除法定则

维基百科,自由的百科全书
跳转至: 导航搜索
微积分学
\text{e} = \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n
函数 · 导数 · 微分 · 积分

除法定则是数学中关于两个函数的商的导数的一个计算定则。

若已知两个连续函数f,g及其导数f',g',则它们的商

f(x) = \frac{g(x)}{h(x)}

的导数为:

\frac{d}{dx}f(x) = f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{{h(x)}^2}.

例子[编辑]

(4x - 2)/(x^2 + 1)的导数为:
\frac{d}{dx} \frac{(4x - 2)}{x^2 + 1} =\frac{(x^2 + 1)(4) - (4x - 2)(2x)}{(x^2 + 1)^2}
=\frac{(4x^2 + 4) - (8x^2 - 4x)}{(x^2 + 1)^2}
=\frac{-4x^2 + 4x + 4}{(x^2 + 1)^2}
 f(x) = \frac{2x^2}{x^3}的导数为:
f'(x)\, =\frac {\left(4x \cdot x^3 \right) - \left(2x^2 \cdot 3x^2 \right)} {\left(x^3\right)^2}
=\frac{4x^4 - 6x^4}{x^6}
=\frac{-2x^4}{x^6}
=-\frac{2}{x^2}

证明[编辑]

从牛顿差商推出[编辑]

f(x) = g(x)/h(x)h(x)≠ 0,且gh均可导。
f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{g(x + \Delta x)}{h(x + \Delta x)} - \frac{g(x)}{h(x)}}{\Delta x}
= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left( \frac{g(x+\Delta x)h(x)-g(x)h(x+\Delta x)}{h(x)h(x+\Delta x)} \right)
= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left( \frac{(g(x+\Delta x)h(x)-g(x)h(x))-(g(x)h(x+\Delta x)-g(x)h(x))}{h(x)h(x+\Delta x)} \right)
= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left( \frac{h(x)(g(x+\Delta x)-g(x))-g(x)(h(x+\Delta x)-h(x))}{h(x)h(x+\Delta x)} \right)
= \lim_{\Delta x \to 0} \frac{\frac{g(x+\Delta x)-g(x)}{\Delta x}h(x)-g(x)\frac{h(x+\Delta x)-h(x)}{\Delta x}}{h(x)h(x+\Delta x)}
= \frac{\lim_{\Delta x \to 0} \left(\frac{g(x+\Delta x)-g(x)}{\Delta x}\right)h(x) - g(x) \lim_{\Delta x \to 0} \left(\frac{h(x+\Delta x)-h(x)}{\Delta x}\right)}{h(x)h(\lim_{\Delta x \to 0} (x+\Delta x))}
= \frac{g'(x)h(x) - g(x)h'(x)}{[h(x)]^2}

从乘积法则推出[编辑]

假设f(x) = \frac{g(x)}{h(x)}
那么g(x) = f(x)h(x) \mbox{  } \,
g'(x)=f'(x)h(x) + f(x)h'(x)\mbox{  } \,
f'(x)=\frac{g'(x) - f(x)h'(x)}{h(x)} = \frac{g'(x) - \frac{g(x)}{h(x)}\cdot h'(x)}{h(x)}
f'(x)=\frac{g'(x)h(x) - g(x)h'(x)}{\left(h(x)\right)^2}

从复合函数求导法则推出[编辑]

考虑恒等式

 \frac{u}{v}\; =\; \frac{1}{4}\left[ \left( u+\frac{1}{v} \right)^{2}-\; \left( u-\frac{1}{v} \right)^{2} \right]

那么:

\frac{d\left( \frac{u}{v} \right)}{dx}\; =\; \frac{d}{dx}\frac{1}{4}\left[ \left( u+\frac{1}{v} \right)^{2}-\; \left( u-\frac{1}{v} \right)^{2} \right]

于是:

\frac{d\left( \frac{u}{v} \right)}{dx}\; =\; \frac{1}{4}\left[ 2\left( u+\frac{1}{v} \right)\left( \frac{du}{dx}-\frac{dv}{v^{2}dx} \right)-\; 2\left( u-\frac{1}{v} \right)\left( \frac{du}{dx}+\frac{dv}{v^{2}dx} \right) \right]

展开,得:

\frac{d\left( \frac{u}{v} \right)}{dx}\; =\; \frac{1}{4}\left[ \frac{4}{v}\frac{du}{dx}-\frac{4u}{v^{2}}\frac{dv}{dx} \right]

最后,把分子和分母同除以4,便得:

\frac{d\left( \frac{u}{v} \right)}{dx}\; =\; \frac{\left[ v\frac{du}{dx}-u\frac{dv}{dx} \right]}{v^{2}}

参见[编辑]