本頁使用了標題或全文手工轉換

辛普森積分法

維基百科,自由的百科全書
前往: 導覽搜尋

辛普森法則(Simpson's rule)是一種數值積分方法,是牛頓-寇次公式的特殊形式,以二次曲線逼近的方式取代矩形或梯形積分公式,以求得定積分的數值近似解。其近似值如下:

該方法係由英格蘭湯馬士·辛普森所創立。

簡化公式[編輯]

  • h是立體(常指擬柱體)的高度
  • a是下底面積
  • b是中間截面面積(在一半高度上的截面面積)
  • c是上底面積
稜柱和圓柱(

(稜柱和圓柱的體積=底面積*高)

稜錐和圓錐(a=4b,c=0)

(稜錐和圓錐的面積=等底、等高的圓柱、稜柱體積的1/3)

圓台

球體

公式還可以用於計算平面形面積例如:平行四邊形、梯形、三角形……

平行四邊形(正方形、矩形等)

(平行四邊形的面積等於底乘高)

梯形

三角形

參見[編輯]