此條目介紹的是多元微分算子。關於圖論中,該算子離散化的結果,請見「
拉普拉斯矩陣」。
在數學以及物理中,拉普拉斯算子或是拉普拉斯算符(英語:Laplace operator, Laplacian)是由歐幾里得空間中的一個函數的梯度的散度給出的微分算子,通常寫成 、 或 。
這名字是為了紀念法國數學家皮耶-西蒙·拉普拉斯(1749–1827)而命名的。他在研究天體力學在數學中首次應用算子,當它被施加到一個給定的重力位(Gravitational potential)的時候,其中所述算子給出的質量密度的常數倍。經拉普拉斯算子運算為零 的函數稱為調和函數,現在稱為拉普拉斯方程式,和代表了在自由空間中的可能的重力場。
拉普拉斯算子有許多用途,此外也是橢圓算子中的一個重要例子。
拉普拉斯算子出現描述許多物理現象的微分方程式裡。例如,常用於波方程式的數學模型、熱傳導方程式、流體力學以及亥姆霍茲方程式。在靜電學中,拉普拉斯方程式和卜瓦松方程式的應用隨處可見。在量子力學中,其代表薛丁格方程式中的動能項。
拉普拉斯算子是最簡單的橢圓算子,並且拉普拉斯算子是霍奇理論的核心,並且是德拉姆上同調的結果。在圖像處理和計算機視覺中,拉普拉斯算子已經被用於諸如斑點檢測和邊際檢測等的各種任務。
拉普拉斯算子是 n 維歐幾里得空間中的一個二階微分算子,其定義為對函數 先作梯度運算()後,再作散度運算()的結果。因此如果 是二階可微的實函數,則 的拉普拉斯算子定義為:
- ── (1)
的拉普拉斯算子也是笛卡兒坐標系 中的所有非混合二階偏導數:
- ── (2)
作為一個二階微分算子,對於k ≥ 2,拉普拉斯算子把Ck函數映射到Ck-2函數。表達式((1)或(2))定義了一個算子Δ:Ck(Rn)→ Ck-2(Rn),或更一般地,定義了一個算子Δ:Ck(Ω)→ Ck-2(Ω),對於任何開集Ω。
函數的拉普拉斯算子也是該函數的海森矩陣的跡:
- 其中x與y代表x-y平面上的笛卡兒坐標
- 另外極坐標的表示法為:
- 笛卡兒坐標系下的表示法
- 圓柱坐標系下的表示法
- 球坐標系下的表示法
在參數方程式為(其中以及)的維球坐標系中,拉普拉斯算子為:
其中是維球面上的拉普拉斯-貝爾特拉米算子。我們也可以把的項寫成。
- 如果f和g是兩個函數,則它們的乘積的拉普拉斯算子為:
- 。
f是徑向函數且g是球諧函數,是一個特殊情況。這個情況在許多物理模型中有所出現。的梯度是一個徑向向量,而角函數的梯度與徑向向量相切,因此:
- 。
球諧函數還是球坐標系中的拉普拉斯算子的角部分的特徵函數:
- 。
因此:
- 。
拉普拉斯算子的譜由特徵值和對應的特徵函數組成,滿足:
這就是所謂的亥姆霍茲方程式。
如果在中有界,拉普拉斯算子的特徵函數時希爾伯特空間下的一組標準正交基。這主要是因為緊自伴隨算子的譜定理,適用於拉普拉斯的逆算子(根據龐加萊不等式和Rellich-Kondrachov定理,它是緊算子)。這也可以表明特徵函數是無窮階可微的函數。更一般地說,這些結果對任何有界緊黎曼流形上的拉普拉斯-貝特拉米算子都是成立的,或者說對任何有邊界上具有光滑係數的橢圓算子的Dirichlet特徵值問題也成立。當Ω為N維球面時,拉普拉斯的特徵函數是球諧函數。
拉普拉斯算子可以用一定的方法推廣到非歐幾里得空間,這時它就有可能是橢圓算子、雙曲算子、或超雙曲算子。
在閔可夫斯基空間中,拉普拉斯算子變為達朗貝爾算子(英語:d'Alembertian):
達朗貝爾算子通常用來表達克萊因-戈爾登方程式以及四維波動方程式。第四個項前面的符號是負號,而在歐幾里德空間中則是正號。因子c是需要的,這是因為時間和空間通常用不同的單位來衡量;如果x方向用寸來衡量,y方向用厘米來衡量,也需要一個類似的因子。
拉普拉斯算子作用在向量值函數上,其結果被定義爲一個向量,這個向量的各個分量分別爲向量值函數各個分量的拉普拉斯,卽
- .
更一般地,對沒有坐標的向量,我們用下面的方式定義(受向量恆等式的啓發):
- ,也可用類似於拉普拉斯-德拉姆算子的方式定義,然後證明「旋度的旋度」向量恆等式.
拉普拉斯算子也可以推廣為定義在黎曼流形上的橢圓型算子,稱為拉普拉斯-貝爾特拉米算子。達朗貝爾算子則推廣為偽黎曼流形上的雙曲型算子。拉普拉斯–貝爾特拉米算子還可以推廣為運行於張量場上的算子(也稱為拉普拉斯–貝爾特拉米算子)。
另外一種把拉普拉斯算子推廣到偽黎曼流形的方法,是通過拉普拉斯–德拉姆算子,它作用在微分形式上。這便可以通過外森比克恆等式來與拉普拉斯–貝爾特拉米算子聯繫起來。
- Feynman, R, Leighton, R, and Sands, M. Chapter 12: Electrostatic Analogs. The Feynman Lectures on Physics. Volume 2. Addison-Wesley-Longman. 1970.
- Gilbarg, D and Trudinger, N. Elliptic partial differential equations of second order. Springer. 2001. ISBN 978-3540411604.
- Schey, H. M. Div, grad, curl, and all that. W W Norton & Company. 1996. ISBN 978-0393969979.