双曲线

维基百科,自由的百科全书
跳转至: 导航搜索

数学中,双曲线希腊语ὑπερβολή」字面意思是“超过”或“超出”)是定义为平面交截直角圆锥面的两半的一类圆锥曲线

它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这裡的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的半实轴。焦点位于贯穿轴上它们的中间点叫做中心。

从代数上说,双曲线是在笛卡尔平面上由如下方程定义的曲线

A x^2 + B xy + C y^2 + D x + E y + F = 0

使得B^2 > 4 AC \,,这裡的所有系数都是实数,并存在定义在双曲线上的点对(x, y)的多于一个的解。

注意在笛卡尔坐标平面上两个互为倒数的变量的图像是双曲线。

等轴双曲线:一双曲线的实轴与虚轴长相等即:2a=2be=\sqrt{2},这时渐近线方程为: y = \pm x(无论焦点在x轴还是y轴)

共轭双曲线:双曲线S'的实轴是双曲线S的虚轴且双曲线S'的虚轴是双曲线S的实轴时,称双曲线S'与双曲线S为共轭双曲线。 几何表达:S: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 S': \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 特点:(1)共渐近线;与渐近线平行的直线和双曲线有且只有一个交点 (2)焦距相等 (3)两双曲线的离心率平方后的倒数相加等于1

定义[编辑]

前两个上面已经列出了:

  • 平面切直角圆锥面的两半的交截线。
  • 与两个固定点(叫做焦点)距离差为常数的点的轨迹
  • 到一个焦点的距离和到一个线(叫做准线)的距离的比例是大于1的常数的点的轨迹。这个常数叫做双曲线的偏心率
共轭单位直角双曲线

双曲线由分开两个焦点的两个分离的叫做臂或分支的曲线构成。随着到焦点的距离的变大,双曲线就越逼近叫做渐近线的两条线。渐近线交叉于双曲线的中点,并对于东西开口的双曲线有斜率\pm \frac{b}{a},对于北南开口的双曲线有斜率\pm \frac{a}{b}

双曲线有个性质,出自一个焦点的射线反射于双曲线后看起来像是出自另一个焦点。

双曲线的一个特殊情况是“等轴”或“直角”双曲线,它的渐近线交于直角。以坐标轴作为渐近线的直角双曲线由方程xy=c给出,这裡的c是常数。

如同正弦和余弦函数给出椭圆参数方程双曲函数给出双曲线的参数方程。

如果对双曲线方程交换xy,得到它的共轭双曲线。共轭双曲线有同样的渐近线。

笛卡尔坐标[编辑]

中心位于(h,k)的左右开口的双曲线:

\frac{\left( x-h \right)^2}{a^2} - \frac{\left( y-k \right)^2}{b^2} = 1

中心位于(h,k)的上下开口的双曲线:

\frac{\left( y-k \right)^2}{a^2} - \frac{\left( x-h \right)^2}{b^2} = 1

实轴贯穿双曲线的中心并交双曲线两臂于它们的顶点(拐点)。焦点位于双曲线实轴的延长线上。虚轴贯穿双曲线中点并垂直于实轴。

在两个公式中,a半实轴(在双曲线两臂之间沿着实轴测量的距离),而b是半虚轴

如果用双曲线的两个顶点的切线交渐近线形成一个矩形,在切线上的两边的长度是2b,平行于实轴的两边的长度是2a,注意b可以大于a

如果计算从双曲线上任意准线上的点到每个焦点的距离,这两个距离的差的绝对值总是2a

直角双曲线y=\tfrac{1}{x}的图像。

离心率给出自

e = \sqrt{1+\frac{b^2}{a^2}}

左右开口的双曲线的焦点是

\left(h\pm c, k\right)这裡的c给出自c^2 = a^2 + b^2

上下开口的双曲线的焦点是

\left( h, k\pm c\right)这裡的c给出自c^2 = a^2 + b^2

对于以直线x=h和直线y=k为渐近线的直角双曲线:

(x-h)(y-k) = c

这种双曲线最简单的例子是

y=\frac{m}{x}

极坐标[编辑]

左右开口的双曲线:

r^2 =a^2\sec 2\theta

上下开口的双曲线:

r^2 =-a^2\sec 2\theta

上右下左开口的双曲线:

r^2 =a^2\csc 2\theta

上左下右开口的双曲线:

r^2 =-a^2\csc 2\theta

在所有公式中,中心在极点,而a是半实轴和半虚轴。

双曲线的参数方程[编辑]

左右开口的双曲线:

\begin{cases}
 x = a\sec t + h \\
 y = b\tan t + k \\
\end{cases}

\begin{cases}
 x = a\cosh t + h \\
 y = b\sinh t + k \\
\end{cases}

上下开口的双曲线:

\begin{cases}
 x = a\tan t + h \\
 y = b\sec t + k \\
\end{cases}

\begin{cases}
 x = a\sinh t + h \\
 y = b\cosh t + k \\
\end{cases}

在所有公式中,(h,\; k)是双曲线的中点,a是半实轴而b是半虚轴。

双曲线的标准方程[编辑]

焦点在x轴上时为: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1

焦点在y轴上时为:\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1

双曲线的渐近线方程[编辑]

焦点在x轴: y = \pm \frac{b}{a} x.

焦点在y轴: y = \pm \frac{a}{b} x.

圆锥曲线方程[编辑]

\rho = \frac{ep}{1-e\cos\theta}

当e>1时,表示双曲线。其中p为焦点到准线距离,θ为弦与x轴夹角。

参考文献[编辑]

外部链接[编辑]

参见[编辑]