, 3-OEI, 3-IEO
4-AAA, 4-EAE, 4-AII, 4-IEO

三段论式列表[编辑]

总共有19个有效的论式,算结论弱化(全称弱化为特称)的5个论式则为24个有效论式,其中每一格刚好各有6个有效论式。为便于记忆,中世纪的学者将这些有效论式分别取了对应的拉丁语名字,每个名字的加了下划线的元音即是对应的语气:

第1格 第2格 第3格 第4格
Barbara Camestres Darapti Bamalip
Celarent Cesare Felapton Fesapo
Darii Baroco Datisi Calemes
Ferio Festino Ferison Fresison
Barbari Camestros Disamis   Dimaris
Celaront Cesaro Bocardo Calemos

经典三段论式[编辑]

下面列出的是亚里士多德的《前分析篇》中关于前3个格的14个三段论式。

第1格[编辑]

  • AAA(Barbara)

 所有M是P。
 所有S是M。
所有S是P。

  • EAE(Celarent)

 没有M是P。
 所有S是M。
没有S是P。

  • AII(Darii)

 所有M是P。
 有些S是M。
有些S是P。

  • EIO(Ferio)

 没有M是P。
 有些S是M。
有些S不是P。

第2格[编辑]

  • AEE(Camestres)

 所有P是M。
 没有S是M。
没有S是P。

(AEE-2是AEE-4的等价形式。这种形式还有其他推导方法。)[2]

  • EAE(Cesare)

 没有P是M。
 所有S是M。
没有S是P。

(EAE-2是EAE-1的等价形式。)

  • AOO(Baroco)

 所有P是M。
 有些S不是M。
有些S不是P。

(这种形式还有其他推导方法。)[3]

  • EIO(Festino)

 没有P是M。
 有些S是M。
有些S不是P。

(EIO-2是EIO-1的等价形式。)

第3格[编辑]

  • AAI(Darapti)

 所有M是P。
 所有M是S。
有些S是P。
(这种形式需要假定有些M确实存在。)[4]

  • EAO(Felapton)

 没有M是P。
 所有M是S。
有些S不是P。
(这种形式需要假定有些M确实存在。)[5]

  • AII(Datisi)

 所有M是P。
 有些M是S。
有些S是P。

(AII-3是AII-1的等价形式。)

  • EIO(Ferison)

 没有M是P。
 有些M是S。
有些S不是P。

(EIO-3是EIO-1的等价形式。)

  • IAI(Disamis)

 有些M是P。
 所有M是S。
有些S是P。

(IAI-3是IAI-4的等价形式。)

  • OAO(Bocardo)

 有些M不是P。
 所有M是S。
有些S不是P。

(这种形式还有其他推导方法。)[6]

增补的论式[编辑]

第4格由亚里士多德的学生泰奥弗拉斯托斯补充[7]

第4格[编辑]

  • AAI(Bamalip)

 所有P是M。
 所有M是S。
有些S是P。
(这种形式需要假定有些P确实存在。)

  • EAO(Fesapo)

 没有P是M。
 所有M是S。
有些S不是P。

(这种形式需要假定有些M确实存在。)[8]

(EAO-4是EAO-3的等价形式。)

  • AEE(Calemes)

 所有P是M。
 没有M是S。
没有S是P。

  • EIO(Fresison)

 没有P是M。
 有些M是S。
有些S不是P。

(EIO-4是EIO-1的等价形式。)

  • IAI(Dimaris)

 有些P是M。
 所有M是S。
有些S是P。

结论弱化的论式[编辑]

历史上,AAI-3、EAO-3、AAI-4、EAO-4的拉丁语名字中有字母“p”,用来指示出这些论式通过引入了某个词项确实有元素存在的前提,将一个A命题弱化成了I命题。后人认为它们不是直言的即不是无条件的,这个问题被称为存在性引入问题

在假定结论的主词确定有成员存在的前提下,可将论式中的结论A弱化为结论I,结论E弱化为结论O,它们也可以被增补为有效论式,从而得到所有可能的24有效论式。结论弱化论式有5个:AAI-1(Barbari),即弱化的AAA-1;EAO-1(Celaront),即弱化的EAE-1;AEO-2(Camestros),即弱化的AEE-2;EAO-2(Cesaro),即弱化的EAE-2;AEO-4(Calemos),即弱化的AEE-4。AAI-1的结论同于AII-1的结论,EAO-1、EAO-2的结论同于EIO-1的结论,AEO-2、AEO-4的结论同于AOO-2的结论,需要注意结论弱化论式原来的结论依然成立。

谓词演算公式的注解[编辑]

按照布尔逻辑集合代数的观点,三段论可以解释为:集合和集合有某种二元关系,并且集合和集合有某种二元关系,从而推论出集合和集合是否存在进而为何种可确定的二元关系。两个集合之间的二元关系用直言命题可确定的有四种:

  • A(全称肯定)命题:所有的元素是的元素,确定了包含于”的关系,子集超集,这是一种偏序关系包含于,并且包含于,则包含于A命题允许两个推理方向,从元素属于推出它属于,从元素不属于推出它不属于A命题确定了差集空集
  • E(全称否定)命题:所有的元素不是的元素,确定了是“无交集”的关系,这是一种对称关系无交集于,同于无交集于E命题允许两个推理方向,从元素属于推出它不属于,从元素属于推出它不属于E命题确定了交集空集
  • I(特称肯定)命题:有些的元素是的元素,确定了是“有交集”的关系,这是一种对称关系有交集于,同于有交集于I命题确定了交集不是空集
  • O(特称否定)命题:有些的元素不是的元素,确定了“不包含于”的关系。O命题确定了差集不是空集

两个全称命题可以推出一个新的全称命题,一个全称命题和一个特称命题可以推出一个新的特称命题,两个特称命题无法推理。A命题可以和所有四种命题组合。E命题还可以和I命题组合,两个否定命题和IE组合,不能得出属于四种命题之一的结论。故而有效的论式,要在AAAEEAAIIAAOOAEI这8种组合乘以4种格,共32种情况中找出。

AA组合中AAA-1是直接推出的;第4格AA组合推论出谓词包含于主词的关系,这不是四种命题之一,只能在谓词确实有元素存在的前提下弱化为AAI-4。AE组合中AEE-4是直接推出的,EA组合中EAE-1是直接推出的。第3格AA组合和EA组合,在中项确定有元素存在的前提下,形成AAI-3和EAO-3。AAA-1、AAI-4、AAI-3没有等价者。通过对换其前提E命题中主词和谓词的位置,从AEE-4得出其等价者AEE-2,从EAE-1的得出其等价者EAE-2,从EAO-3得出其等价者EAO-4。

AII-1、IAI-4是直接推出的,通过对换其前提I命题中主词和谓词的位置,从AII-1得出其等价者AII-3,从IAI-4得出其等价者IAI-3。AOO-2和OAO-3在历史上采用了反证法,这里采用了直接推理中的“对置法”,AOO-2、OAO-3没有等价者。EIO-1是直接推出的,通过对换其前提E命题及/或英语And/orI命题中主词和谓词的位置,从EIO-1得出其等价者EIO-2、EIO-3、EIO-4。

24论式图示[编辑]

下表以文氏图展示24个有效直言三段论,不同栏表示不同的前提,不同外框颜色表示不同的结论,需要存在性预设的推理以虚线与斜体字标示。

AA AE AI AO EI
AAA AAI AEE AEO EAE EAO AII IAI AOO OAO EIO
1
Barbara

Barbari

Celarent

Celaront

Darii

Ferio
2
Camestres

Camestros

Cesare

Cesaro

Baroco

Festino
3
Darapti

Felapton

Datisi

Disamis

Bocardo

Ferison
4
Bamalip

Calemes

Calemos

Fesapo

Dimatis

Fresison

参见[编辑]

注解[编辑]

  1. ^ 中国社会科学院语言研究所词典编辑室. 现代汉语词典 2016年9月第七版. 商务印书馆. 2016: 1121-1122 [2020-07-05]. ISBN 978-7-100-12450-8 (中文(大陆简体)). .......【三段论】.......由大前提和小前提推出结论。如“凡金属都能导电”(大前提),“铜是金属”(小前提),“所以铜能导电”(结论)。....... 
  2. ^ 这个论式还可以推导为:
  3. ^ 这个论式还可以采用反证法来推导:
  4. ^ 直接结论是:所有M是P且S。
  5. ^ 直接结论是:所有M是S且非P。
  6. ^ 这个论式还可以采用反证法来推导:
  7. ^ 亚里士多德前分析篇》里关于AEE-2的论证中,对小前提进行对换主词与谓词位置之后,得出第4格的AEE-4,亚里士多德称之为再次得到了第1格,没有因为大项和小项位置颠倒而专门称之为第4格。在亚里士多德的定义中第1格为中项既是一个前提的主词又是另一个前提的谓词。第4格中有4个论式是其他格的等价形式、1个论式是结论弱化形式,因此亚里士多德三段论体系并无缺失。
  8. ^ 直接结论是:所有M是S且非P。

引用[编辑]

外部链接[编辑]

传统逻辑三段论
形式直言三段论 | 选言三段论 | 假言三段论 | 复合三段论 | 准三段论 | 统计三段论
其他对立四边形 | 布尔三段论 | 三段论谬论