主題:科學
科學主題首頁
歡迎來到科學主題首頁!科學是研究自然現象的學問,能夠對於自然現象給出可供重複驗證的解釋與預測。科學家研究科學時,必須符合科學方法,即對自然現象的研究必須建立於收集可觀察、可經驗、可量度的證據,並且合乎明確的邏輯推理原則。另一種比較老舊,很接近的涵義表明,科學是所有可信賴、合乎邏輯與理性的知識。
從古典時代以來,科學就與哲學密切連結。近代時期,在英語,科學與哲學這兩個術語有時可以交換使用。直到17世紀,自然哲學與哲學才開始有所區別。後來,為了更強調兩者不同,又將自然哲學改稱為自然科學。這種詮釋強調,自然科學專注於研究自然現象與相關自然定律,包括物理、化學、生物、醫學、數學、天文學等領域。
將科學所倚賴的治學理論與治學精神延伸至其它領域,現代學者開展了探討人類社會的社會科學。現今,科學這術語可以廣義指稱關於某論題的可信賴知識,如經濟學、政治學、法律學、語言學等。
特色條目
超價分子是指由一種或多種主族元素形成,而且中心原子價層電子數超過8的一類分子。例如五氯化磷、六氟化硫、磷酸根離子、三氟化氯以及三碘陰離子都是典型的超價分子。超價分子的概念最早是由上述幾種不符合八隅體規則的分子產生的,而自從超價分子的概念提出以來,就處於不斷的爭議之中。八隅體規則的例外主要有三種,缺電子分子、奇電子分子和超價分子。利用分子軌道理論可以很好地解釋前兩種分子,然而對於超價分子,不但結構沒有得到公認的解釋,甚至定義都處於爭論之中。超價分子的概念最早由傑里米·穆舍爾在1969年正式提出,他定義以VA族到0族元素為中心原子,而且中心原子氧化態比最低氧化態低的分子為超價分子。超價分子的N-X-L命名法在1960年提出,經常用於區分超價分子中心原子所在主族。關於超價分子本質和分類方法的爭論可追溯到20世紀20年代,即路易斯和蘭米爾時期關於化學鍵本質的爭論。
優良條目
液體推進劑火箭發動機,簡稱液體火箭發動機或液態火箭發動機,是指採用液態的燃料和氧化劑作為能源和工質的火箭發動機。液體火箭發動機的基本組成包括推力室、推進劑供應系統和發動機控制系統等。液體推進劑貯存在推進劑貯箱內,當發動機工作時推進劑在推進劑供應系統的作用下按照要求的壓力和流量輸送至燃燒室,經霧化、蒸發、混合和燃燒生成高溫高壓燃氣,再通過噴管加速至超聲速排出,從而產生推力。液體火箭發動機使用的推進劑可以是一種液態化學物,即單組元推進劑,也可以是幾種液態化學物的組合,即雙組元推進劑及三組元推進劑,它們均具有較高的能量特性。常用的單組元推進劑是肼,主要用於小推力發動機。雙組元推進劑主要有液氧/液氫、液氧/烴類(煤油、汽油和酒精等)、硝酸/烴類、四氧化二氮/偏二甲肼等組合。歷史上第一枚液體火箭是由美國火箭學家羅伯特·戈達德於1926年發射的。德國火箭專家馮·布勞恩的研究團隊在第二次世界大戰期間研製的V-2火箭極大地促進了大型液體火箭發動機的發展。二戰後,美國和蘇聯/俄羅斯等許多國家研製了大量的液體火箭發動機。液體火箭發動機作為最為成熟的火箭推進系統之一,具有較高的性能和許多獨特的優點,目前被廣泛應用於運載火箭、太空飛行器以及飛彈。
每日圖片
粒子偵測器雲室專門用來偵測游離輻射。由英國物理學家查爾斯·威耳遜發明,因此又稱為威爾遜雲室。最簡單的雲室,只是一個密封的環境,裡面充滿過飽和的水蒸氣或酒精。帶電粒子走過的時候,會產生很多離子,所以就留下了軌跡。當施加垂直的均勻磁場於雲室時,這些帶電粒子會偏轉,帶正電的偏轉向一邊,帶負電的會偏轉向另一邊,遵守勞侖茲力定律。圖為首張觀測到正電子存在的雲室照片。從下方移動至上方的正電子,其軌跡向左邊偏轉,由於位於中間的粗厚鉛板吸收能量,下方軌跡的曲率小於上方的曲率。
人物
丁肇中(1936年1月27日—),物理學家、華裔美國人、籍貫山東省日照市,現任美國麻省理工學院教授。1974年,丁肇中與伯頓·里克特幾乎同時各自發現新的基本粒子-J/ψ基本粒子。1976年,因為「發現新的重基本粒子方面的開創性工作」,獲頒諾貝爾物理學獎。
丁肇中提議與主持的阿爾法磁譜儀是一個計劃安裝於國際太空站上的粒子物理試驗設備。整個計劃耗資15億美元,目的在探測宇宙中的奇異物質,包括暗物質及反物質。阿爾法磁譜儀將依靠一個巨大的超導磁鐵及六個超高精確度的探測器來完成它搜索的使命。
新知
< 科學新聞動態
下列日期是新聞發布時間,而非事件發表或發現時間
2022年焦點新聞
- 1月6日——中國天宮空間站經過約47分鐘的跨系統密切協同,太空站機械臂轉位貨運太空船試驗取得圓滿成功,這是中國首次利用太空站機械臂操作大型在軌飛行器進行轉位試驗[1]。
- 1月10日——美國馬里蘭大學醫學院團隊實施豬心轉基因移植至57歲男性人類大衛·貝內特,為全球首成功例。[2]
- 1月15日——南太平洋島國東加附近海域發生海底火山噴發,該國對外通訊幾乎斷絕,產生的海嘯對太平洋沿岸國家造成衝擊。
- 中度熱帶風暴安娜捲襲馬達加斯加、馬拉威、莫三比克,115人死亡,同時造成馬達加斯加首都安塔那那利佛水災。
- 1月24日——發射升空三十天後,詹姆斯·韋伯望遠鏡(James Webb Telescope)已經在太空中抵達其將要觀測宇宙的位置。這個被稱為拉格朗日L2點(Lagrange Point 2)的位置,在地球陰面之外100萬英里(150萬公里)處[3]。
2021年焦點新聞
- 12月25日,詹姆斯·韋伯太空望遠鏡發射升空,正式取代不敷使用的哈伯太空望遠鏡。
- 11月24日,雙小行星改道測試探測器成功發射。
- 9月24日,首批採用CRISPR基因編輯技術生產的番茄上市銷售。
- 4月29日,中國天宮太空站的首個核心組件正式在軌運行。
- 4月19日,搭載於毅力號火星探測器的無人直升機機智號在火星表面完成飛行。
- 3月24日,事件視界望遠鏡合作組織公開了M87超大質量黑洞在偏振光下的影像,為人類史上首次捕捉到黑洞影像。
2020年焦點新聞
- 10月6日,羅傑·潘洛斯、安德烈婭·蓋茲和賴因哈德·根策爾因對於黑洞的傑出研究獲得諾貝爾物理學獎。
- 6月15日,德國法蘭克福大學教授研究團隊做實驗首次證實九十年前阿諾·索末菲提出的理論:當光子撞擊到單獨分子並且使其發射出電子時,該單獨離子會朝著光源移動。
- 5月6日,歐洲南天天文台研究團隊宣布,在恆星星系HD 167128觀測到距今為止距離地球最近的黑洞。
- 1月30日,一篇有關新型冠狀病毒在流行病學上的病例研究發表於新英格蘭醫學期刊,其中一項發現為德國有可能存在無症狀傳播者。
- 1月21日,《中國科學:生命科學》發文指2019新型肺炎病毒(2019-nCoV)通過S-蛋白與人體血管緊張素轉化酶互作的分子機制,來感染人的呼吸道上皮細胞,進而引起嚴重肺炎症狀。
- 1月11日,《柳葉刀》期刊發文,呼籲保護中國醫生使其遠離暴力傷害。
2019年焦點新聞
- 11月8日,科學家宣布利用阿塔卡瑪大型毫米波/亞毫米波陣列望遠鏡(ALMA)發現一顆誕生於4000萬年前的恆星的碎片盤中仍存在遠超預期的高含量碳氣體The Astrophysical Journal Letters 。
- 10月8日,因為對於人們了解宇宙演化與地球在宇宙裡的席位做出貢獻,吉姆·皮布爾斯、米歇爾·麥耶和迪迪埃·奎洛茲獲得2019年諾貝爾物理學獎。
- 9月11日,天文學家首次在位處適居帶的太陽系外行星K2-18b的大氣中發現水分的存在。
- 7月31日,大型強子對撞機的超環面儀器實驗團隊找到光子與光子散射的確切證據,超過背景期望值8.2 個標準差。
- 7月15日,美國NIST研究團隊發展成功當今最準確的時鐘,Al+離子鐘,準確度為1018分之一。
- 5月22日,阿貢國家實驗室實驗團隊發現新超導材料三氫化鑭,其臨界超導溫度為-23C,是至今為止最高溫度。
- 4月10日,事件視界望遠鏡團隊宣布,首次成功觀測到在室女A星系中央的超大質量黑洞。
- 3月29日,麻省理工學院實驗團隊報告,暗物質實驗ABRACADABRA 第一回合並未發現任何軸子存在的蛛絲馬跡。
- 3月21日,雪城大學教授薛爾頓·斯同恩的研究團隊做實驗證實,魅夸克的物質與反物質對於衰變具有不對稱性,這可能是物質宇宙形成的重要因素。
- 3月15日,使用緲子探測器,塔塔基礎研究學院的研究團隊發現,雷暴可以產生高達13億伏特的電壓!
- 2月21日,以色列的月球著陸器Beresheet嘗試登陸在月球澄海北端失敗,其中Arch Mission Foundation內含數以千計水熊蟲的貨物散播到了月球表面。[4][5]
- 2月13日,NASA宣佈「機遇」號火星車任務正式結束。
- 1月3日,中國國家航天局的探測器嫦娥四號成功在月球背面南半部的馮·卡門環形山著陸。
參考文獻
- ^ 首次 中國太空站機械臂轉位貨運太空船試驗成功. 中國時報. 2022-01-06 [2022-01-06]. (原始內容存檔於2022-01-06).
- ^ Michael O'Riordan. David Bennett, First Transplant Recipient of a Pig Heart, Dies. TCTMD. [2022-12-18].
- ^ 詹姆斯·韋伯太空望遠鏡已到達最終觀測位置. BBC News中文. 2022-01-25.
- ^ Solidot | 水熊虫通过坠毁的以色列飞船散播到月球表面. www.solidot.org. [2019-08-31].
- ^ Solidot | 以色列月球登陆器登陆失败. www.solidot.org. [2019-08-31].